Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Systematic Review Article

Promising Phytoconstituents in Diabetes-related Wounds: Mechanistic Insights and Implications

In Press, (this is not the final "Version of Record"). Available online 27 February, 2024
Author(s): Arjina Sultana, Ranadeep Borgohain, Ashwini Rayaji, Dipankar Saha and Bhrigu Kumar Das*
Published on: 27 February, 2024

Article ID: e270224227477

DOI: 10.2174/0115733998279112240129074457

Price: $95

Abstract

Background: The onset of diabetes mellitus (DM), a metabolic disorder characterized by high blood glucose levels and disrupted glucose metabolism, results in 20% of people with diabetes suffering from diabetes-related wounds worldwide. A minor wound, such as a cut or abrasion, can lead to infections and complications in diabetic patients. We must understand the mechanism/s contributing to this delayed wound healing to develop effective prevention strategies. The potential benefits of bioactive phytochemicals for diabetic wound healing have been reported in numerous studies.

Method: A bioactive compound may have multiple actions, including antioxidants, antiinflammatory, antimicrobial, and angiogenesis. Compounds derived from these plants have shown promising results in wound healing, inflammation reduction, collagen synthesis, and neovascularization improvement.

Results: Consequently, this review provides an update to our understanding of how phytoconstituents promote wound healing in diabetics. A thorough literature review was conducted on diabetes, wound healing, and phytoconstituents for this study. Only English publications until June 2023 were included in the search, which used multiple search engines and the main keywords. Summing up, phytochemical-based interventions might improve the quality of life for diabetics by improving wound healing.

Conclusion: However, to fully understand the efficacy and safety of these phytochemicals in managing diabetic wounds, more research and clinical trials are needed.

[1]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047-53.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[2]
Kumar Das B, Gadad PC. Impact of diabetes on the increased risk of hepatic cancer: An updated review of biological aspects. Diabetes Epidemiol Manage 2021; 4: 100025.
[http://dx.doi.org/10.1016/j.deman.2021.100025]
[3]
Sicree R, Shaw J, Zimmet P. Prevalence and projections. Brussels, Belgium: International Diabetes Federation 2006.
[4]
Robertson RP. Antagonist: Diabetes and insulin resistance--philosophy, science, and the multiplier hypothesis. J Lab Clin Med 1995; 125(5): 560-4.
[PMID: 7738421]
[5]
Rao G, Jensen ET. Type 2 diabetes in youth. Glob Pediatr Health 2021; 7: 2333794X20981343.
[6]
Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med 2006; 23(6): 594-608.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01773.x] [PMID: 16759300]
[7]
Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc 2018; 81(2): 94-101.
[http://dx.doi.org/10.1016/j.jcma.2017.11.002] [PMID: 29169897]
[8]
Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol 2016; 74(4): 607-25.
[http://dx.doi.org/10.1016/j.jaad.2015.08.070] [PMID: 26979353]
[9]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[10]
Thangapazham RL, Sharad S, Maheshwari RK. Phytochemicals in wound healing. Adv Wound Care 2016; 5(5): 230-41.
[http://dx.doi.org/10.1089/wound.2013.0505] [PMID: 27134766]
[11]
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35-43.
[http://dx.doi.org/10.1159/000339613] [PMID: 22797712]
[12]
Gantwerker EA, Hom DB. Skin: Histology and physiology of wound healing. Clin Plast Surg 2012; 39(1): 85-97.
[http://dx.doi.org/10.1016/j.cps.2011.09.005] [PMID: 22099852]
[13]
Desmoulière A, Chaponnier C, Gabbiani G. Perspective Article: Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005; 13(1): 7-12.
[http://dx.doi.org/10.1111/j.1067-1927.2005.130102.x] [PMID: 15659031]
[14]
Lindley LE, Stojadinovic O, Pastar I, Tomic-Canic M. Biology and biomarkers for wound healing. Plast Reconstr Surg 2016; 138(3S): 18S-28S.
[http://dx.doi.org/10.1097/PRS.0000000000002682] [PMID: 27556760]
[15]
Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology 2011; 216(7): 753-62.
[http://dx.doi.org/10.1016/j.imbio.2011.01.001] [PMID: 21281986]
[16]
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci 2016; 17(12): 2085.
[http://dx.doi.org/10.3390/ijms17122085] [PMID: 27973441]
[17]
Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Adv Skin Wound Care 2012; 25(7): 304-14.
[http://dx.doi.org/10.1097/01.ASW.0000416006.55218.d0] [PMID: 22713781]
[18]
Velazquez OC. Angiogenesis and vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg 2007; 45: A39-47.
[19]
Prompers L, Schaper N, Apelqvist J, et al. Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 2008; 51(5): 747-55.
[http://dx.doi.org/10.1007/s00125-008-0940-0] [PMID: 18297261]
[20]
Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[21]
Percival NJ. Classification of wounds and their management. Surgery 2002; 20(5): 114-7.
[http://dx.doi.org/10.1383/surg.20.5.114.14626]
[22]
Harding KG, Morris HL, Patel GK. Science, medicine, and the future: Healing chronic wounds. BMJ 2002; 324(7330): 160-3.
[http://dx.doi.org/10.1136/bmj.324.7330.160] [PMID: 11799036]
[23]
Yun J, Park S, Park HY, Lee KA. Efficacy of polydeoxyribonucleotide in promoting the healing of diabetic wounds in a murine model of streptozotocin-induced diabetes: A pilot experiment. Int J Mol Sci 2023; 24(3): 1932.
[http://dx.doi.org/10.3390/ijms24031932] [PMID: 36768255]
[24]
Caputo GM, Cavanagh PR, Ulbrecht JS, Gibbons GW, Karchmer AW. Assessment and management of foot disease in patients with diabetes. N Engl J Med 1994; 331(13): 854-60.
[http://dx.doi.org/10.1056/NEJM199409293311307] [PMID: 7848417]
[25]
Goodson WH III, Hunt TK. Wound healing and the diabetic patient. Surg Gynecol Obstet 1979; 149(4): 600-8.
[PMID: 483144]
[26]
Yue DK, McLennan S, Marsh M, et al. Effects of experimental diabetes, uremia, and malnutrition on wound healing. Diabetes 1987; 36(3): 295-9.
[http://dx.doi.org/10.2337/diab.36.3.295] [PMID: 3803737]
[27]
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals 2020; 13(4): 60.
[http://dx.doi.org/10.3390/ph13040060] [PMID: 32244718]
[28]
Spiliopoulos S, Festas G, Paraskevopoulos I, Mariappan M, Brountzos E. Overcoming ischemia in the diabetic foot: Minimally invasive treatment options. World J Diabetes 2021; 12(12): 2011-26.
[http://dx.doi.org/10.4239/wjd.v12.i12.2011] [PMID: 35047116]
[29]
Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: Prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 2000; 115(2): 245-53.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00029.x] [PMID: 10951242]
[30]
Grazul-Bilska AT, Johnson ML, Bilski JJ, et al. Wound healing: The role of growth factors. Drugs Today 2003; 39(10): 787-800.
[http://dx.doi.org/10.1358/dot.2003.39.10.799472] [PMID: 14668934]
[31]
Buchberger B, Follmann M, Freyer D, Huppertz H, Ehm A, Wasem J. The importance of growth factors for the treatment of chronic wounds in the case of diabetic foot ulcers. GMS Health Technol Assess 2010; 6: Doc12.
[PMID: 21289885]
[32]
Greenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 1990; 136(6): 1235-46.
[PMID: 2356856]
[33]
Dinh T, Elder S, Veves A. Delayed wound healing in diabetes: Considering future treatments. Diabetes Manag 2011; 1(5): 509-19.
[http://dx.doi.org/10.2217/dmt.11.44]
[34]
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen 2008; 16(5): 585-601.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x] [PMID: 19128254]
[35]
Li H, Fu X, Zhang L, Huang Q, Wu Z, Sun T. Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. J Surg Res 2008; 145(1): 41-8.
[http://dx.doi.org/10.1016/j.jss.2007.02.044] [PMID: 18082770]
[36]
Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review. Rev Endocr Metab Disord 2019; 20(2): 207-17.
[http://dx.doi.org/10.1007/s11154-019-09492-1] [PMID: 30937614]
[37]
Gardner JC, Wu H, Noel JG, et al. Keratinocyte growth factor supports pulmonary innate immune defense through maintenance of alveolar antimicrobial protein levels and macrophage function. Am J Physiol Lung Cell Mol Physiol 2016; 310(9): L868-79.
[http://dx.doi.org/10.1152/ajplung.00363.2015] [PMID: 26919897]
[38]
Matsuda H, Koyama H, Sato H, et al. Role of nerve growth factor in cutaneous wound healing: Accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 1998; 187(3): 297-306.
[http://dx.doi.org/10.1084/jem.187.3.297] [PMID: 9449710]
[39]
Dogan S, Demirer S, Kepenekci I, et al. Epidermal growth factor‐containing wound closure enhances wound healing in non‐diabetic and diabetic rats. Int Wound J 2009; 6(2): 107-15.
[http://dx.doi.org/10.1111/j.1742-481X.2009.00584.x] [PMID: 19432660]
[40]
Fang Y, Shen J, Yao M, Beagley KW, Hambly BD, Bao S. Granulocyte-macrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines. Br J Dermatol 2010; 162(3): 478-86.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09528.x] [PMID: 19799605]
[41]
Zykova SN, Balandina KA, Vorokhobina NV, Kuznetsova AV, Engstad R, Zykova TA. Macrophage stimulating agent soluble yeast β‐1,3/1,6‐glucan as a topical treatment of diabetic foot and leg ulcers: A randomized, double blind, placebo‐controlled phase II study. J Diabetes Investig 2014; 5(4): 392-9.
[http://dx.doi.org/10.1111/jdi.12165] [PMID: 25411598]
[42]
Wound healing and management unit. Evidence Summary: Polyhexamethylene biguanide for chronic wounds. Wound Practice and Research 2020; 28(4): 189-91.
[43]
RxList. Drug Description Available from: https://www.rxlist.com/regranex-drug.htm#description (Accessed June 15, 2023).
[44]
Woulgan Bioactive Beta-Glucan Gel. Available from: https://woulgan.com/ (Accessed June 15, 2023).
[45]
Bharat Biotech. Available from: https://www.bharatbiotech.com/regend150.html (Accessed June 15, 2023).
[46]
Ferrer-Tasies L, Santana H, Cabrera-Puig I, et al. Recombinant human epidermal growth factor/quatsome nanoconjugates: A robust topical delivery system for complex wound healing. Adv Ther 2021; 4(6): 2000260.
[http://dx.doi.org/10.1002/adtp.202000260]
[47]
Boulton AJM. The diabetic foot: A global view. Diabetes Metab Res Rev 2000; 16(S1): S2-5.
[http://dx.doi.org/10.1002/1520-7560(200009/10)16:1+<::AID-DMRR105>3.0.CO;2-N] [PMID: 11054879]
[48]
Kavitha KV, Tiwari S, Purandare VB, Khedkar S, Bhosale SS, Unnikrishnan AG. Choice of wound care in diabetic foot ulcer: A practical approach. World J Diabetes 2014; 5(4): 546-56.
[http://dx.doi.org/10.4239/wjd.v5.i4.546] [PMID: 25126400]
[49]
Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing-Exploring medicinal plants of India. J Ethnopharmacol 2007; 114(2): 103-13.
[http://dx.doi.org/10.1016/j.jep.2007.08.010] [PMID: 17884316]
[50]
Kumarasamyraja D, Jeganathan NS, Manavalan R. A review on medicinal plants with potential wound healing activity. Int J Pharm Pharm Sci 2012; 2: 105-11.
[51]
Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 1995; 270(42): 24995-5000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[52]
Bhattacharjee S, Mandal DP. Angiogenesis modulation: The spice effect. J Environ Pathol Toxicol Oncol 2012; 31(3): 273-83.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v31.i3.80] [PMID: 23339701]
[53]
Vanden Berghe W, Haegeman G. Epigenetic remedies by dietary phytochemicals against inflammatory skin disorders: Myth or reality? Curr Drug Metab 2010; 11(5): 436-50.
[http://dx.doi.org/10.2174/138920010791526079] [PMID: 20540697]
[54]
Fu J, Huang J, Lin M, Xie T, You T. Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization. J Surg Res 2020; 246: 213-23.
[http://dx.doi.org/10.1016/j.jss.2019.09.011] [PMID: 31606511]
[55]
Özay Y, Güzel S, Yumrutaş Ö, et al. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J Surg Res 2019; 233: 284-96.
[http://dx.doi.org/10.1016/j.jss.2018.08.009] [PMID: 30502261]
[56]
Shao Y, Dang M, Lin Y, Xue F. Evaluation of wound healing activity of plumbagin in diabetic rats. Life Sci 2019; 231: 116422.
[http://dx.doi.org/10.1016/j.lfs.2019.04.048] [PMID: 31059689]
[57]
Kim E, Ham S, Jung BK, Park JW, Kim J, Lee JH. Effect of Baicalin on wound healing in a mouse model of pressure ulcers. Int J Mol Sci 2022; 24(1): 329.
[http://dx.doi.org/10.3390/ijms24010329] [PMID: 36613772]
[58]
Mao X, Li Z, Li B, Wang H. Baicalin regulates mRNA expression of VEGF‐c, Ang‐1/Tie2, TGF‐β and Smad2/3 to inhibit wound healing in streptozotocin‐induced diabetic foot ulcer rats. J Biochem Mol Toxicol 2021; 35(11): e22893.
[http://dx.doi.org/10.1002/jbt.22893] [PMID: 34414639]
[59]
Okur ME, Şakul AA, Ayla Ş, et al. Wound healing effect of naringin gel in alloxan induced diabetic mice. Ankara Univer Eczacilik Fakultesi Dergisi 2020; 44(3): 397-414.
[http://dx.doi.org/10.33483/jfpau.742224]
[60]
Hussan F, Teoh SL, Muhamad N, Mazlan M, Latiff AA. Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression. J Wound Care 2014; 23(8) 400-407, 402, 404-407.
[http://dx.doi.org/10.12968/jowc.2014.23.8.400] [PMID: 25139598]
[61]
Daemi A, Lotfi M, Farahpour MR, Oryan A, Ghayour SJ, Sonboli A. Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice. Pharm Biol 2019; 57(1): 799-806.
[http://dx.doi.org/10.1080/13880209.2019.1687525] [PMID: 31760838]
[62]
Kartini K, Wati N, Gustav R, et al. Wound healing effects of Plantago major extract and its chemical compounds in hyperglycemic rats. Food Biosci 2021; 41(100937): 100937.
[http://dx.doi.org/10.1016/j.fbio.2021.100937]
[63]
Cai HA, Huang L, Zheng LJ, et al. Ginsenoside (Rg-1) promoted the wound closure of diabetic foot ulcer through iNOS elevation via miR-23a/IRF-1 axis. Life Sci 2019; 233: 116525.
[http://dx.doi.org/10.1016/j.lfs.2019.05.081] [PMID: 31158376]
[64]
Dogan E, Yanmaz L, Gedikli S, Ersoz U, Okumus Z. The effect of Pycnogenol on wound healing in diabetic rats. Ostomy Wound Manage 2017; 63(4): 41-7.
[PMID: 28448268]
[65]
Alhakamy NA, Caruso G, Privitera A, et al. Fluoxetine ecofriendly nanoemulsion enhances wound healing in diabetic rats: In vivo efficacy assessment. Pharmaceutics 2022; 14(6): 1133.
[http://dx.doi.org/10.3390/pharmaceutics14061133] [PMID: 35745706]
[66]
Kant V, Gopal A, Kumar D, et al. Curcumin-induced angiogenesis hastens wound healing in diabetic rats. J Surg Res 2015; 193(2): 978-88.
[http://dx.doi.org/10.1016/j.jss.2014.10.019] [PMID: 25454972]
[67]
Soni R, Mehta NM, Srivastava DN. Healing potential of ethyl acetate soluble fraction of ethanolic extract of Terminalia chebula on experimental cutaneous wounds in streptozotocin-induced diabetic rats. Asian J Biomed Pharm Sci 2013; 3(25): 32-6.
[68]
Huang X, Sun J, Chen G, et al. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Front Pharmacol 2019; 10: 421.
[http://dx.doi.org/10.3389/fphar.2019.00421] [PMID: 31068817]
[69]
Zeng Z, Zhu BH. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J Ethnopharmacol 2014; 154(3): 653-62.
[http://dx.doi.org/10.1016/j.jep.2014.04.038] [PMID: 24794013]
[70]
Shahrim Z, Makpol S, Tan GC, Muhammad NA, Hasan ZAA. Topical application of the palm tocotrienol-rich fraction (trf) enhances cutaneous wound healing in type 2 diabetic mice. J Oil Palm Res 2022; 34(3): 546-1.
[http://dx.doi.org/10.21894/jopr.2021.0054]
[71]
McKay TB, Karamichos D. Quercetin and the ocular surface: What we know and where we are going. Exp Biol Med 2017; 242(6): 565-72.
[http://dx.doi.org/10.1177/1535370216685187] [PMID: 28056553]
[72]
Tokyol Ç, Yilmaz S, Kahraman A, Çakar H, Polat C. The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats. Acta Chir Belg 2006; 106(1): 68-72.
[http://dx.doi.org/10.1080/00015458.2006.11679837] [PMID: 16612918]
[73]
Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 2003; 135(3): 357-64.
[http://dx.doi.org/10.1016/S1532-0456(03)00140-6] [PMID: 12927910]
[74]
Jangde R, Srivastava S, Singh MR, Singh D. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 2018; 115: 1211-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.010] [PMID: 29730004]
[75]
Häkkinen SH, Kärenlampi SO, Heinonen IM, Mykkänen HM, Törrönen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 1999; 47(6): 2274-9.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[76]
Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001; 49(6): 3106-12.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[77]
Herrmann K. Flavonols and flavones in food plants: A review. Int J Food Sci Technol 1976; 11(5): 433-48.
[http://dx.doi.org/10.1111/j.1365-2621.1976.tb00743.x]
[78]
Yang Y, Chen Z, Zhao X, et al. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review. Front Endocrinol 2022; 13: 990299.
[http://dx.doi.org/10.3389/fendo.2022.990299] [PMID: 36157449]
[79]
Kishore N, Mishra BB, Tiwari VK, Tripathi V. Difuranonaphthoquinones from Plumbago zeylanica roots. Phytochem Lett 2010; 3(2): 62-5.
[http://dx.doi.org/10.1016/j.phytol.2009.11.007]
[80]
Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50(12): 4356-63.
[http://dx.doi.org/10.1016/j.fct.2012.08.046] [PMID: 22960630]
[81]
Moulin V, Auger FA, Garrel D, Germain L. Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns 2000; 26(1): 3-12.
[http://dx.doi.org/10.1016/S0305-4179(99)00091-1] [PMID: 10630313]
[82]
Soares MA, Cohen OD, Low YC, et al. Restoration of Nrf2 signaling normalizes the regenerative niche. Diabetes 2016; 65(3): 633-46.
[http://dx.doi.org/10.2337/db15-0453] [PMID: 26647385]
[83]
Waisundara VY, Hsu A, Huang D, Tan BKH. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chin Med 2008; 36(3): 517-40.
[http://dx.doi.org/10.1142/S0192415X08005953] [PMID: 18543386]
[84]
Fu Y, Luo J, Jia Z, et al. Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice. Int J Endocrinol 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/846742] [PMID: 25147566]
[85]
Syed AA, Reza MI, Shafiq M, et al. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis. Life Sci 2020; 257: 118118.
[http://dx.doi.org/10.1016/j.lfs.2020.118118] [PMID: 32702445]
[86]
Emran TB, Islam F, Nath N, et al. Naringin and naringenin polyphenols in neurological diseases: Understandings from a therapeutic viewpoint. Life 2022; 13(1): 99.
[http://dx.doi.org/10.3390/life13010099] [PMID: 36676048]
[87]
Punithavathi VR, Anuthama R, Prince PSM. Combined treatment with naringin and vitamin C ameliorates streptozotocin‐induced diabetes in male Wistar rats. J Appl Toxicol 2008; 28(6): 806-13.
[http://dx.doi.org/10.1002/jat.1343] [PMID: 18344197]
[88]
Balachandran A, Choi SB, Beata MM, et al. Antioxidant, wound healing potential and in silico assessment of Naringin, Eicosane and Octacosane. Molecules 2023; 28(3): 1043.
[http://dx.doi.org/10.3390/molecules28031043] [PMID: 36770709]
[89]
Kandhare AD, Alam J, Patil MVK, Sinha A, Bodhankar SL. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharm Biol 2016; 54(3): 419-32.
[http://dx.doi.org/10.3109/13880209.2015.1038755] [PMID: 25894211]
[90]
Welihinda J, Arvidson G, Gylfe E, Hellman B, Karlsson E. The insulin-releasing activity of the tropical plant momordica charantia. Acta Biol Med Ger 1982; 41(12): 1229-40.
[PMID: 6765165]
[91]
Welihinda J, Karunanayake EH, Sheriff MHH, Jayasinghe KSA. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J Ethnopharmacol 1986; 17(3): 277-82.
[http://dx.doi.org/10.1016/0378-8741(86)90116-9] [PMID: 3807390]
[92]
Villarreal-La Torre VE, Guarniz WS, Silva-Correa C, Cruzado-Razco L, Siche R. Antimicrobial activity and chemical composition of Momordica charantia: A review. Pharmacogn J 2020; 12(1): 213-22.
[http://dx.doi.org/10.5530/pj.2020.12.32]
[93]
Kubola J, Siriamornpun S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem 2008; 110(4): 881-90.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.076] [PMID: 26047274]
[94]
Liu Z, Gong J, Huang W, Lu F, Dong H. The effect of Momordica charantia in treating diabetes mellitus: A review. Evid Based Complement Alternat Med 2021; 2021: 3796265.
[PMID: 33510802]
[95]
Prasad V, Jain V, Girish D, Dorle AK. Wound-healing property of Momordica charantia L. fruit powder. J Herb Pharmacother 2006; 6(3-4): 105-15.
[http://dx.doi.org/10.1080/J157v06n03_05] [PMID: 17317652]
[96]
Sharma S, Sharma M. Formulation, evaluation, wound healing studies of benzene-95% absolute ethanol extract of leaves. Optoelectron 2009; 1(4): 375-8.
[97]
Singh R, Garcia-Gomez I, Gudehithlu KP, Singh AK. Bitter melon extract promotes granulation tissue growth and angiogenesis in the diabetic wound. Adv Skin Wound Care 2017; 30(1): 16-26.
[http://dx.doi.org/10.1097/01.ASW.0000504758.86737.76] [PMID: 27984270]
[98]
Subash Babu P, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde-A potential antidiabetic agent. Phytomedicine 2007; 14(1): 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[99]
Rao PV, Gan SH. Cinnamon: A multifaceted medicinal plant. Evid Based Complement Alternat Med 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[100]
Rojas J, Bermudez V, Palmar J, et al. Pancreatic beta cell death: Novel potential mechanisms in diabetes therapy. J Diabetes Res 2018; 2018: 1-19.
[http://dx.doi.org/10.1155/2018/9601801] [PMID: 29670917]
[101]
Ding H, Hu X, Xu X, Zhang G, Gong D. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. Int J Biol Macromol 2018; 107((Pt B)): 1844-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.040]
[102]
Kashyap D, Sharma A, Tuli HS, Punia S, Sharma AK. Ursolic Acid and Oleanolic Acid: Pentacyclic terpenoids with promising anti-inflammatory activities. Recent Pat Inflamm Allergy Drug Discov 2016; 10(1): 21-33.
[http://dx.doi.org/10.2174/1872213X10666160711143904] [PMID: 27531153]
[103]
Yang D-C, Ponnuraj SP, Siraj F, et al. Amelioration of insulin resistance by Rk 1 + Rg 5 complex under endoplasmic reticulum stress conditions. Pharmacognosy Res 2014; 6(4): 292-6.
[http://dx.doi.org/10.4103/0974-8490.138257] [PMID: 25276065]
[104]
Krenn L, Steitz M, Schlicht C, Kurth H, Gaedcke F. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements--analysis with problems. Pharmazie 2007; 62(11): 803-12.
[PMID: 18065095]
[105]
Ding Y, Zhang Z, Dai X, et al. Grape seed proanthocyanidins ameliorate pancreatic beta-cell dysfunction and death in low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats partially by regulating endoplasmic reticulum stress. Nutr Metab 2013; 10(1): 51.
[http://dx.doi.org/10.1186/1743-7075-10-51] [PMID: 23870481]
[106]
Jeong MJ, Jeong SJ, Lee SH, et al. Effect of Pycnogenol on skin wound healing. Appl Microsc 2013; 43(4): 133-9.
[http://dx.doi.org/10.9729/AM.2013.43.4.133]
[107]
Chithra P, Sajithlal GB, Chandrakasan G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol 1998; 59(3): 195-201.
[http://dx.doi.org/10.1016/S0378-8741(97)00124-4] [PMID: 9507904]
[108]
Abbas M, Abbas MM, Al-Rawi N, Al-Khateeb I. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay. Res Pharm Sci 2019; 14(6): 566-73.
[http://dx.doi.org/10.4103/1735-5362.272565] [PMID: 32038736]
[109]
Chithra P, Sajithlal GB, Chandrakasan G. Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol 1998; 59(3): 179-86.
[http://dx.doi.org/10.1016/S0378-8741(97)00112-8] [PMID: 9507902]
[110]
Chan MMY. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 1995; 49(11): 1551-6.
[http://dx.doi.org/10.1016/0006-2952(95)00171-U] [PMID: 7786295]
[111]
Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 2004; 25(10): 1911-7.
[http://dx.doi.org/10.1016/S0142-9612(03)00625-2] [PMID: 14738855]
[112]
Sidhu GS, Singh AK, Thaloor D, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen 1998; 6(2): 167-77.
[http://dx.doi.org/10.1046/j.1524-475X.1998.60211.x] [PMID: 9776860]
[113]
Phan TT, See P, Lee ST, Chan SY. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J Trauma 2001; 51(5): 927-31.
[http://dx.doi.org/10.1097/00005373-200111000-00017] [PMID: 11706342]
[114]
Kulac M, Aktas C, Tulubas F, et al. The effects of topical treatment with curcumin on burn wound healing in rats. J Mol Histol 2013; 44(1): 83-90.
[http://dx.doi.org/10.1007/s10735-012-9452-9] [PMID: 23054142]
[115]
Bierhaus A, Zhang Y, Quehenberger P, et al. The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb Haemost 1997; 77(4): 772-82.
[http://dx.doi.org/10.1055/s-0038-1656049] [PMID: 9134658]
[116]
Kumari A, Raina N, Wahi A, et al. Wound-healing effects of Curcumin and its nanoformulations: A comprehensive review. Pharmaceutics 2022; 14(11): 2288.
[http://dx.doi.org/10.3390/pharmaceutics14112288] [PMID: 36365107]
[117]
Lee HS, Jung SH, Yun BS, Lee KW. Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Arch Toxicol 2007; 81(3): 211-8.
[http://dx.doi.org/10.1007/s00204-006-0139-4] [PMID: 16932919]
[118]
Seo JB, Jeong JY, Park JY, et al. Anti-arthritic and analgesic effect of NDI10218, a standardized extract of Terminalia chebula, on arthritis and pain model. Biomol Ther (Seoul) 2012; 20(1): 104-12.
[http://dx.doi.org/10.4062/biomolther.2012.20.1.104] [PMID: 24116282]
[119]
Nair V, Kumar R, Singh S, Gupta YK. Anti-granuloma activity of Terminalia chebula retz. in wistar rats. Eur J Inflamm 2012; 10(2): 185-92.
[http://dx.doi.org/10.1177/1721727X1201000203]
[120]
Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharmacol 2015; 4(2): 147-79.
[http://dx.doi.org/10.5455/jice.20150313021918] [PMID: 26401403]
[121]
Bag A, Kumar Bhattacharyya S, Kumar Pal N, Ranjan Chattopadhyay R. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharm Biol 2013; 51(12): 1515-20.
[http://dx.doi.org/10.3109/13880209.2013.799709] [PMID: 24004166]
[122]
Vasu G, Sundaram R, Muthu K. Chebulagic acid attenuates HFD/streptozotocin induced impaired glucose metabolism and insulin resistance via up regulations of PPAR γ and GLUT 4 in type 2 diabetic rats. Toxicol Mech Methods 2022; 32(3): 159-70.
[http://dx.doi.org/10.1080/15376516.2021.1976333] [PMID: 34470562]
[123]
Shyni GL, Kavitha S, Indu S, et al. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3‐L1 adipocytes via PPARγ signaling pathway. Biofactors 2014; 40(6): 646-57.
[http://dx.doi.org/10.1002/biof.1193] [PMID: 25529897]
[124]
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1145-54.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013] [PMID: 25445538]
[125]
Oyenihi OR, Oyenihi AB, Adeyanju AA, Oguntibeju OO. Antidiabetic effects of Resveratrol: The way forward in its clinical utility. J Diabetes Res 2016; 2016: 1-14.
[http://dx.doi.org/10.1155/2016/9737483] [PMID: 28050570]
[126]
Soufi FG, Mohammad-nejad D, Ahmadieh H. Resveratrol improves diabetic retinopathy possibly through oxidative stress – nuclear factor κB – apoptosis pathway. Pharmacol Rep 2012; 64(6): 1505-14.
[http://dx.doi.org/10.1016/S1734-1140(12)70948-9] [PMID: 23406761]
[127]
Kumar A, Sharma SS. NF-κB inhibitory action of resveratrol: A probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 2010; 394(2): 360-5.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.014] [PMID: 20211601]
[128]
Sidhu GS, Singh AK, Banaudha KK, Gaddipati JP, Patnaik GK, Maheshwari RK. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing. J Invest Dermatol 1999; 113(5): 773-81.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00761.x] [PMID: 10571733]
[129]
Painuly P, Katti SB, Bajpai SK, Tandon JS. Studies of Metal (II & III) complexes of Arnebin-l. Indian J Chem 1984; 23A: 166-8.
[130]
Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evid Based Complement Alternat Med 2019; 2019: 1-30.
[http://dx.doi.org/10.1155/2019/2684108] [PMID: 31662773]
[131]
Qiu Z, Kwon AH, Kamiyama Y. Effects of plasma fibronectin on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats. J Surg Res 2007; 138(1): 64-70.
[http://dx.doi.org/10.1016/j.jss.2006.06.034] [PMID: 17161431]
[132]
Costa PZ, Soares R. Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci 2013; 92(22): 1037-45.
[http://dx.doi.org/10.1016/j.lfs.2013.04.001] [PMID: 23603139]
[133]
Islam MN, Ishita IJ, Jung HA, Choi JS. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 2014; 69: 55-62.
[http://dx.doi.org/10.1016/j.fct.2014.03.042] [PMID: 24713265]
[134]
Tan WS, Arulselvan P, Ng SF, Mat Taib CN, Sarian MN, Fakurazi S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement Altern Med 2019; 19(1): 20.
[http://dx.doi.org/10.1186/s12906-018-2427-y] [PMID: 30654793]
[135]
Zhao L, Fang X, Marshall M, Chung S. Regulation of obesity and metabolic complications by gamma and delta tocotrienols. Molecules 2016; 21(3): 344.
[http://dx.doi.org/10.3390/molecules21030344] [PMID: 26978344]
[136]
Wong RSY, Radhakrishnan AK. Tocotrienol research: Past into present. Nutr Rev 2012; 70(9): 483-90.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00512.x] [PMID: 22946849]
[137]
Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Vitamin E as a potential interventional treatment for metabolic syndrome: Evidence from animal and human studies. Front Pharmacol 2017; 8: 444.
[http://dx.doi.org/10.3389/fphar.2017.00444] [PMID: 28725195]
[138]
Wong WY, Ward LC, Fong CW, Yap WN, Brown L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur J Nutr 2017; 56(1): 133-50.
[http://dx.doi.org/10.1007/s00394-015-1064-1] [PMID: 26446095]
[139]
Burdeos GC, Nakagawa K, Kimura F, Miyazawa T. Tocotrienol attenuates triglyceride accumulation in HepG2 cells and F344 rats. Lipids 2012; 47(5): 471-81.
[http://dx.doi.org/10.1007/s11745-012-3659-0] [PMID: 22367056]
[140]
Ali SF, Nguyen JCD, Jenkins TA, Woodman OL. Tocotrienol-rich Tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet. Front Cardiovasc Med 2016; 3: 39.
[http://dx.doi.org/10.3389/fcvm.2016.00039] [PMID: 27800483]
[141]
Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 1993; 268(15): 11230-8.
[http://dx.doi.org/10.1016/S0021-9258(18)82115-9] [PMID: 8388388]
[142]
Torabi S, Yeganehjoo H, Shen CL, Mo H. Peroxisome proliferator–activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes. Nutr Res 2016; 36(12): 1345-52.
[http://dx.doi.org/10.1016/j.nutres.2016.11.001] [PMID: 27884413]
[143]
Sun WG, Song RP, Wang Y, et al. γ-Tocotrienol-inhibited cell proliferation of human gastric cancer by regulation of nuclear factor-κb activity. J Agric Food Chem 2019; 67(1): 441-51.
[http://dx.doi.org/10.1021/acs.jafc.8b05832] [PMID: 30562020]
[144]
Badhwar R, Mangla B, Neupane YR, Khanna K, Popli H. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. Nanotechnology 2021; 32(50): 505102.
[http://dx.doi.org/10.1088/1361-6528/ac2536] [PMID: 34500444]
[145]
Selvaraj S, Inbasekar C, Pandurangan S, Nishter NF. Collagen-coated silk fibroin nanofibers with antioxidants for enhanced wound healing. J Biomater Sci Polym Ed 2023; 34(1): 35-52.
[http://dx.doi.org/10.1080/09205063.2022.2106707] [PMID: 35892281]
[146]
Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: fabrication, characterization and comparative in vitro evaluations. Curr Res Pharmacol Drug Discov 2021; 2: 100019.
[http://dx.doi.org/10.1016/j.crphar.2021.100019] [PMID: 34909654]
[147]
Chijcheapaza-Flores H, Tabary N, Chai F, et al. Injectable chitosan-based hydrogels for trans-cinnamaldehyde delivery in the treatment of diabetic foot ulcer infections. Gels 2023; 9(3): 262.
[http://dx.doi.org/10.3390/gels9030262] [PMID: 36975711]
[148]
Mohanty C, Pradhan J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Mater Sci Eng C 2020; 111: 110751.
[http://dx.doi.org/10.1016/j.msec.2020.110751] [PMID: 32279771]
[149]
Pandey S, Shamim A, Shaif M, Kushwaha P. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer. Naunyn Schmiedebergs Arch Pharmacol 2023; 396(8): 1811-25.
[http://dx.doi.org/10.1007/s00210-023-02441-5] [PMID: 36862150]
[150]
Gallelli G, Cione E, Serra R, et al. Nano‐hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int Wound J 2020; 17(2): 485-90.
[http://dx.doi.org/10.1111/iwj.13299] [PMID: 31876118]
[151]
Alexander HR, Syed Alwi SS, Yazan LS, Zakarial Ansar FH, Ong YS. Migration and proliferation effects of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) and Thymoquinone (TQ) on in vitro wound healing models. Evid Based Complement Alternat Med 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/9725738] [PMID: 31915456]
[152]
The healing effect of a two-herb recipe on foot ulcer in chinese patients with type 2 diabetes. NCT01389362 2011.
[153]
Herbal preparation used as adjuvant therapy on diabetic ulcers. NCT00393510 2010.
[154]
Effectiveness and safety of early-stage amputation and external herbs chitosan for diabetic foot ulcer. NCT02413086 2015.
[155]
Trial of herb yuyang ointment to diabetic foot ulcer. NCT00839865 2009.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy