Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery

Author(s): Virender Kumar, Vandana Garg, Nakul Saini, Navidha Aggarwal, Harsh Kumar, Davinder Kumar, Hitesh Chopra, Mohammad Amjad Kamal* and Harish Dureja*

Volume 25, Issue 17, 2024

Published on: 23 February, 2024

Page: [2218 - 2252] Pages: 35

DOI: 10.2174/0113892010267771240211124950

Price: $65

Abstract

Background: A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations.

Objective: This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. Methods: Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included.

Results: Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness.

Conclusion: The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.

[1]
Wu, W.; He, W.; Tan, Y.; Tian, Z.; Chen, L.; Hu, F.Q. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: Preparation, in vitro characterization, and pharmacokinetics in rats. Int. J. Nanomedicine, 2011, 6, 521.
[http://dx.doi.org/10.2147/IJN.S17282]
[2]
Karami, Z.; Saghatchi Zanjani, M.R.; Hamidi, M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov. Today, 2019, 24(5), 1104-1115.
[http://dx.doi.org/10.1016/j.drudis.2019.03.021] [PMID: 30914298]
[3]
Sessa, M.; Balestrieri, M.L.; Ferrari, G.; Servillo, L.; Castaldo, D.; D’Onofrio, N.; Donsì, F.; Tsao, R. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem., 2014, 147, 42-50.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.088] [PMID: 24206683]
[4]
Chaudhary, B.; Kumar, P.; Arya, P.; Singla, D.; Kumar, V.; Kumar, D. Recent developments in the study of the microenvironment of cancer and drug delivery. Curr. Drug Metab., 2023, 2023, 1389200224666230110145513.
[http://dx.doi.org/10.2174/1389200224666230110145513] [PMID: 36627789]
[5]
Campos, V.E.B.; Ricci-Júnior, E.; Mansur, C.R.E. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol., 2012, 12(3), 2881-2890.
[http://dx.doi.org/10.1166/jnn.2012.5690] [PMID: 22755138]
[6]
Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine, 2010, 5(10), 1595-1616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[7]
McClements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[8]
Foam prepared from nanoemulsions and uses. U.S. Patent 9539208B2, 2023.
[9]
Hussain, A.; Samad, A.; Singh, S.K.; Ahsan, M.N.; Haque, M.W.; Faruk, A.; Ahmed, F.J. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv., 2016, 23(2), 642-657.
[http://dx.doi.org/10.3109/10717544.2014.933284] [PMID: 25013957]
[10]
Al-Edresi, S.; Baie, S. Formulation and stability of whitening VCO-in-water nano-cream. Int. J. Pharm., 2009, 373(1-2), 174-178.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.011] [PMID: 19429303]
[11]
Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm., 2012, 436(1-2), 611-616.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.028] [PMID: 22842623]
[12]
Amani, A.; York, P.; Chrystyn, H.; Clark, B.J. Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech, 2010, 11(3), 1147.
[http://dx.doi.org/10.1208/s12249-010-9486-9]
[13]
Tan, S.L.; Stanslas, J.; Basri, M.; Abedi Karjiban, R.A.; Kirby, B.P.; Sani, D.; Basri, H.B. Nanoemulsion-based parenteral drug delivery system of carbamazepine: Preparation, characterization, stability evaluation and blood-brain pharmacokinetics. Curr. Drug Deliv., 2015, 12(6), 795-804.
[http://dx.doi.org/10.2174/1567201812666150901112544] [PMID: 26324229]
[14]
Makidon, P.E.; Nigavekar, S.S.; Bielinska, A.U.; Mank, N.; Shetty, A.M.; Suman, J. Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(2), 77.
[15]
Khani, S.; Keyhanfar, F.; Amani, A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv., 2016, 23(6), 2035-2043.
[http://dx.doi.org/10.3109/10717544.2015.1088597] [PMID: 26406153]
[16]
Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech, 2009, 10(3), 808-819.
[http://dx.doi.org/10.1208/s12249-009-9268-4]
[17]
de Souza, D.G.; Santos, D.S.; Simon, K.S.; Morais, J.A.V.; Coelho, L.C.; Pacheco, T.J.A. Fish oil nanoemulsion supplementation attenuates bleomycin-induced pulmonary fibrosis BALB/c mice. Nanomaterials, 2022, 12(10)
[18]
Bhanushali, R.S.; Gatne, M.M.; Gaikwad, R.V.; Bajaj, A.N.; Morde, M.A. Nanoemulsion based intranasal delivery of antimigraine drugs for nose to brain targeting. Indian J. Pharm. Sci., 2009, 71(6), 707.
[19]
Mou, D.; Chen, H.; Du, D.; Mao, C.; Wan, J.; Xu, H.; Yang, X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int. J. Pharm., 2008, 353(1-2), 270-276.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.051] [PMID: 18215479]
[20]
Pawar, V.K.; Panchal, S.B.; Singh, Y.; Meher, J.G.; Sharma, K.; Singh, P.; Bora, H.K.; Singh, A.; Datta, D.; Chourasia, M.K. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J. Control. Release, 2014, 196, 295-306.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.010] [PMID: 25459427]
[21]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10(3-4), 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[22]
Ciuca, M.D.; Racovita, R.C. Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nanoemulsions. Int. J. Mol. Sci., 2023, 24(10), 8874.
[http://dx.doi.org/10.3390/ijms24108874] [PMID: 37240220]
[23]
Li, C.; Chen, X.; Luo, X.; Wang, H.; Zhu, Y.; Du, G.; Chen, W.; Chen, Z.; Hao, X.; Zhang, Z.; Sun, X. Nanoemulsions target to ectopic lymphoids in inflamed joints to restore immune tolerance in rheumatoid arthritis. Nano Lett., 2021, 21(6), 2551-2561.
[http://dx.doi.org/10.1021/acs.nanolett.0c05110] [PMID: 33687217]
[24]
Abbasi, S.; Sato, Y.; Kajimoto, K.; Harashima, H. New design strategies for controlling the rate of hydrophobic drug release from nanoemulsions in blood circulation. Mol. Pharm., 2020, 17(10), 3773-3782.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00542] [PMID: 32881529]
[25]
Yu, H.; Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem., 2012, 60(21), 5373-5379.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[26]
Wei, S.; Zhao, X.; Yu, J.; Yin, S.; Liu, M.; Bo, R.; Li, J. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regul. Toxicol. Pharmacol., 2021, 124, 104999.
[http://dx.doi.org/10.1016/j.yrtph.2021.104999] [PMID: 34242706]
[27]
Hosny, K.M.; Khallaf, R.A.; Asfour, H.Z.; Rizg, W.Y.; Alhakamy, N.A.; Sindi, A.M.; Alkhalidi, H.M.; Abualsunun, W.A.; Bakhaidar, R.B.; Almehmady, A.M.; Abdulaal, W.H.; Bakhrebah, M.A.; Alsuabeyl, M.S.K.; Kammoun, A.; Alghaith, A.F.; Alshehri, S. Development and optimization of cinnamon oil nanoemulgel for enhancement of solubility and evaluation of antibacterial, antifungal and analgesic effects against oral microbiota. Pharmaceutics, 2021, 13(7), 1008.
[http://dx.doi.org/10.3390/pharmaceutics13071008] [PMID: 34371700]
[28]
Qamar, Z.; Qizilbash, F.F.; Iqubal, M.K.; Ali, A.; Narang, J.K.; Ali, J.; Baboota, S. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat. Drug Deliv. Formul., 2020, 13(4), 246-254.
[http://dx.doi.org/10.2174/1872211314666191224115211] [PMID: 31884933]
[29]
Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int. J. Pharm., 2018, 543(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.055] [PMID: 29605695]
[30]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[31]
Sabjan, K.B.; Munawar, S.M.; Rajendiran, D.; Vinoji, S.K.; Kasinathan, K. Nanoemulsion as oral drug delivery - A review. Curr. Drug Res. Rev., 2020, 12(1), 4-15.
[http://dx.doi.org/10.2174/2589977511666191024173508] [PMID: 31774040]
[32]
Ashaolu, T.J. Nanoemulsions for health, food, and cosmetics: A review. Environ. Chem. Lett., 2021, 19(4), 3381-3395.
[http://dx.doi.org/10.1007/s10311-021-01216-9] [PMID: 33746662]
[33]
Gué, E.; Since, M.; Ropars, S.; Herbinet, R.; Le Pluart, L.; Malzert-Fréon, A. Evaluation of the versatile character of a nanoemulsion formulation. Int. J. Pharm., 2016, 498(1-2), 49-65.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.010] [PMID: 26685727]
[34]
McClements, D.J. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food Funct., 2018, 9(1), 22-41.
[http://dx.doi.org/10.1039/C7FO01515A] [PMID: 29119979]
[35]
Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci., 2016, 7, 1-6.
[http://dx.doi.org/10.1016/j.cofs.2015.07.008]
[36]
Wang, B.; Tian, H.; Xiang, D. Stabilizing the oil-in-water emulsions using the mixtures of dendrobium officinale polysaccharides and gum arabic or propylene glycol alginate. Molecules, 2020, 25(3)
[http://dx.doi.org/10.3390/molecules25030759]
[37]
Sałek, K.; Euston, S.R. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem., 2019, 85, 143-155.
[http://dx.doi.org/10.1016/j.procbio.2019.06.027]
[38]
Linke, A.; Weiss, J.; Kohlus, R. Factors determining the surface oil concentration of encapsulated lipid particles: impact of the emulsion oil droplet size. Eur. Food Res. Technol., 2020, 246(10), 1933-1943.
[http://dx.doi.org/10.1007/s00217-020-03545-5]
[39]
Banasaz, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Encapsulation of lipid-soluble bioactives by nanoemulsions. Molecules, 2020, 25(17)
[http://dx.doi.org/10.3390/molecules25173966]
[40]
Hamad, S.; Chen, R.; Zhou, Z.; Nasr, P.; Li, Y.L. Rafiee Tari, N Palm lipid emulsion droplet crystallinity and gastric acid stability in relation to in vitro bioaccessibility and in vivo gastric emptying. Front. Nutr., 2022, 9.
[http://dx.doi.org/10.3389/fnut.2022.940045]
[41]
Nishal, S.; Kumar, V.; Phaugat, P.; Kumar, D.; Khatri, N.; Singh, G. A systematic review and meta-analysis of the metal nano-particles loaded with herbal drugs moieties against breast cancer. Recent Pat. Nanotechnol., 2023, 18.
[http://dx.doi.org/10.2174/1872210518666230907115056] [PMID: 37691225]
[42]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[43]
McClements, D.J.; Rao, J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[44]
Liu, D.; Xu, J.; Zhao, H.; Zhang, X.; Zhou, H.; Wu, D.; Liu, Y.; Yu, P.; Xu, Z.; Kang, W.; Fan, M. Nanoemulsions stabilized by anionic and non-ionic surfactants for enhanced oil recovery in ultra-low permeability reservoirs: Performance evaluation and mechanism study. Colloids Surf. A Physicochem. Eng. Asp., 2022, 637, 128235.
[http://dx.doi.org/10.1016/j.colsurfa.2021.128235]
[45]
Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S. Cationic nanoemulsions as potential carriers for intracellular delivery. Saudi Pharm. J., 2015, 23(2), 188-194.
[http://dx.doi.org/10.1016/j.jsps.2014.07.007] [PMID: 25972740]
[46]
Chang, Y.; McLandsborough, L.; McClements, D.J. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. J. Agric. Food Chem., 2012, 60(48), 12056-12063.
[http://dx.doi.org/10.1021/jf304045a] [PMID: 23140446]
[47]
Kaur, K.; Kumar, R. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. Ultrason. Sonochem., 2017, 34, 173-182.
[48]
Calligaris, S.; Calligaris, S.; Calligaris, S. Fabrication of concentrated fish oil emulsions using dual-channel microfluidization: Impact of droplet concentration on physical properties and lipid oxidation. J. Agric. Food Chem., 2016, 64(50), 9532-9541.
[49]
Calligaris, S.; Plazzotta, S.; Valoppi, F.; Anese, M. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content. Food Res. Int., 2018, 107, 700-707.
[http://dx.doi.org/10.1016/j.foodres.2018.03.017] [PMID: 29580537]
[50]
Fard Masoumi, H.R.; Basri, M.; Sarah Samiun, W.; Izadiyan, Z.; Lim, C.J. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design. Int. J. Nanomedicine, 2015, 10, 6469-6476.
[http://dx.doi.org/10.2147/IJN.S89364] [PMID: 26508853]
[51]
Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of food‐grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. J. Food Sci., 2016, 81(3), N745-N753.
[http://dx.doi.org/10.1111/1750-3841.13224] [PMID: 26807662]
[52]
Xia, Z.; McClements, D.J.; Xiao, H. Influence of lipid content in a corn oil preparation on the bioaccessibility of β‐carotene: A comparison of low‐fat and high‐fat samples. J. Food Sci., 2017, 82(2), 373-379.
[http://dx.doi.org/10.1111/1750-3841.13599] [PMID: 28103395]
[53]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J.; Amir, M. Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif. Cells Nanomed. Biotechnol., 2018, 46(S3), S192-S207.
[http://dx.doi.org/10.1080/21691401.2018.1489826]
[54]
Ricaurte, L.; Perea-Flores, M.J.; Martinez, A.; Quintanilla-Carvajal, M.X. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov. Food Sci. Emerg. Technol., 2016, 35, 75-85.
[http://dx.doi.org/10.1016/j.ifset.2016.04.004]
[55]
Zhou, X.; Wang, H.; Wang, C.; Zhao, C.; Peng, Q.; Zhang, T. Stability and in vitro digestibility of beta‐carotene in nanoemulsions fabricated with different carrier oils. Food Sci. Nutr., 2018, 6(8), 2537.
[http://dx.doi.org/10.1002/fsn3.862]
[56]
Jimenez-Escobar, M.P.; Pascual-Mathey, L.I.; Beristain, C.I.; Flores-Andrade, E.; Jiménez, M.; Pascual-Pineda, L.A. In vitro and in vivo antioxidant properties of paprika carotenoids nanoemulsions. Lebensm. Wiss. Technol., 2020, 118, 108694.
[http://dx.doi.org/10.1016/j.lwt.2019.108694]
[57]
Tığlı Aydın, R.S.; Kazancı, F. Synthesis and characterization of ozonated oil nanoemulsions. J. Am. Oil Chem. Soc., 2018, 95(11), 1385-1398.
[http://dx.doi.org/10.1002/aocs.12150]
[58]
Özdemir, S.; Çelik, B.; Sümer, E.; Acar, E.T.; Üner, M. Eplerenone nanoemulsions for treatment of hypertension. Part II: Physical stability assessment and in vivo study. J. Drug Deliv. Sci. Technol., 2018, 45, 287-295.
[http://dx.doi.org/10.1016/j.jddst.2018.03.014]
[59]
Liu, Q.; Gao, Y.; Fu, X.; Chen, W.; Yang, J.; Chen, Z.; Wang, Z.; Zhuansun, X.; Feng, J.; Chen, Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf. B Biointerfaces, 2021, 201, 111626.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111626] [PMID: 33631642]
[60]
Ikeuchi-Takahashi, Y.; Kobayashi, A.; Ishihara, C.; Matsubara, T.; Matsubara, H.; Onishi, H. Influence of polysorbate 60 on formulation properties and bioavailability of morin-loaded nanoemulsions with and without low-saponification-degree polyvinyl alcohol. Biol. Pharm. Bull., 2018, 41(5), 754-760.
[http://dx.doi.org/10.1248/bpb.b17-00964] [PMID: 29709912]
[61]
Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem., 2015, 171, 117-122.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.087] [PMID: 25308650]
[62]
Bilbao-Sáinz, C.; Avena-Bustillos, R.J.; Wood, D.F.; Williams, T.G.; McHugh, T.H. Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J. Agric. Food Chem., 2010, 58(22), 11932-11938.
[http://dx.doi.org/10.1021/jf102341r] [PMID: 20977191]
[63]
Izquierdo, P.; Esquena, J.; Tadros, T.F.; Dederen, J.C.; Feng, J.; Garcia-Celma, M.J.; Azemar, N.; Solans, C. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir, 2004, 20(16), 6594-6598.
[http://dx.doi.org/10.1021/la049566h] [PMID: 15274560]
[64]
De Aguiar, A.C.; Viganó, J.; da Silva Anthero, A.G.; Dias, A.L.B.; Hubinger, M.D. Martínez, J Supercritical fluids and fluid mixtures to obtain high-value compounds from Capsicum peppers. Food Chem. X, 2022, 13(100228)
[http://dx.doi.org/10.1016/j.fochx.2022.100228]
[65]
Akbas, E.; Soyler, U.B.; Oztop, M.H. Physicochemical and antimicrobial properties of oleoresin capsicum nanoemulsions formulated with lecithin and sucrose monopalmitate. Appl. Biochem. Biotechnol., 2019, 188(1), 54-71.
[http://dx.doi.org/10.1007/s12010-018-2901-5] [PMID: 30311173]
[66]
Choi, S.J.; Decker, E.A.; Henson, L.; Popplewell, L.M.; Xiao, H.; McClements, D.J. Formulation and properties of model beverage emulsions stabilized by sucrose monopalmitate: Influence of pH and lyso-lecithin addition. Food Res. Int., 2011, 44(9), 3006-3012.
[http://dx.doi.org/10.1016/j.foodres.2011.07.007]
[67]
Mohamed Salama, M.; Ahmad Mustafa, M.E. Formulation and evaluation of avocado oil nanoemulsion hydrogels using sucrose ester laureate. Adv. Mat. Res., 2013, 812, 246-249.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.812.246]
[68]
Eid, A.M.M.; Baie, S.H.; Arafat, O. Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate. AIP Conf. Proc., 1502, 1502(1), 486.
[69]
Bashir, M.; Ahmad, J.; Asif, M.; Khan, S.U.D.; Irfan, M.; Ibrahim, A.Y. Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2021, 16, 1457.
[http://dx.doi.org/10.2147/IJN.S294653]
[70]
Ilić, T.; Savić, S.; Batinić, B.; Marković, B.; Schmidberger, M.; Lunter, D.; Savić, M.; Savić, S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci., 2018, 125, 110-119.
[http://dx.doi.org/10.1016/j.ejps.2018.09.023] [PMID: 30287408]
[71]
Vater, C.; Bosch, L.; Mitter, A.; Göls, T.; Seiser, S.; Heiss, E.; Elbe-Bürger, A.; Wirth, M.; Valenta, C.; Klang, V. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Eur. J. Pharm. Biopharm., 2022, 170, 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2021.11.004] [PMID: 34798283]
[72]
Nejatian, M.; Abbasi, S.; Kadkhodaee, R. Ultrasonic-assisted fabrication of concentrated triglyceride nanoemulsions and nanogels. Langmuir, 2018, 34(38), 11433-11441.
[http://dx.doi.org/10.1021/acs.langmuir.8b01596] [PMID: 30153026]
[73]
Graves, S.; Meleson, K.; Wilking, J.; Lin, M.Y.; Mason, T.G. Structure of concentrated nanoemulsions. J. Chem. Phys., 2005, 122(13), 134703.
[http://dx.doi.org/10.1063/1.1874952] [PMID: 15847485]
[74]
Wulff-Pérez, M.; Torcello-Gómez, A.; Gálvez-Ruíz, M.J.; Martín-Rodríguez, A. Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll., 2009, 23(4), 1096-1102.
[http://dx.doi.org/10.1016/j.foodhyd.2008.09.017]
[75]
Wik, J.; Bansal, K.K.; Assmuth, T.; Rosling, A.; Rosenholm, J.M. Facile methodology of nanoemulsion preparation using oily polymer for the delivery of poorly soluble drugs. Drug Deliv. Transl. Res., 2020, 10(5), 1228.
[http://dx.doi.org/10.1007/s13346-019-00703-5]
[76]
Burapapadh, K.; Takeuchi, H.; Sriamornsak, P. Pectin-based nano-sized emulsions prepared by high-pressure homogenization. AMR, 2012, 506, 286-289.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.506.286]
[77]
Sharif, H.R.; Abbas, S.; Majeed, H.; Safdar, W.; Shamoon, M.; Khan, M.A. Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch. J. Food Sci. Technol., 2017, 54(10), 3358.
[78]
Firoozy, M.; Anarjan, N. Preparation of maltodextrin stabilized α-tocopherol nanoemulsions using solvent-displacement technique. Food Sci. Technol. Int., 2019, 25(5), 404-413.
[http://dx.doi.org/10.1177/1082013219825893] [PMID: 30704297]
[79]
Walia, N.; Chen, L. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem., 2020, 305, 125475.
[http://dx.doi.org/10.1016/j.foodchem.2019.125475] [PMID: 31518841]
[80]
Sonu, K.S.; Mann, B.; Sharma, R.; Kumar, R.; Singh, R. Physico-chemical and antimicrobial properties of d-limonene oil nanoemulsion stabilized by whey protein-maltodextrin conjugates. J. Food Sci. Technol., 2018, 55(7), 2749.
[81]
Shah, B.; Ikeda, S.; Michael Davidson, P.; Zhong, Q. Nanodispersing thymol in whey protein isolate-maltodextrin conjugate capsules produced using the emulsion-evaporation technique. J. Food Eng., 2012, 113(1), 79-86.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.05.019]
[82]
Vaishanavi, S.; Preetha, R. Soy protein incorporated nanoemulsion for enhanced stability of probiotic (Lactobacillus delbrueckii subsp. bulgaricus) and its characterization. Mater. Today Proc., 2021, 40, S148-S153.
[http://dx.doi.org/10.1016/j.matpr.2020.05.008]
[83]
Li, Y.; Wu, C.L.; Liu, J.; Zhu, Y.; Zhang, X.Y.; Jiang, L.Z. Soy protein isolate-phosphatidylcholine nanoemulsions prepared using high-pressure homogenization. Nanomaterials, 2018, 8, 5.
[http://dx.doi.org/10.3390/nano8050307]
[84]
Tcholakova, S.; Denkov, N.D.; Danner, T. Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow. Langmuir, 2004, 20(18), 7444-7458.
[http://dx.doi.org/10.1021/la049335a] [PMID: 15323488]
[85]
Lee, S.J.; McClements, D.J. Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocoll., 2010, 24(6-7), 560-569.
[http://dx.doi.org/10.1016/j.foodhyd.2010.02.002]
[86]
Shi, J.; Xue, S.J.; Wang, B.; Wang, W.; Ye, X.; Quek, S.Y. Optimization of formulation and influence of environmental stresses on stability of lycopene-microemulsion. Lebensm. Wiss. Technol., 2015, 60(2), 999-1008.
[http://dx.doi.org/10.1016/j.lwt.2014.10.066]
[87]
Schultz, S.; Wagner, G.; Urban, K.; Ulrich, J. High‐pressure homogenization as a process for emulsion formation. Chem. Eng. Technol., 2004, 27(4), 361-368.
[http://dx.doi.org/10.1002/ceat.200406111]
[88]
Innocente, N.; Biasutti, M.; Venir, E.; Spaziani, M.; Marchesini, G. Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. J. Dairy Sci., 2009, 92(5), 1864-1875.
[http://dx.doi.org/10.3168/jds.2008-1797] [PMID: 19389944]
[89]
Floury, J.; Desrumaux, A.; Legrand, J. Effect of ultra‐high‐pressure homogenization on structure and on rheological properties of soy protein‐stabilized emulsions. J. Food Sci., 2002, 67(9), 3388-3395.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb09595.x]
[90]
Andreas, H.; Christian, T.; Björn, B. Dynamic simulation of emulsion formation in a high pressure homogenizer. Chem. Eng. Sci., 2009, 6412, 2915-2925.
[http://dx.doi.org/10.1016/j.ces.2009.03.034]
[91]
Zhou, L.; Zhang, W.; Wang, J.; Zhang, R.; Zhang, J. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrason. Sonochem., 2022, 82, 105885.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105885] [PMID: 34952342]
[92]
Kaci, M.; Meziani, S.; Arab-Tehrany, E.; Gillet, G.; Desjardins-Lavisse, I.; Desobry, S. Emulsification by high frequency ultrasound using piezoelectric transducer: Formation and stability of emulsifier free emulsion. Ultrason. Sonochem., 2014, 21(3), 1010-1017.
[http://dx.doi.org/10.1016/j.ultsonch.2013.11.006] [PMID: 24315670]
[93]
Behnam, K.; Nida, S.O. Theoretical and experimental investigations of double emulsion preparation by ultrasonication. Ind. Eng. Chem. Res., 2019, 58(19), 8220-8230.
[http://dx.doi.org/10.1021/acs.iecr.9b00556]
[94]
Djenouhat, M. Ultrasonication-assisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: Part 1: Membrane stability. In: Separation and Purification Technology; Elsevier, 2008.
[95]
Tontul, I.; Topuz, A. Influence of emulsion composition and ultrasonication time on flaxseed oil powder properties. Powder Technol., 2014, 264, 54-60.
[http://dx.doi.org/10.1016/j.powtec.2014.05.002]
[96]
Ozturk, O.K.; Turasan, H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci. Technol., 2021, 116, 609-625.
[http://dx.doi.org/10.1016/j.tifs.2021.07.033]
[97]
Seid, M.J. Nano-emulsion production by sonication and microfluidization-A comparison. Int. J. Food Prop., 2006, 9, 3.
[http://dx.doi.org/10.1080/10942910600596464]
[98]
Ferreira-Nunes, R.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids Surf. B Biointerfaces, 2021, 208, 112101.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112101] [PMID: 34517218]
[99]
Chuan, H.T. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocoll., 2013, 301, 61-72.
[http://dx.doi.org/10.1016/j.foodhyd.2012.05.008]
[100]
Jafari, S.M.; He, Y.; Bhandari, B. Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol., 2007, 225(5-6), 733-741.
[http://dx.doi.org/10.1007/s00217-006-0476-9]
[101]
Perazzo, A.; Preziosi, V.; Guido, S. Phase inversion emulsification: Current understanding and applications. Adv. Colloid Interface Sci., 2015, 222, 581-599.
[http://dx.doi.org/10.1016/j.cis.2015.01.001] [PMID: 25632889]
[102]
Solans, C.; Morales, D.; Homs, M. Spontaneous emulsification. Curr. Opin. Colloid Interface Sci., 2016, 22, 88-93.
[http://dx.doi.org/10.1016/j.cocis.2016.03.002]
[103]
Dols-Perez, A.; Fornaguera, C.; Feiner-Gracia, N.; Grijalvo, S.; Solans, C.; Gomila, G. Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating. Colloids Surf. B Biointerfaces, 2023, 222, 113019.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113019] [PMID: 36435028]
[104]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[105]
Calderó, G.; García-Celma, M.J.; Solans, C. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J. Colloid Interface Sci., 2011, 353(2), 406-411.
[http://dx.doi.org/10.1016/j.jcis.2010.09.073] [PMID: 20971472]
[106]
Grijalvo, S.; Rodriguez-Abreu, C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. Beilstein J. Nanotechnol., 2023, 14, 339-350.
[http://dx.doi.org/10.3762/bjnano.14.29] [PMID: 36959976]
[107]
Tao, Y.; Zhao, X.; Liu, X.; Wang, P.; Huang, Y.; Bo, R.; Liu, M.; Li, J. Oral delivery of chitosan-coated PLGA nanoemulsion loaded with artesunate alleviates ulcerative colitis in mice. Colloids Surf. B Biointerfaces, 2022, 219, 112824.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112824] [PMID: 36108369]
[108]
Ahmad, N.; Albassam, A.A.; Faiyaz Khan, M.; Ullah, Z.; Mohammed Buheazah, T.; Salman AlHomoud, H. A novel 5-Fluorocuracil multiple-nanoemulsion used for the enhancement of oral bioavailability in the treatment of colorectal cancer. Saudi J. Biol. Sci., 2022, 29(5), 3704.
[109]
Khaleel Basha, S.; Syed Muzammil, M.; Dhandayuthabani, R.; Sugantha Kumari, V. Development of nanoemulsion of Alginate/Aloe vera for oral delivery of insulin. Mater. Today Proc., 2021, 36, 357-363.
[http://dx.doi.org/10.1016/j.matpr.2020.04.138]
[110]
Anuar, N.; Sabri, A.H.; Bustami Effendi, T.J. Abdul Hamid, K Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability. Heliyon, 2020, 6(7)
[http://dx.doi.org/10.1016/j.heliyon.2020.e04570]
[111]
Harsiddharay, R.K.; Gupta, A.; Singh, P.K.; Rai, S.; Singh, Y.; Sharma, M.; Pawar, V.; Kedar, A.S.; Gayen, J.R.; Chourasia, M.K. Poly-L-lysine coated oral nanoemulsion for combined delivery of insulin and C-peptide. J. Pharm. Sci., 2022, 111(12), 3352-3361.
[http://dx.doi.org/10.1016/j.xphs.2022.08.026] [PMID: 36030844]
[112]
Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669.
[http://dx.doi.org/10.2147/IJN.S154824]
[113]
Soliman, K.A.; Ibrahim, H.K.; Ghorab, M.M. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery. Eur. J. Pharm. Sci., 2016, 93, 447-455.
[http://dx.doi.org/10.1016/j.ejps.2016.08.050] [PMID: 27590128]
[114]
Tang, S.Y.; Sivakumar, M.; Ng, A.M.H.; Shridharan, P. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation. Int. J. Pharm., 2012, 430(1-2), 299-306.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.055] [PMID: 22503988]
[115]
Laxmi, M.; Bhardwaj, A.; Mehta, S.; Mehta, A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif. Cells Nanomed. Biotechnol., 2015, 43(5), 334-344.
[http://dx.doi.org/10.3109/21691401.2014.887018] [PMID: 24641773]
[116]
Ma, Y.; Li, H.; Guan, S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev. Ind. Pharm., 2015, 41(2), 177-182.
[http://dx.doi.org/10.3109/03639045.2014.947510] [PMID: 25113432]
[117]
Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev. Ind. Pharm., 2017, 43(5), 847-861.
[http://dx.doi.org/10.1080/03639045.2016.1239732] [PMID: 27648633]
[118]
Ke, Z.; Hou, X.; Jia, X. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D. Drug Des. Devel. Ther., 2016, 10, 2049-2060.
[http://dx.doi.org/10.2147/DDDT.S106356] [PMID: 27418807]
[119]
Shen, Q.; Wang, Y.; Zhang, Yi Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. Int. J. Nanomedicine, 2011, 6, 1237-1243.
[http://dx.doi.org/10.2147/IJN.S20903] [PMID: 21753875]
[120]
Gao, F.; Zhang, Z.; Bu, H.; Huang, Y.; Gao, Z.; Shen, J.; Zhao, C.; Li, Y. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. J. Control. Release, 2011, 149(2), 168-174.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.013] [PMID: 20951749]
[121]
Chai, F.; Sun, L.; Ding, Y.; Liu, X.; Zhang, Y.; Webster, T.J.; Zheng, C. A solid self-nanoemulsifying system of the BCS class IIb drug dabigatran etexilate to improve oral bioavailability. Nanomedicine, 2016, 11(14), 1801-1816.
[http://dx.doi.org/10.2217/nnm-2016-0138] [PMID: 27396624]
[122]
Verma, P.; Meher, J.G.; Asthana, S.; Pawar, V.K.; Chaurasia, M.; Chourasia, M.K. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv., 2016, 23(2), 479-488.
[http://dx.doi.org/10.3109/10717544.2014.920430] [PMID: 24901205]
[123]
Hu, J.; Chen, D.; Jiang, R.; Tan, Q.; Zhu, B.; Zhang, J. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine-phospholipid nanocomplex. Int. J. Nanomedicine, 2014, 9, 4411.
[124]
Gathirwa, J.W.; Omwoyo, W.; Ogutu, B.; Oloo, F.; Swai, H.; Kalombo, L.; Melariri, P.; Maroa, G. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomedicine, 2014, 9, 3865-3874.
[http://dx.doi.org/10.2147/IJN.S62630] [PMID: 25143734]
[125]
Choudhury, H.; Gorain, B.; Karmakar, S.; Biswas, E.; Dey, G.; Barik, R.; Mandal, M.; Pal, T.K. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int. J. Pharm., 2014, 460(1-2), 131-143.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.055] [PMID: 24239580]
[126]
Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K.; Ali, M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm., 2007, 66(2), 227-243.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.014] [PMID: 17127045]
[127]
Akhtar, J.; Siddiqui, H.H.; Fareed, S. Badruddeen; Khalid, M.; Aqil, M. Nanoemulsion: For improved oral delivery of repaglinide. Drug Deliv., 2016, 23(6), 2026-2034.
[http://dx.doi.org/10.3109/10717544.2015.1077290] [PMID: 27187792]
[128]
Parveen, R.; Baboota, S.; Ali, J.; Ahuja, A.; Vasudev, S.S.; Ahmad, S. Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int. J. Pharm., 2011, 413(1-2), 245-253.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.041] [PMID: 21549187]
[129]
Jang, J.H.; Jeong, S.H.; Lee, Y.B. Enhanced lymphatic delivery of methotrexate using W/O/W nanoemulsion: In vitro characterization and pharmacokinetic study. Pharmaceutics, 2020, 12(10), 978.
[http://dx.doi.org/10.3390/pharmaceutics12100978] [PMID: 33081266]
[130]
Zeng, F.; Wang, D.; Tian, Y.; Wang, M.; Liu, R.; Xia, Z.; Huang, Y. Nanoemulsion for improving the oral bioavailability of hesperetin: Formulation optimization and absorption mechanism. J. Pharm. Sci., 2021, 110(6), 2555-2561.
[http://dx.doi.org/10.1016/j.xphs.2021.02.030] [PMID: 33652015]
[131]
Thapa, R.; Sai, K.; Saha, D.; Kushwaha, D.; Aswal, V.K.; Ghosh Moulick, R.; Bose, S.; Bhattaharya, J. Synthesis and characterization of a nanoemulsion system for solubility enhancement of poorly water soluble non-steroidal anti-inflammatory drugs. J. Mol. Liq., 2021, 334, 115998.
[http://dx.doi.org/10.1016/j.molliq.2021.115998]
[132]
Ahmad, N.; Ahmad, R.; Mohammed Buheazaha, T.; Salman AlHomoud, H.; Al-Nasif, H.A.; Sarafroz, M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J. Biol. Sci., 2020, 27(4), 1024-1040.
[http://dx.doi.org/10.1016/j.sjbs.2020.02.014] [PMID: 32256163]
[133]
Zhang, S.; Sun, J. Nano-drug delivery system for the treatment of acute myelogenous leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2022, 51(2), 233-240.
[http://dx.doi.org/10.3724/zdxbyxb-2022-0084] [PMID: 35713321]
[134]
Lorscheider, M.; Gaudin, A.; Nakhlé, J.; Veiman, K.L.; Richard, J.; Chassaing, C. Challenges and opportunities in the delivery of cancer therapeutics: Update on recent progress. Ther. Deliv., 2021, 12(1), 55-76.
[http://dx.doi.org/10.4155/tde-2020-0079] [PMID: 33307811]
[135]
Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.X. Nanoemulsions for drug delivery. Particuology, 2022, 64, 85-97.
[http://dx.doi.org/10.1016/j.partic.2021.05.009]
[136]
Kelmann, R.G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int. J. Pharm., 2007, 342(1-2), 231-239.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.004] [PMID: 17582711]
[137]
Mishra N, Kaushik N, Sharma K, Pramod and Alam Md. Aftab, Nano Emulsion Drug Delivery System: A Review. Curr. Nanomed., 2023, 13(1)
[http://dx.doi.org/10.2174/2468187313666230213121011]
[138]
Teo, S.K.; Colburn, W.A.; Tracewell, W.G.; Kook, K.A.; Stirling, D.I.; Jaworsky, M.S.; Scheffler, M.A.; Thomas, S.D.; Laskin, O.L. Clinical pharmacokinetics of thalidomide. Clin. Pharmacokinet., 2004, 43(5), 311-327.
[http://dx.doi.org/10.2165/00003088-200443050-00004] [PMID: 15080764]
[139]
Li X, Du L, Wang C, Liu Y, Mei X, Jin Y. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Pharmazie, 2011, 66(7), 479-483.
[140]
Karami, Z.; Khoshkam, M.; Hamidi, M. Optimization of olive oil-based nanoemulsion preparation for intravenous drug delivery. Drug Res., 2019, 69(5), 256-264.
[http://dx.doi.org/10.1055/a-0654-4867] [PMID: 30086568]
[141]
Fan W, Yu Z, Peng H, He H, Lu Y, Qi J, Dong X, Zhao W, Wu W. Effect of particle size on the pharmacokinetics and biodistribution of parenteral nanoemulsions. Int. J. Pharm., 2020, 586, 119551. Epub 2020 Jun 18.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119551]
[142]
Arbain, N.H.; Salim, N.; Wui, W.T.; Basri, M.; Rahman, M.B.A. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J. Oleo Sci., 2018, 67(8), 933-940.
[http://dx.doi.org/10.5650/jos.ess17253] [PMID: 30012897]
[143]
Xin, Li. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Pharmazie, 2011, 66(7), 479-483.
[144]
Ahmed, M. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie, 2008, 63(11), 806-811.
[145]
Kim, A.; Jang, D.J.; Shin, H.C.; Jee, U.; Jee, J.P. Intravenous delivery of xenon incorporated in thermosensitive nano-emulsions for anesthesia. J. Nanosci. Nanotechnol., 2017, 17(4), 2784-2790.
[http://dx.doi.org/10.1166/jnn.2017.13325] [PMID: 29667807]
[146]
Barakat, N.S.; Elanazi, F.K.; Almurshedi, A.S. The influence of various amphiphilic excipients on the physicochemical properties of carbamazepine-loaded microparticles. J. Microencapsul., 2009, 26(3), 251-262.
[http://dx.doi.org/10.1080/02652040802305113] [PMID: 18686144]
[147]
Araújo, F.A.; Kelmann, R.G.; Araújo, B.V.; Finatto, R.B.; Teixeira, H.F.; Koester, L.S. Development and characterization of parenteral nanoemulsions containing thalidomide. Eur. J. Pharm. Sci., 2011, 42(3), 238-245.
[http://dx.doi.org/10.1016/j.ejps.2010.11.014] [PMID: 21130164]
[148]
Prasetyo, B.E.; Azmi, N.; Shamsuddin, A.F. In vivo characterization of less painful propofol nanoemulsion using palm oil for intravenous drug delivery. Int. J. Appl. Pharmaceut., 2019, 11(4), 98-102.
[http://dx.doi.org/10.22159/ijap.2019v11i4.33039]
[149]
Isnepally, V. Development and in vitro cytotoxic evaluation of parenteral docetaxel lipid nanoemulsions for application in cancer treatment. PDA J. Pharm. Sci. Technol., 2010, 64(3), 233-241.
[150]
Singh, K.K.; Vingkar, S.K. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int. J. Pharm., 2008, 347(1-2), 136-143.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.035] [PMID: 17709216]
[151]
Yang, X.; Wang, D.; Ma, Y.; Zhao, Q.; Fallon, J.K.; Liu, D.; Xu, X.E.; Wang, Y.; He, Z.; Liu, F. Theranostic nanoemulsions: Codelivery of hydrophobic drug and hydrophilic imaging probe for cancer therapy and imaging. Nanomedicine, 2014, 9(18), 2773-2785.
[http://dx.doi.org/10.2217/nnm.14.50] [PMID: 25000945]
[152]
Borhade, V.; Pathak, S.; Sharma, S.; Patravale, V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: Preformulation studies, formulation design and physicochemical evaluation. Int. J. Pharm., 2012, 431(1-2), 138-148.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.040] [PMID: 22227344]
[153]
Ragelle, H.; Crauste-Manciet, S.; Seguin, J.; Brossard, D.; Scherman, D.; Arnaud, P.; Chabot, G.G. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int. J. Pharm., 2012, 427(2), 452-459.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.025] [PMID: 22387278]
[154]
Desai, A.; Vyas, T.; Amiji, M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J. Pharm. Sci., 2008, 97(7), 2745-2756.
[http://dx.doi.org/10.1002/jps.21182] [PMID: 17854074]
[155]
Simon, M.; Wittmar, M.; Bakowsky, U.; Kissel, T. Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly(L-lactic acid): A novel carrier for transmucosal delivery of peptides. Bioconjug. Chem., 2004, 15(4), 841-849.
[http://dx.doi.org/10.1021/bc0341627] [PMID: 15264872]
[156]
Đoković, J.B.; Savić, S.M.; Mitrović, J.R.; Nikolic, I.; Marković, B.D.; Randjelović, D.V.; Antic-Stankovic, J.; Božić, D.; Cekić, N.D.; Stevanović, V.; Batinić, B.; Aranđelović, J.; Savić, M.M.; Savić, S.D. Curcumin loaded PEGylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats. Int. J. Mol. Sci., 2021, 22(15), 7991.
[http://dx.doi.org/10.3390/ijms22157991] [PMID: 34360758]
[157]
Đorđević, S.M.; Santrač, A.; Cekić, N.D.; Marković, B.D.; Divović, B.; Ilić, T.M.; Savić, M.M.; Savić, S.D. Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances. Int. J. Pharm., 2017, 533(2), 421-430.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.051] [PMID: 28552767]
[158]
Daood, G.S.; Basri, H.; Stanslas, J.; Fard Masoumi, H.R.; Basri, M. Predicting the optimum compositions of a parenteral nanoemulsion system loaded with azithromycin antibiotic utilizing the artificial neural network model. RSC Advances, 2015, 5(101), 82654-82665.
[http://dx.doi.org/10.1039/C5RA14913D]
[159]
Goon D, Sheikh Abdul Kadir SH, Latip NA, Ab Rahim S, Mazlan M. Palm oil in lipid-based formulations and drug delivery systems. Biomol., 2019, 9(2), 64.
[http://dx.doi.org/10.3390/biom9020064] [PMID: 30781901] [PMCID: 6406477]
[160]
Mustfa, S.A.; Maurizi, E.; McGrath, J.; Chiappini, C. Nanomedicine approaches to negotiate local biobarriers for topical drug delivery. Adv. Ther., 2021, 4(1), 2000160.
[http://dx.doi.org/10.1002/adtp.202000160]
[161]
Sipos, B.; Csóka, I.; Szivacski, N.; Budai-Szűcs, M.; Schelcz, Z.; Zupkó, I.; Szabó-Révész, P.; Volk, B.; Katona, G. Mucoadhesive meloxicam-loaded nanoemulsions: Development, characterization and nasal applicability studies. Eur. J. Pharm. Sci., 2022, 175, 106229.
[http://dx.doi.org/10.1016/j.ejps.2022.106229] [PMID: 35662634]
[162]
Lin, X.; Sheng, Y.; Zhang, X.; Li, Z.; Yang, Y.; Wu, J.; Su, Z.; Ma, G.; Zhang, S. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. J. Control. Release, 2022, 346, 380-391.
[http://dx.doi.org/10.1016/j.jconrel.2022.04.036] [PMID: 35483639]
[163]
Shah, D.; Guo, Y.; Ban, I.; Shao, J. Intranasal delivery of insulin by self-emulsified nanoemulsion system: In vitro and in vivo studies. Int. J. Pharm., 2022, 616, 121565.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121565] [PMID: 35150847]
[164]
Patel, R.J.; Parikh, R.H. Intranasal delivery of topiramate nanoemulsion: Pharmacodynamic, pharmacokinetic and brain uptake studies. Int. J. Pharm., 2020, 585, 119486.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119486] [PMID: 32502686]
[165]
Gadhave, D.; Tupe, S.; Tagalpallewar, A.; Gorain, B.; Choudhury, H.; Kokare, C. Nose-to-brain delivery of amisulpride-loaded lipid-based poloxamer-gellan gum nanoemulgel: In vitro and in vivo pharmacological studies. Int. J. Pharm., 2021, 607, 121050.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121050] [PMID: 34454028]
[166]
Sood S, Jain K, Gowthamarajan K. Intranasal delivery of curcumin–/INS; donepezil nanoemulsion for brain targeting in Alzheimer’s disease. J. Neurol. Sci., 2013, 333, e316-e317.
[167]
Kumar, M.; Misra, A.; Mishra, A.K.; Mishra, P.; Pathak, K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J. Drug Target., 2008, 16(10), 806-814.
[http://dx.doi.org/10.1080/10611860802476504] [PMID: 18988064]
[168]
Pidaparthi, K.; Suares, D. Comparison of nanoemulsion and aqueous micelle systems of paliperidone for intranasal delivery. AAPS PharmSciTech, 2017, 18(5), 1710-1719.
[http://dx.doi.org/10.1208/s12249-016-0640-x] [PMID: 27714701]
[169]
Kumar, M.; Misra, A.; Babbar, A.K.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm., 2008, 358(1-2), 285-291.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.029] [PMID: 18455333]
[170]
Boche, M.; Pokharkar, V. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech, 2017, 18(3), 686-696.
[http://dx.doi.org/10.1208/s12249-016-0552-9] [PMID: 27207184]
[171]
Abdou, E.M.; Kandil, S.M.; Miniawy, H.M.F.E. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm., 2017, 529(1-2), 667-677.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.030] [PMID: 28729175]
[172]
Mahajan, H.S.; Mahajan, M.S.; Nerkar, P.P.; Agrawal, A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv., 2014, 21(2), 148-154.
[http://dx.doi.org/10.3109/10717544.2013.838014] [PMID: 24128122]
[173]
Lalani, J.; Baradia, D.; Lalani, R.; Misra, A. Brain targeted intranasal delivery of tramadol: Comparative study of microemulsion and nanoemulsion. Pharm. Dev. Technol., 2015, 20(8), 992-1001.
[http://dx.doi.org/10.3109/10837450.2014.959177] [PMID: 25228122]
[174]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Abdur Rub, R.; Ahmad, F.J. RETRACTED ARTICLE: Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 717-729.
[http://dx.doi.org/10.1080/21691401.2017.1337024] [PMID: 28604104]
[175]
Arora, A.; Kumar, S.; Ali, J.; Baboota, S. Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: Pharmacokinetic and brain delivery study. Chem. Phys. Lipids, 2020, 230, 104917.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104917] [PMID: 32439327]
[176]
da Silva Santos, J.; Diedrich, C.; Machado, C.S.; da Fonseca, C.O.; Khalil, N.M.; Mainardes, R.M. Intranasal administration of perillyl alcohol-loaded nanoemulsion and pharmacokinetic study of its metabolite perillic acid in plasma and brain of rats using ultra‐performance liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr., 2021, 35(4), e5037.
[http://dx.doi.org/10.1002/bmc.5037] [PMID: 33238042]
[177]
Gaba, B; Khan, T; Haider, MF; Alam, T; Baboota, S; Parvez, S Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease Model. Biomed. Res. Int., 2019, 2019
[178]
Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X. Luzardo-álvarez, A Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics, 2020, 12(3)
[179]
Wang, C.; Pang, Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv. Drug Deliv. Rev., 2023, 194, 114721.
[http://dx.doi.org/10.1016/j.addr.2023.114721] [PMID: 36773886]
[180]
Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release, 2020, 321, 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.057] [PMID: 32027938]
[181]
Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res., 2016, 66, 735.
[http://dx.doi.org/10.1007/s13346-016-0339-2]
[182]
Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic drug delivery systems for antibiotherapy-A review. Pharmaceutics, 2018, 10(1)
[183]
Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels, 2022, 8(2)
[http://dx.doi.org/10.3390/gels8020082]
[184]
Buosi, FS; Alaimo, A; Di Santo, MC; Elías, F; García Liñares, G; Acebedo, SL; Castañeda Cataña, MA; Spagnuolo, CC; Lizarraga, L; Martínez, KD; Pérez, OE Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. Int. J. Biol. Macromol., 2020, 165(Pt A), 804-821.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.234]
[185]
Tsai, C.H.; Wang, P.Y.; Lin, I.C.; Huang, H.; Liu, G.S.; Tseng, C.L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int. J. Mol. Sci., 2018, 19(9), 2830.
[186]
Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances, 2020, 10(46), 27835-27855.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[187]
Dhahir, R.K.; Al-Nima, A.M.; Al-Bazzaz, F.Y. Nanoemulsions as ophthalmic drug delivery systems. Turk. J. Pharm. Sci., 2021, 18(5), 652.
[http://dx.doi.org/10.4274/tjps.galenos.2020.59319]
[188]
Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv., 2012, 2012, 1-16.
[189]
Gawin-Mikołajewicz, A.; Nartowski, K.P.; Dyba, A.J.; Gołkowska, A.M.; Malec, K.; Karolewicz, B. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Mol. Pharm., 2021, 18(10), 3719-3740.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00650] [PMID: 34533317]
[190]
Ahmed, S.; Amin, M.M.; Sayed, S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech, 2023, 24(2), 66.
[http://dx.doi.org/10.1208/s12249-023-02516-9]
[191]
Hirlekar, R.S.; Sonawane, S.N.; Kadam, V.J. Studies on the effect of water-soluble polymers on drug-cyclodextrin complex solubility. AAPS PharmSciTech, 2009, 10(3), 858-863.
[http://dx.doi.org/10.1208/s12249-009-9274-6]
[192]
Kadajji, V.G.; Betageri, G.V. Water soluble polymers for pharmaceutical applications. Polymers, 2011, 3(4)
[http://dx.doi.org/10.3390/polym3041972]
[193]
Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules, 2019, 24(23), 4242.
[194]
EPO. European publication server Available from: https://data.epo.org/publication-server/document?iDocId=3280187&iFormat=2 (Cited 2023 Apr 13).
[195]
Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104, 302-314.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[196]
Dukovski, B.J.; Bračko, A.; Šare, M.; Pepić, I.; Lovrić, J. In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. Acta Pharm., 2019, 69(4), 621-634.
[http://dx.doi.org/10.2478/acph-2019-0054] [PMID: 31639085]
[197]
Mohammadi, M.; Elahimehr, Z.; Mahboobian, M.M. Acyclovir-loaded nanoemulsions: Preparation, characterization and irritancy studies for ophthalmic delivery. Curr. Eye Res., 2021, 46(11), 1646-1652.
[http://dx.doi.org/10.1080/02713683.2021.1929328] [PMID: 33979552]
[198]
Tavakoli, M.; Mahboobian, M.M.; Nouri, F.; Mohammadi, M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol. Mech. Methods, 2021, 31(8), 572-580.
[http://dx.doi.org/10.1080/15376516.2021.1941461] [PMID: 34126859]
[199]
Zhang, J.; Liu, Z.; Tao, C.; Lin, X.; Zhang, M.; Zeng, L.; Chen, X.; Song, H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci., 2020, 144, 105229.
[http://dx.doi.org/10.1016/j.ejps.2020.105229] [PMID: 31958581]
[200]
Vijaya Rani, K.R.; Rajan, S.; Bhupathyraaj, M.; Priya, R.K.; Halligudi, N.; Al-Ghazali, M.A. The effect of polymers on drug release kinetics in nanoemulsion in situ gel formulation. Polymers, 2022, 14(3)
[http://dx.doi.org/10.3390/polym14030427]
[201]
Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm., 2013, 443(1-2), 293-305.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.049] [PMID: 23333217]
[202]
Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol., 2020, 55, 101400.
[http://dx.doi.org/10.1016/j.jddst.2019.101400]
[203]
Mohammad Mehdi, M. Brinzolamide-loaded nanoemulsions: Ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharmaceut. Developm. Technol., 2019, 24(5), 600-606.
[204]
Ying, Ge. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin. Drug Deliv., 2020, 17(4), 603-619.
[205]
Hagigit, T.; Abdulrazik, M.; Valamanesh, F.; Behar-Cohen, F.; Benita, S. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice. J. Control. Release, 2012, 160(2), 225-231.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.022] [PMID: 22138070]
[206]
Liu, C.H.; Huang, Y.C.; Jhang, J.W.; Liu, Y.H.; Wu, W.C. Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion. RSC Advances, 2015, 5(122), 100923-100933.
[http://dx.doi.org/10.1039/C5RA17423F] [PMID: 26989479]
[207]
Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics, 2019, 11(5), 230.
[http://dx.doi.org/10.3390/pharmaceutics11050230] [PMID: 31083593]
[208]
Panatieri, L.F.; Brazil, N.T.; Faber, K.; Medeiros-Neves, B.; von Poser, G.L.; Rott, M.B.; Zorzi, G.K.; Teixeira, H.F. Nanoemulsions containing a coumarin-rich extract from pterocaulon balansae (Asteraceae) for the treatment of ocular acanthamoeba keratitis. AAPS PharmSciTech, 2017, 18(3), 721-728.
[http://dx.doi.org/10.1208/s12249-016-0550-y] [PMID: 27225384]
[209]
Patel, N.; Nakrani, H.; Raval, M.; Sheth, N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv., 2016, 23(9), 3712-3723.
[http://dx.doi.org/10.1080/10717544.2016.1223225] [PMID: 27689408]
[210]
Pathak, M.K.; Chhabra, G.; Pathak, K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev. Ind. Pharm., 2013, 39(5), 780-790.
[http://dx.doi.org/10.3109/03639045.2012.707203] [PMID: 22873799]
[211]
Alkilani, A.Z.; Nasereddin, J.; Hamed, R.; Nimrawi, S.; Hussein, G.; Abo-Zour, H. Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics, 2022, 14(6), 1152.
[http://dx.doi.org/10.3390/pharmaceutics14061152]
[212]
Alkilani, A.Z.; McCrudden, M.T.C. Donnelly, RF Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438.
[213]
Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res., 2022, 12(4), 758-791.
[http://dx.doi.org/10.1007/s13346-021-00909-6] [PMID: 33474709]
[214]
Ye, J.Y.; Chen, Z.Y.; Huang, C.L.; Huang, B.; Zheng, Y.R.; Zhang, Y.F. A non-lipolysis nanoemulsion improved oral bioavailability by reducing the first-pass metabolism of raloxifene, and related absorption mechanisms being studied. Int. J. Nanomedicine, 2020, 15, 6503.
[http://dx.doi.org/10.2147/IJN.S259993]
[215]
Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4)
[http://dx.doi.org/10.3390/pharmaceutics9040037]
[216]
Cunha, S.; Forbes, B.; Lobo, J.M.S.; Silva, A.C. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels. Int. J. Nanomedicine, 2021, 16, 4373.
[217]
Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics, 2020, 12(2)
[218]
Zhang, Y.; Gao, J.; Zheng, H.; Zhang, R.; Han, Y. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release. Int. J. Nanomedicine, 2011, 6, 649-657.
[http://dx.doi.org/10.2147/IJN.S17242] [PMID: 21674020]
[219]
Cao, M.; Ren, L.; Chen, G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech, 2017, 18(6), 1960-1971.
[http://dx.doi.org/10.1208/s12249-016-0667-z] [PMID: 27914040]
[220]
Elmataeeshy, M.E.; Sokar, M.S.; Bahey-El-Din, M.; Shaker, D.S. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization. Fut. J. Pharmaceut. Sci., 2018, 4(1), 18-28.
[http://dx.doi.org/10.1016/j.fjps.2017.07.003]
[221]
Asasutjarit, R.; Sooksai, N.; Fristiohady, A.; Lairungruang, K.; Ng, S.F.; Fuongfuchat, A. Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin. Pharmaceutics, 2021, 13(8), 1290.
[http://dx.doi.org/10.3390/pharmaceutics13081290] [PMID: 34452250]
[222]
Zhang, L.W.; Al-Suwayeh, S.A.; Hung, C.F.; Chen, C.C.; Fang, J.Y. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int. J. Nanomedicine, 2011, 6, 693-704.
[PMID: 21556344]
[223]
Wu, H.; Ramachandran, C.; Bielinska, A.U.; Kingzett, K.; Sun, R.; Weiner, N.D.; Roessler, B.J. Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int. J. Pharm., 2001, 221(1-2), 23-34.
[http://dx.doi.org/10.1016/S0378-5173(01)00672-X] [PMID: 11397564]
[224]
Ningsih, Z.; Lucia, A. Preparation and characterization of curcumin nanoemulsion in olive oil-tween 80 system using wet ball milling method. ICS Phys. Chem., 2021, 1(1), 16.
[225]
Kim, J.H.; Ko, J.A.; Kim, J.T.; Cha, D.S.; Cho, J.H.; Park, H.J.; Shin, G.H. Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. J. Agric. Food Chem., 2014, 62(3), 725-732.
[http://dx.doi.org/10.1021/jf404220n] [PMID: 24417234]
[226]
Kumar, D.; Ali, J.; Baboota, S. Omega 3 fatty acid-enriched nanoemulsion of thiocolchicoside for transdermal delivery: Formulation, characterization and absorption studies. Drug Deliv., 2016, 23(2), 591-600.
[http://dx.doi.org/10.3109/10717544.2014.916764] [PMID: 24892633]
[227]
Hussain, A.; Singh, V.K.; Singh, O.P.; Shafaat, K.; Kumar, S.; Ahmad, F.J. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Drug Deliv., 2016, 23(8), 3101-3110.
[http://dx.doi.org/10.3109/10717544.2016.1153747] [PMID: 27854145]
[228]
Abd, E.; Benson, H.A.E.; Roberts, M.S.; Grice, J.E. Follicular penetration of caffeine from topically applied nanoemulsion formulations containing penetration enhancers: In vitro human skin studies. Skin Pharmacol. Physiol., 2018, 31(5), 252-260.
[http://dx.doi.org/10.1159/000489857] [PMID: 30001555]
[229]
Paul, V.J.; Frautschy, S.; Fenical, W.; Nealson, K.H. Antibiotics in microbial ecology. J. Chem. Ecol., 1981, 7(3), 589-597.
[http://dx.doi.org/10.1007/BF00987707] [PMID: 24420598]
[230]
Wu, H.; Ramachandran, C.; Weiner, N.D.; Roessler, B.J. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int. J. Pharm., 2001, 220(1-2), 63-75.
[http://dx.doi.org/10.1016/S0378-5173(01)00671-8] [PMID: 11376968]
[231]
Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci., 2013, 92(6-7), 383-392.
[http://dx.doi.org/10.1016/j.lfs.2013.01.005] [PMID: 23353874]
[232]
Chan, Y.; Singh, S.K.; Gulati, M.; Wadhwa, S.; Prasher, P.; Kumar, D. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. J. Drug Deliv. Sci. Technol., 2022, 74, 103541.
[233]
Liang, W.; Pan, H.W.; Vllasaliu, D.; Lam, J.K.W. Pulmonary delivery of biological drugs. Pharmaceutics, 2020, 12(11), 1025.
[http://dx.doi.org/10.3390/pharmaceutics12111025]
[234]
Labiris, N.R. Dolovich, MB Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 2003, 56(6), 588.
[235]
He, S.; Gui, J.; Xiong, K.; Chen, M.; Gao, H.; Fu, Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J. Nanobiotechnology, 2022, 20(1), 101.
[http://dx.doi.org/10.1186/s12951-022-01307-x]
[236]
Ahookhosh, K.; Pourmehran, O.; Aminfar, H.; Mohammadpourfard, M.; Sarafraz, M.M.; Hamishehkar, H. Development of human respiratory airway models: A review. Eur. J. Pharm. Sci., 2020, 145, 105233.
[http://dx.doi.org/10.1016/j.ejps.2020.105233] [PMID: 31978589]
[237]
Fei, Q.; Bentley, I.; Ghadiali, S.N.; Englert, J.A. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm. Pharmacol. Ther., 2023, 79, 102196.
[http://dx.doi.org/10.1016/j.pupt.2023.102196]
[238]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8]
[239]
Forest, V.; Pourchez, J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv. Drug Deliv. Rev., 2022, 183, 114173.
[http://dx.doi.org/10.1016/j.addr.2022.114173] [PMID: 35217112]
[240]
Li, Z.; Chen, G.; Ding, L.; Wang, Y.; Zhu, C.; Wang, K. Increased survival by pulmonary treatment of established lung metastases with Dual STAT3/CXCR4 inhibition by siRNA nanoemulsions. Mol. Ther., 2019, 27(12), 2100-2110.
[241]
Institute, N.C. Non-Small Cell Lung Cancer Treatment (PDQ®)- Health Professional Version. 2020. Available from: https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq
[242]
El-Moslemany, R.M.; El-Kamel, A.H.; Allam, E.A.; Khalifa, H.M.; Hussein, A.; Ashour, A.A. Tanshinone IIA loaded bioactive nanoemulsion for alleviation of lipopolysaccharide induced acute lung injury via inhibition of endothelial glycocalyx shedding. Biomed. Pharmacother., 2022, 155, 113666.
[http://dx.doi.org/10.1016/j.biopha.2022.113666] [PMID: 36099790]
[243]
Yang, J.; Li, Y.; Sun, J.; Zou, H.; Sun, Y.; Luo, J.; Xie, Q.; A R; Wang, H.; Li, X.; Wang, K.; Yang, L.; Ma, T.; Wu, L.; Sun, X. An Osimertinib-Perfluorocarbon Nanoemulsion with Excellent Targeted Therapeutic Efficacy in Non-small Cell Lung Cancer: Achieving Intratracheal and Intravenous Administration. ACS Nano, 2022, 16(8), 12590-12605. Epub 2022 Jul 21.
[http://dx.doi.org/10.1021/acsnano.2c04159]
[244]
Abdulbaqi, I.M.; Assi, R.A.; Yaghmur, A.; Darwis, Y.; Mohtar, N.; Parumasivam, T.; Saqallah, F.G.; Wahab, H.A. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals, 2021, 14(8), 725.
[http://dx.doi.org/10.3390/ph14080725] [PMID: 34451824]
[245]
Asmawi, A.A.; Salim, N.; Ngan, C.L.; Ahmad, H.; Abdulmalek, E.; Masarudin, M.J.; Abdul Rahman, M.B. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv. Transl. Res., 2019, 9(2), 543-554.
[http://dx.doi.org/10.1007/s13346-018-0526-4] [PMID: 29691812]
[246]
Yuosef Al, A. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. Int. J. Pharm., 2019, 557, 254-263.
[247]
Arbain, N.H.; Basri, M.; Salim, N.; Wui, W.T.; Abdul Rahman, M.B. Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Mater. Today Proc., 2018, 5, S137-S142.
[http://dx.doi.org/10.1016/j.matpr.2018.08.055]
[248]
Asmawi, A.A.; Salim, N.; Abdulmalek, E.; Abdul Rahman, M.B. Modeling the effect of composition on formation of aerosolized nanoemulsion system encapsulating docetaxel and curcumin using D-optimal mixture experimental design. Int. J. Mol. Sci., 2020, 21(12), 4357.
[http://dx.doi.org/10.3390/ijms21124357] [PMID: 32575390]
[249]
Elhissi, A.M.A.; Karnam, K.K.; Danesh-Azari, M.R.; Gill, H.S.; Taylor, K.M.G. Formulations generated from ethanol-based proliposomes for delivery via medical nebulizers. J. Pharm. Pharmacol., 2010, 58(7), 887-894.
[http://dx.doi.org/10.1211/jpp.58.7.0002] [PMID: 16805947]
[250]
Nesamony, J.; Shah, I.S.; Kalra, A.; Jung, R. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: Development, physico-chemical characterization and in vitro evaluation. Drug Dev. Ind. Pharm., 2014, 40(9), 1253-1263.
[http://dx.doi.org/10.3109/03639045.2013.814065] [PMID: 23837519]
[251]
Bivas-Benita, M.; Ottenhoff, T.H.M.; Junginger, H.E.; Borchard, G. Pulmonary DNA vaccination: Concepts, possibilities and perspectives. J. Control. Release, 2005.
[252]
Hartwell, B.L.; Melo, M.B.; Xiao, P.; Lemnios, A.A.; Li, N.; Chang, J.Y.H.; Yu, J.; Gebre, M.S.; Chang, A.; Maiorino, L.; Carter, C.; Moyer, T.J.; Dalvie, N.C.; Rodriguez-Aponte, S.A.; Rodrigues, K.A.; Silva, M.; Suh, H.; Adams, J.; Fontenot, J.; Love, J.C.; Barouch, D.H.; Villinger, F.; Ruprecht, R.M.; Irvine, D.J. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med., 2022, 14(654), eabn1413.
[http://dx.doi.org/10.1126/scitranslmed.abn1413] [PMID: 35857825]
[253]
Baker, J.R.; Farazuddin, M.; Wong, P.T.; O’konek, J.J.; Arbor, A. The unfulfilled potential of mucosal immunization. J. Allergy Clin. Immunol., 2022, 150(1), 1-11.
[http://dx.doi.org/10.1016/j.jaci.2022.05.002]
[254]
Ramvikas, M.; Arumugam, M.; Chakrabarti, S.R. Jaganathan, KS Nasal vaccine delivery. In: Micro and Nanotechnology in Vaccine Development; William Andrew, 2017.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00015-4]
[255]
Brito, L.A.; Chan, M.; Shaw, C.A.; Hekele, A.; Carsillo, T.; Schaefer, M.; Archer, J.; Seubert, A.; Otten, G.R.; Beard, C.W.; Dey, A.K.; Lilja, A.; Valiante, N.M.; Mason, P.W.; Mandl, C.W.; Barnett, S.W.; Dormitzer, P.R.; Ulmer, J.B.; Singh, M.; O’Hagan, D.T.; Geall, A.J. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther., 2014, 22(12), 2118-2129.
[http://dx.doi.org/10.1038/mt.2014.133] [PMID: 25027661]
[256]
O’Hagan, D.T. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev. Vaccines, 2007, 6(5), 699-710.
[http://dx.doi.org/10.1586/14760584.6.5.699] [PMID: 17931151]
[257]
Yang, Y.; Chen, L.; Sun, H.; Guo, H.; Song, Z.; You, Y.; Yang, L.; Tong, Y.; Gao, J.; Zeng, H.; Yang, W.; Zou, Q. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J. Nanobiotechnology, 2019, 17(1), 6.
[http://dx.doi.org/10.1186/s12951-019-0441-y] [PMID: 30660182]
[258]
Manoharan, M.; Chauhan, P.S. Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at 20°C. Food Control, 2012, 23(2), 564-570.
[259]
Pirozzi, A.; Del Grosso, V.; Ferrari, G.; Donsì, F. Edible coatings containing oregano essential oil nanoemulsion for improving postharvest quality and shelf life of tomatoes. Foods, 2020, 9(11), 1605.
[http://dx.doi.org/10.3390/foods9111605] [PMID: 33158115]
[260]
María, A.A.; Alejandra, A.F.; Olga, M.B. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food ControlVolume, 2017, 76(June), 1-12.
[261]
Costa, M.; Freiría-Gándara, J.; Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Díaz, C. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. J. Colloid Interface Sci., 2020, 562, 352-362.
[http://dx.doi.org/10.1016/j.jcis.2019.12.011] [PMID: 31855798]
[262]
Lee, S.J.; Choi, S.J.; Li, Y.; Decker, E.A.; McClements, D.J. Protein-stabilized nanoemulsions and emulsions: Comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J. Agric. Food Chem., 2011, 59(1), 415-427.
[http://dx.doi.org/10.1021/jf103511v] [PMID: 21133433]
[263]
Liang, R.; Huang, Q.; Ma, J.; Shoemaker, C.F.; Zhong, F. Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocoll., 2013, 33(2), 225-233.
[http://dx.doi.org/10.1016/j.foodhyd.2013.03.015]
[264]
Ribes, S.; Fuentes, A.; Talens, P.; Barat, J.M. Prevention of fungal spoilage in food products using natural compounds: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(12), 2002-2016.
[http://dx.doi.org/10.1080/10408398.2017.1295017] [PMID: 28394635]
[265]
Ribeiro, R.; Barreto, S.; Ostrosky, E.; Rocha-Filho, P.; Veríssimo, L.; Ferrari, M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent. Molecules, 2015, 20(2), 2492-2509.
[http://dx.doi.org/10.3390/molecules20022492] [PMID: 25648593]
[266]
Duan, J.; Nie, R.; Du, J.; Sun, H.; Liu, G. Effect of nanoemulsion containing enterocin GR17 and cinnamaldehyde on microbiological, physicochemical and sensory properties and shelf life of liquid-smoked salmon fillets. Foods, 2022, 12(1), 78.
[http://dx.doi.org/10.3390/foods12010078] [PMID: 36613294]
[267]
de Oliveira Felipe, L.; Lemos Bicas, J.; Bouhoute, M.; Vodo, S.; Taarji, N.; Nakajima, M.; Neves, M.A. Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Res. Int., 2022, 153, 110894.
[http://dx.doi.org/10.1016/j.foodres.2021.110894] [PMID: 35227489]
[268]
Wang, L.; Liu, T.; Liu, L.; Liu, Y.; Wu, X. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat. Meat Sci., 2022, 185, 108706.
[http://dx.doi.org/10.1016/j.meatsci.2021.108706] [PMID: 34839192]
[269]
Casaburi, A; Piombino, P; Nychas, GJ; Villani, F; Ercolini, D Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol., 2015, 45(Pt A), 83-102.
[http://dx.doi.org/10.1016/j.fm.2014.02.002]
[270]
Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll., 2016, 61(December), 662-671.
[http://dx.doi.org/10.1016/j.foodhyd.2016.06.034]
[271]
Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol., 2020, 152, 154-170.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.276] [PMID: 32109479]
[272]
Shamsabadipour, A.; Pourmadadi, M.; Rashedi, H.; Yazdian, F.; Navaei-Nigjeh, M. Nanoemulsion carriers of porous γ-alumina modified by polyvinylpyrrolidone and carboxymethyl cellulose for pH-sensitive delivery of 5-fluorouracil. Int. J. Biol. Macromol., 2023, 233, 123621.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123621] [PMID: 36773864]
[273]
Das, S.K.; Vishakha, K.; Das, S.; Chakraborty, D.; Ganguli, A. Carboxymethyl cellulose and cardamom oil in a nanoemulsion edible coating inhibit the growth of foodborne pathogens and extend the shelf life of tomatoes. Biocatal. Agric. Biotechnol., 2022, 42(July), 102369.
[http://dx.doi.org/10.1016/j.bcab.2022.102369]
[274]
Mehmood, T.; Ahmed, A.; Ahmed, Z. Food-grade nanoemulsions for the effective delivery of β-carotene. Langmuir, 2021, 37(10), 3086-3092.
[http://dx.doi.org/10.1021/acs.langmuir.0c03399] [PMID: 33646002]
[275]
Zhang, A.Q.; Liu, M.Q.; Li, X.Y.; Xu, D.; Yin, Y.Q.; Song, N.N.; Zhang, Y.H. Nanoemulsion: A novel delivery approach for thermosensitive IgG on inhibiting milk fat oxidation. Food Res. Int., 2023, 165, 112545.
[http://dx.doi.org/10.1016/j.foodres.2023.112545] [PMID: 36869456]
[276]
Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 2018, 84, 312-320.
[http://dx.doi.org/10.1016/j.foodcont.2017.08.015]
[277]
Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem., 2020, 60, 104604.
[http://dx.doi.org/10.1016/j.ultsonch.2019.05.021] [PMID: 31539730]
[278]
Majeed, H.; Liu, F.; Hategekimana, J.; Sharif, H.R.; Qi, J.; Ali, B. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem., 2016, 197(Pt A), 75-83.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.015]
[279]
Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol., 2017, 95, 769-777.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.119] [PMID: 27919809]
[280]
Park, S.J.; Hong, S.J.; Garcia, C.V.; Lee, S.B.; Shin, G.H.; Kim, J.T. Stability evaluation of turmeric extract nanoemulsion powder after application in milk as a food model. J. Food Eng., 2019, 259, 12-20.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.04.011]
[281]
Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Biosci., 2019, 28, 57-65.
[http://dx.doi.org/10.1016/j.fbio.2019.01.018]
[282]
Gonçalves, R.F.S.; Martins, J.T.; Abrunhosa, L.; Vicente, A.A.; Pinheiro, A.C. Nanoemulsions for enhancement of curcumin bioavailability and their safety evaluation: Effect of emulsifier type. Nanomaterials, 2021, 11, 3.
[283]
Lu, W.C.; Huang, D.W.; Wang, C.R.; Yeh, C.H.; Tsai, J.C.; Huang, Y.T.; Li, P.H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 82-89.
[PMID: 29389592]
[284]
Rebolleda, S.; Sanz, M.T.; Benito, J.M.; Beltrán, S.; Escudero, I.; González San-José, M.L. Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chem., 2015, 167, 16-23.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.097] [PMID: 25148953]
[285]
Arredondo-Ochoa, T.; García-Almendárez, B.E.; Escamilla-García, M.; Martín-Belloso, O.; Rossi-Márquez, G.; Medina-Torres, L. Physicochemical and antimicrobial characterization of beeswax-starch food-grade nanoemulsions incorporating natural antimicrobials. Int. J. Mol. Sci., 2017, 18(12)
[http://dx.doi.org/10.3390/ijms18122712]
[286]
Sarheed, O.; Shouqair, D.; Ramesh, K.V.R.N.S.; Khaleel, T.; Amin, M.; Boateng, J.; Drechsler, M. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Int. J. Pharm., 2020, 576, 118952.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118952] [PMID: 31843549]
[287]
Shakeel, F.; Haq, N.; Ali, M.; Alanazi, F.K.; Alsarra, I.A. Impact of viscosity and refractive index on droplet size and zeta potential of model O/W and W/O nanoemulsion. Curr. Nanosci., 2013, 9(6), 248-253.
[288]
Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem., 2012, 132(3), 1221-1229.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.091] [PMID: 29243604]
[289]
Onaizi, S.A.; Alsulaimani, M.; Al-Sakkaf, M.K.; Bahadi, S.A.; Mahmoud, M.; Alshami, A. Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-Switchability. J. Petrol. Sci. Eng., 2021, 198, 108173.
[http://dx.doi.org/10.1016/j.petrol.2020.108173]
[290]
Li, P.H.; Lu, W.C. Effects of storage conditions on the physical stability of d-limonene nanoemulsion. Food Hydrocoll., 2016, 53, 218-224.
[http://dx.doi.org/10.1016/j.foodhyd.2015.01.031]
[291]
Solè, I.; Solans, C.; Maestro, A.; González, C.; Gutiérrez, J.M. Study of nano-emulsion formation by dilution of microemulsions. J. Colloid Interface Sci., 2012, 376(1), 133-139.
[http://dx.doi.org/10.1016/j.jcis.2012.02.063] [PMID: 22480397]
[292]
Anton, N.; Vandamme, T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res., 2011, 28(5), 978-985.
[http://dx.doi.org/10.1007/s11095-010-0309-1] [PMID: 21057856]
[293]
Wang, C.; Wang, M.; Chen, P.; Wang, J.; Le, Y. Dasatinib nanoemulsion and nanocrystal for enhanced oral drug delivery. Pharmaceutics, 2022, 14(1), 197.
[http://dx.doi.org/10.3390/pharmaceutics14010197] [PMID: 35057093]
[294]
Ako-Adounvo, A.M.; Nagarwal, R.; Oliveira, L.; Boddu, S.; Wang, X.; Dey, S.; Karla, P. Recent patents on ophthalmic nanoformulations and therapeutic implications. Recent Pat. Drug Deliv. Formul., 2014, 8(3), 193-201.
[http://dx.doi.org/10.2174/1872211308666140926112000] [PMID: 25262835]
[295]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[296]
McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79.
[http://dx.doi.org/10.1016/j.cis.2017.12.001] [PMID: 29248154]
[297]
Pathania, R.; Khan, H.; Kaushik, R.; Khan, M.A. Essential oil nanoemulsions and their antimicrobial and food applications. Curr. Res. Nutr. Food Sci., 2018, 6(3), 626-643.
[http://dx.doi.org/10.12944/CRNFSJ.6.3.05]
[298]
Ali, A.; Ansari, V.; Ahmad, U.; Akhtar, J.; Jahan, A. Nanoemulsion: An advanced vehicle for efficient drug delivery. Drug Res., 2017, 67(11), 617-631.
[http://dx.doi.org/10.1055/s-0043-115124] [PMID: 28738427]
[299]
Chang, Y.; McLandsborough, L.; McClements, D.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chem., 2015, 172, 298-304.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.081] [PMID: 25442557]
[300]
Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 2008, 24(22), 12758-12765.
[http://dx.doi.org/10.1021/la801685v] [PMID: 18850732]
[301]
Julian McClements, D.; Henson, L.; Popplewell, L.M.; Decker, E.A.; Jun Choi, S. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils. J. Food Sci., 2012, 77(1), C33-C38.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02484.x] [PMID: 22133014]
[302]
Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. J. Food Eng., 2015, 167, 89-98.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.07.037]
[303]
Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123.
[304]
Choi, S.J.; McClements, D.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci. Biotechnol., 2020, 29(2), 149.
[http://dx.doi.org/10.1007/s10068-019-00731-4]
[305]
Tayeb, H.H.; Felimban, R.; Almaghrabi, S.; Hasaballah, N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloid Interface Sci. Commun., 2021, 45, 100533.
[306]
Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering, 2022, 9(4)
[http://dx.doi.org/10.3390/bioengineering9040158]
[307]
Gupta, A.; Burak Eral, H.; Hatton, T.A.; Doyle, P.S. Soft matter is a transformative journal and Plan S compliant. 2016. Available from: www.rsc.org/softmatter
[308]
Shahid, M.; Hussain, A.; Khan, A.A.; Alanazi, A.M.; Alaofi, A.L.; Alam, M. Antifungal cationic nanoemulsion ferrying miconazole nitrate with synergism to control fungal infections: In vitro, ex vivo, and in vivo evaluations. ACS Omega, 2022, 7(15), 13343.
[309]
Chebil, A.; Desbrières, J.; Nouvel, C.; Six, J.L.; Durand, A. Ostwald ripening of nanoemulsions stopped by combined interfacial adsorptions of molecular and macromolecular nonionic stabilizers. Colloids Surf. A Physicochem. Eng. Asp., 2013, 425, 24-30.
[http://dx.doi.org/10.1016/j.colsurfa.2013.02.028]
[310]
Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics, 2020, 12(12), 1-21.
[311]
Li, G.; Zhang, Z.; Liu, H.; Hu, L. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct., 2021, 12(5), 1933-1953.
[http://dx.doi.org/10.1039/D0FO02686G] [PMID: 33596279]
[312]
Wooster, T.J.; Moore, S.C.; Chen, W.; Andrews, H.; Addepalli, R.; Seymour, R.B.; Osborne, S.A. Biological fate of food nanoemulsions and the nutrients they carry - internalisation, transport and cytotoxicity of edible nanoemulsions in Caco-2 intestinal cells. RSC Advances, 2017, 7(64), 40053-40066.
[http://dx.doi.org/10.1039/C7RA07804H]
[313]
Hort, M.A.; Alves, B.S.; Ramires Júnior, O.V.; Falkembach, M.C.; Araújo, G.M.S.; Fernandes, C.L.F.; Tavella, R.A.; Bidone, J.; Dora, C.L.; da Silva Júnior, F.M.R. In vivo toxicity evaluation of nanoemulsions for drug delivery. Drug Chem. Toxicol., 2021, 44(6), 585-594.
[http://dx.doi.org/10.1080/01480545.2019.1659806] [PMID: 31476915]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy