Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Use of Lipid-Based Nanocarriers to Improve Ovarian Cancer Treatment: An Overview of Recent Developments

Author(s): Junaid Tantray, Akhilesh Patel, Bhupendra G. Prajapati*, Sourabh Kosey and Sankha Bhattacharya

Volume 25, Issue 17, 2024

Published on: 14 February, 2024

Page: [2200 - 2217] Pages: 18

DOI: 10.2174/0113892010279572240126052844

Price: $65

Abstract

Ovarian cancer poses a formidable health challenge for women globally, necessitating innovative therapeutic approaches. This review provides a succinct summary of the current research status on lipid-based nanocarriers in the context of ovarian cancer treatment. Lipid-based nanocarriers, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), offer a promising solution for delivering anticancer drugs with enhanced therapeutic effectiveness and reduced adverse effects. Their versatility in transporting both hydrophobic and hydrophilic medications makes them well-suited for a diverse range of anticancer drugs. Active targeting techniques like ligand-conjugation and surface modifications have been used to reduce off-target effects and achieve tumour-specific medication delivery. The study explores formulation techniques and adjustments meant to enhance drug stability and encapsulation in these nanocarriers. Encouraging results from clinical trials and preclinical investigations underscore the promise of lipid-based nanocarriers in ovarian cancer treatment, providing optimism for improved patient outcomes. Notwithstanding these advancements, challenges related to clearance, long-term stability, and scalable manufacturing persist. Successfully translating lipidbased nanocarriers into clinical practice requires addressing these hurdles. To sum up, lipidbased nanocarriers are a viable strategy to improve the effectiveness of therapy for ovarian cancer. With their more focused medication administration and lower systemic toxicity, they may completely change the way ovarian cancer is treated and increase patient survival rates. Lipidbased nanocarriers need to be further researched and developed to become a therapeutically viable treatment for ovarian cancer.

[1]
Höhn, A.K.; Brambs, C.E.; Hiller, G.G.R.; May, D.; Schmoeckel, E.; Horn, L.C. 2020 WHO classification of female genital tumors. Geburtshilfe Frauenheilkd., 2021, 81(10), 1145-1153.
[http://dx.doi.org/10.1055/a-1545-4279] [PMID: 34629493]
[2]
Žilovič, D.; Čiurlienė, R.; Sabaliauskaitė, R.; Jarmalaitė, S. Future screening prospects for ovarian cancer. Cancers, 2021, 13(15), 3840.
[http://dx.doi.org/10.3390/cancers13153840] [PMID: 34359740]
[3]
Scully, R.E. Pathology of ovarian cancer precursors. J. Cell. Biochem., 1995, 59(S23), 208-218.
[http://dx.doi.org/10.1002/jcb.240590928] [PMID: 8747398]
[4]
Seidman, J.D.; Kurman, R.J. Ovarian serous borderline tumors: A critical review of the literature with emphasis on prognostic indicators. Hum. Pathol., 2000, 31(5), 539-557.
[http://dx.doi.org/10.1053/hp.2000.8048] [PMID: 10836293]
[5]
Ebell, M.H.; Culp, M.B.; Radke, T.J. A systematic review of symptoms for the diagnosis of ovarian cancer. Am. J. Prev. Med., 2016, 50(3), 384-394.
[http://dx.doi.org/10.1016/j.amepre.2015.09.023] [PMID: 26541098]
[6]
Modugno, F. Edwards, RP Ovarian cancer: Prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report. Int. J. Gynecol. Cancer, 2012, 22.
[7]
Mancari, R.; Cutillo, G.; Bruno, V.; Vincenzoni, C.; Mancini, E.; Baiocco, E.; Bruni, S.; Vocaturo, G.; Chiofalo, B.; Vizza, E. Development of new medical treatment for epithelial ovarian cancer recurrence. Gland Surg., 2020, 9(4), 1149-1163.
[http://dx.doi.org/10.21037/gs-20-413] [PMID: 32953630]
[8]
Ha, K.Y.; Kim, Y.H.; Ahn, J.H.; Park, H.Y. Factors affecting survival in patients undergoing palliative spine surgery for metastatic lung and hepatocellular cancer: Dose the type of surgery influence the surgical results for metastatic spine disease? Clin. Orthop. Surg., 2015, 7(3), 344-350.
[http://dx.doi.org/10.4055/cios.2015.7.3.344] [PMID: 26330957]
[9]
Feghaly, I; Kourie, H; Moubarak, M; Chouery, E; Mehawej, C; Jalkh, N Genetic profile of borderline ovarian tumors in the Lebanese population by whole‐exome sequencing. Int. J. Gynecol. Obstet., 2023, 14805.
[http://dx.doi.org/10.1002/ijgo.14805]
[10]
Chan, J.K.; Urban, R.; Cheung, M.K.; Osann, K.; Husain, A.; Teng, N.N.; Kapp, D.S.; Berek, J.S.; Leiserowitz, G.S.; Leiserowitz, G.S. Ovarian cancer in younger vs older women: A population-based analysis. Br. J. Cancer, 2006, 95(10), 1314-1320.
[http://dx.doi.org/10.1038/sj.bjc.6603457] [PMID: 17088903]
[11]
Mohammadian, M.; Ghafari, M.; Khosravi, B.; Salehiniya, H.; Aryaie, M.; Bakeshei, F.A.; Mohammadian-Hafshejani, A. Variations in the incidence and mortality of ovarian cancer and their relationship with the human development index in European Countries in 2012. Biomed. Res. Ther., 2017, 4(8), 1541-1557.
[http://dx.doi.org/10.15419/bmrat.v4i08.228]
[12]
Du, L.; Wang, Y.; Sun, X.; Li, H.; Geng, X.; Ge, M.; Zhu, Y. Thyroid cancer: Trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China. BMC Cancer, 2018, 18(1), 291.
[http://dx.doi.org/10.1186/s12885-018-4081-7] [PMID: 29544469]
[13]
Poole, E.M.; Merritt, M.A.; Jordan, S.J.; Yang, H.P.; Hankinson, S.E.; Park, Y.; Rosner, B.; Webb, P.M.; Cramer, D.W.; Wentzensen, N.; Terry, K.L.; Tworoger, S.S. Hormonal and reproductive risk factors for epithelial ovarian cancer by tumor aggressiveness. Cancer Epidemiol. Biomarkers Prev., 2013, 22(3), 429-437.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-1183-T] [PMID: 23307531]
[14]
Ries, L.A.G. Ovarian cancer: Survival and treatment differences by age. Cancer, 1993, 71(S2), 524-529.
[http://dx.doi.org/10.1002/cncr.2820710206] [PMID: 8420672]
[15]
Ørskov, M.; Iachina, M.; Guldberg, R.; Mogensen, O.; Mertz Nørgård, B. Predictors of mortality within 1 year after primary ovarian cancer surgery: A nationwide cohort study. BMJ Open, 2016, 6(4), e010123.
[PMID: 27103625]
[16]
Tung, K.H.; Goodman, M.T.; Wu, A.H.; McDuffie, K.; Wilkens, L.R.; Kolonel, L.N.; Nomura, A.M.; Terada, K.Y.; Carney, M.E.; Sobin, L.H. Reproductive factors and epithelial ovarian cancer risk by histologic type: A multiethnic case-control study. Am. J. Epidemiol., 2003, 158(7), 629-638.
[http://dx.doi.org/10.1093/aje/kwg177] [PMID: 14507598]
[17]
Mori, M.; Harabuchi, I.; Miyake, H.; Casagrande, J.T.; Henderson, B.; Ross, R.K. Reproductive, genetic, and dietary risk factors for ovarian cancer. Am. J. Epidemiol., 1988, 128(4), 771-777.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a115030] [PMID: 3421242]
[18]
Kim, S.J.; Rosen, B.; Fan, I.; Ivanova, A.; McLaughlin, J.R.; Risch, H.; Narod, S.A.; Kotsopoulos, J. Epidemiologic factors that predict long-term survival following a diagnosis of epithelial ovarian cancer. Br. J. Cancer, 2017, 116(7), 964-971.
[http://dx.doi.org/10.1038/bjc.2017.35] [PMID: 28208158]
[19]
Salazar-Martinez, E.; Lazcano-Ponce, E.C.; Gonzalez Lira-Lira, G.; Escudero-De los Rios, P.; Salmeron-Castro, J.; Hernandez-Avila, M. Reproductive factors of ovarian and endometrial cancer risk in a high fertility population in Mexico. Cancer Res., 1999, 59(15), 3658-3662.
[PMID: 10446978]
[20]
Fathalla, M.F. Incessant ovulation-a factor in ovarian neoplasia? Lancet, 1971, 298(7716), 163.
[http://dx.doi.org/10.1016/S0140-6736(71)92335-X] [PMID: 4104488]
[21]
Moorman, P.G.; Schildkraut, J.M.; Calingaert, B.; Halabi, S.; Vine, M.F.; Berchuck, A. Ovulation and ovarian cancer: A comparison of two methods for calculating lifetime ovulatory cycles (United States). Cancer Causes Control, 2002, 13(9), 807-811.
[http://dx.doi.org/10.1023/A:1020678100977] [PMID: 12462545]
[22]
Fujita, M.; Tase, T.; Kakugawa, Y.; Hoshi, S.; Nishino, Y.; Nagase, S.; Ito, K.; Niikura, H.; Yaegashi, N.; Minami, Y. Smoking, earlier menarche and low parity as independent risk factors for gynecologic cancers in Japanese: A case-control study. Tohoku J. Exp. Med., 2008, 216(4), 297-307.
[http://dx.doi.org/10.1620/tjem.216.297] [PMID: 19060444]
[23]
Jordan, S.J.; Webb, P.M.; Green, A.C. Height, age at menarche, and risk of epithelial ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2005, 14(8), 2045-2048.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0085] [PMID: 16103459]
[24]
Titus-Ernstoff, L.; Perez, K.; Cramer, D.W.; Harlow, B.L.; Baron, J.A.; Greenberg, E.R. Menstrual and reproductive factors in relation to ovarian cancer risk. Br. J. Cancer, 2001, 84(5), 714-721.
[http://dx.doi.org/10.1054/bjoc.2000.1596] [PMID: 11237375]
[25]
Hankinson, S.E.; Colditz, G.A.; Hunter, D.J.; Willett, W.C.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. A prospective study of reproductive factors and risk of epithelial ovarian cancer. Cancer, 1995, 76(2), 284-290.
[http://dx.doi.org/10.1002/1097-0142(19950715)76:2<284:AID-CNCR2820760219>3.0.CO;2-5] [PMID: 8625104]
[26]
Kvåle, G.; Heuch, I.; Nilssen, S.; Beral, V. Reproductive factors and risk of ovarian cancer: A prospective study. Int. J. Cancer, 1988, 42(2), 246-251.
[http://dx.doi.org/10.1002/ijc.2910420217] [PMID: 3403067]
[27]
Adami, H-O.; Lambe, M.; Persson, I.; Ekbom, A.; Adami, H.O.; Hsieh, C.C.; Trichopoulos, D.; Ekbom, A.; Lambe, M.; Leon, D.; Janson, P.O. Parity, age at first childbirth, and risk of ovarian cancer. Lancet, 1994, 344(8932), 1250-1254.
[http://dx.doi.org/10.1016/S0140-6736(94)90749-8] [PMID: 7967985]
[28]
Jordan, S.J.; Green, A.C.; Nagle, C.M.; Olsen, C.M.; Whiteman, D.C.; Webb, P.M. Beyond parity: Association of ovarian cancer with length of gestation and offspring characteristics. Am. J. Epidemiol., 2009, 170(5), 607-614.
[http://dx.doi.org/10.1093/aje/kwp185] [PMID: 19638480]
[29]
Sköld, C.; Bjørge, T.; Ekbom, A.; Engeland, A.; Gissler, M.; Grotmol, T.; Madanat-Harjuoja, L.; Gulbech Ording, A.; Stephansson, O.; Trabert, B.; Tretli, S.; Troisi, R.; Sørensen, H.T.; Glimelius, I. Preterm delivery is associated with an increased risk of epithelial ovarian cancer among parous women. Int. J. Cancer, 2018, 143(8), 1858-1867.
[http://dx.doi.org/10.1002/ijc.31581] [PMID: 29737528]
[30]
Calderon-Margalit, R.; Friedlander, Y.; Yanetz, R.; Deutsch, L.; Perrin, M.C.; Kleinhaus, K.; Tiram, E.; Harlap, S.; Paltiel, O. Preeclampsia and subsequent risk of cancer: Update from the Jerusalem Perinatal Study. Am. J. Obstet. Gynecol., 2009, 200(1), 63.e1-63.e5.
[http://dx.doi.org/10.1016/j.ajog.2008.06.057] [PMID: 18822400]
[31]
Rossing, M.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Weiss, N.S. Risk of epithelial ovarian cancer in relation to benign ovarian conditions and ovarian surgery. Cancer Causes Control, 2008, 19(10), 1357-1364.
[http://dx.doi.org/10.1007/s10552-008-9207-9] [PMID: 18704718]
[32]
Caserta, R.; Nesti, E.; Caserta, L.; Guerriero, V.; Di Francesco, D.; Panariello, S. [Small ovarian cysts in postmenopause: Assessment of their malignant potential with vaginal ultrasonography and tumor marker Ca125 titration]. Minerva Ginecol., 2001, 53(1), 120-124.
[PMID: 11526706]
[33]
Crayford, T.J.B.; Campbell, S.; Bourne, T.H.; Rawson, H.J.; Collins, W.P. Benign ovarian cysts and ovarian cancer: A cohort study with implications for screening. Lancet, 2000, 355(9209), 1060-1063.
[http://dx.doi.org/10.1016/S0140-6736(00)02038-9] [PMID: 10744092]
[34]
Rossing, M.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Weiss, N.S. Menopausal hormone therapy and risk of epithelial ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2007, 16(12), 2548-2556.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0550] [PMID: 18086757]
[35]
Hempling, R.; Wong, C.; Stevenpiver, M.; Natarajan, N.; Mettlin, C. Hormone replacement therapy as a risk factor for epithelial ovarian cancer: Results of a case-control study. Obstet. Gynecol., 1997, 89(6), 1012-1016.
[http://dx.doi.org/10.1016/S0029-7844(97)00118-X] [PMID: 9170483]
[36]
Glud, E.; Kjaer, S.K.; Thomsen, B.L.; Høgdall, C.; Christensen, L.; Høgdall, E.; Bock, J.E.; Blaakaer, J. Hormone therapy and the impact of estrogen intake on the risk of ovarian cancer. Arch. Intern. Med., 2004, 164(20), 2253-2259.
[http://dx.doi.org/10.1001/archinte.164.20.2253] [PMID: 15534163]
[37]
Lacey, J.V., Jr; Mink, P.J.; Lubin, J.H.; Sherman, M.E.; Troisi, R.; Hartge, P.; Schatzkin, A.; Schairer, C. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA, 2002, 288(3), 334-341.
[http://dx.doi.org/10.1001/jama.288.3.334] [PMID: 12117398]
[38]
Wernli, K.J.; Newcomb, P.A.; Hampton, J.M.; Trentham-Dietz, A.; Egan, K.M. Hormone therapy and ovarian cancer: Incidence and survival. Cancer Causes Control, 2008, 19(6), 605-613.
[http://dx.doi.org/10.1007/s10552-008-9125-x] [PMID: 18264784]
[39]
Mørch, L.S.; Løkkegaard, E.; Andreasen, A.H.; Krüger-Kjaer, S.; Lidegaard, O. Hormone therapy and ovarian cancer. JAMA, 2009, 302(3), 298-305.
[http://dx.doi.org/10.1001/jama.2009.1052] [PMID: 19602689]
[40]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[41]
Kazerouni, N.; Greene, M.H.; Lacey, J.V., Jr; Mink, P.J.; Schairer, C. Family history of breast cancer as a risk factor for ovarian cancer in a prospective study. Cancer, 2006, 107(5), 1075-1083.
[http://dx.doi.org/10.1002/cncr.22082] [PMID: 16881078]
[42]
Walsh, T.; Casadei, S.; Lee, M.K.; Pennil, C.C.; Nord, A.S.; Thornton, A.M.; Roeb, W.; Agnew, K.J.; Stray, S.M.; Wickramanayake, A.; Norquist, B.; Pennington, K.P.; Garcia, R.L.; King, M.C.; Swisher, E.M. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci., 2011, 108(44), 18032-18037.
[http://dx.doi.org/10.1073/pnas.1115052108] [PMID: 22006311]
[43]
Toss, A; Tomasello, C; Razzaboni, E; Contu, G; Grandi, G; Cagnacci A Hereditary ovarian cancer: Not only BRCA 1 and 2 genes. BioMed Res. Int., 2015, 2015.
[44]
Andrews, L.; Mutch, D.G. Hereditary ovarian cancer and risk reduction. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 31-48.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.10.017] [PMID: 28254144]
[45]
Kotsopoulos, J.; Gronwald, J.; Karlan, B.; Rosen, B.; Huzarski, T.; Moller, P.; Lynch, H.T.; Singer, C.F.; Senter, L.; Neuhausen, S.L.; Tung, N.; Eisen, A.; Foulkes, W.D.; Ainsworth, P.; Sun, P.; Lubinski, J.; Narod, S.A. Age-specific ovarian cancer risks among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol., 2018, 150(1), 85-91.
[http://dx.doi.org/10.1016/j.ygyno.2018.05.011] [PMID: 29793803]
[46]
Metcalfe, K.A.; Lynch, H.T.; Ghadirian, P.; Tung, N.; Olivotto, I.A.; Foulkes, W.D.; Warner, E.; Olopade, O.; Eisen, A.; Weber, B.; McLennan, J.; Sun, P.; Narod, S.A. The risk of ovarian cancer after breast cancer in BRCA1 and BRCA2 carriers. Gynecol. Oncol., 2005, 96(1), 222-226.
[http://dx.doi.org/10.1016/j.ygyno.2004.09.039] [PMID: 15589605]
[47]
Kauff, N.D.; Satagopan, J.M.; Robson, M.E.; Scheuer, L.; Hensley, M.; Hudis, C.A.; Ellis, N.A.; Boyd, J.; Borgen, P.I.; Barakat, R.R.; Norton, L.; Castiel, M.; Nafa, K.; Offit, K. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med., 2002, 346(21), 1609-1615.
[http://dx.doi.org/10.1056/NEJMoa020119] [PMID: 12023992]
[48]
Falconer, H.; Yin, L.; Grönberg, H.; Altman, D. Ovarian cancer risk after salpingectomy: A nationwide population-based study. J. Natl. Cancer Inst., 2015, 107(2), dju410.
[http://dx.doi.org/10.1093/jnci/dju410] [PMID: 25628372]
[49]
Goodman, M.T.; Wu, A.H.; Tung, K-H.; McDuffie, K.; Kolonel, L.N.; Nomura, A.M.Y.; Terada, K.; Wilkens, L.R.; Murphy, S.; Hankin, J.H. Association of dairy products, lactose, and calcium with the risk of ovarian cancer. Am. J. Epidemiol., 2002, 156(2), 148-157.
[http://dx.doi.org/10.1093/aje/kwf022] [PMID: 12117706]
[50]
Pan, S.Y.; Ugnat, A.M.; Mao, Y.; Wen, S.W.; Johnson, K.C. A case-control study of diet and the risk of ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2004, 13(9), 1521-1527.
[http://dx.doi.org/10.1158/1055-9965.1521.13.9] [PMID: 15342455]
[51]
McCann, S.E.; Freudenheim, J.L.; Graham, S.; Marshall, J.R. Risk of human ovarian cancer is related to dietary intake of selected nutrients, phytochemicals and food groups. J. Nutr., 2003, 133(6), 1937-1942.
[http://dx.doi.org/10.1093/jn/133.6.1937] [PMID: 12771342]
[52]
Ong, J.S.; Cuellar-Partida, G.; Lu, Y.; Fasching, P.A.; Hein, A.; Burghaus, S.; Beckmann, M.W.; Lambrechts, D.; Van Nieuwenhuysen, E.; Vergote, I.; Vanderstichele, A.; Anne Doherty, J.; Anne Rossing, M.; Chang-Claude, J.; Eilber, U.; Rudolph, A.; Wang-Gohrke, S.; Goodman, M.T.; Bogdanova, N.; Dörk, T.; Dürst, M.; Hillemanns, P.; Runnebaum, I.B.; Antonenkova, N.; Butzow, R.; Leminen, A.; Nevanlinna, H.; Pelttari, L.M.; Edwards, R.P.; Kelley, J.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Cannioto, R.; Høgdall, E.; Høgdall, C.K.; Jensen, A.; Giles, G.G.; Bruinsma, F.; Kjaer, S.K.; Hildebrandt, M.A.T.; Liang, D.; Lu, K.H.; Wu, X.; Bisogna, M.; Dao, F.; Levine, D.A.; Cramer, D.W.; Terry, K.L.; Tworoger, S.S.; Stampfer, M.; Missmer, S.; Bjorge, L.; Salvesen, H.B.; Kopperud, R.K.; Bischof, K.; Aben, K.K.H.; Kiemeney, L.A.; Massuger, L.F.A.G.; Brooks-Wilson, A.; Olson, S.H.; McGuire, V.; Rothstein, J.H.; Sieh, W.; Whittemore, A.S.; Cook, L.S.; Le, N.D.; Gilks, C.B.; Gronwald, J.; Jakubowska, A.; Lubiński, J.; Kluz, T.; Song, H.; Tyrer, J.P.; Wentzensen, N.; Brinton, L.; Trabert, B.; Lissowska, J.; McLaughlin, J.R.; Narod, S.A.; Phelan, C.; Anton-Culver, H.; Ziogas, A.; Eccles, D.; Campbell, I.; Gayther, S.A.; Gentry-Maharaj, A.; Menon, U.; Ramus, S.J.; Wu, A.H.; Dansonka-Mieszkowska, A.; Kupryjanczyk, J.; Timorek, A.; Szafron, L.; Cunningham, J.M.; Fridley, B.L.; Winham, S.J.; Bandera, E.V.; Poole, E.M.; Morgan, T.K.; Risch, H.A.; Goode, E.L.; Schildkraut, J.M.; Pearce, C.L.; Berchuck, A.; Pharoah, P.D.P.; Chenevix-Trench, G.; Gharahkhani, P.; Neale, R.E.; Webb, P.M.; MacGregor, S. Association of vitamin D levels and risk of ovarian cancer: A Mendelian randomization study. Int. J. Epidemiol., 2016, 45(5), 1619-1630.
[http://dx.doi.org/10.1093/ije/dyw207] [PMID: 27594614]
[53]
Maheshwari, A.; Kumar, N.; Mahantshetty, U. Gynecological cancers: A summary of published Indian data. South Asian J. Cancer, 2016, 5(3), 112-120.
[http://dx.doi.org/10.4103/2278-330X.187575] [PMID: 27606294]
[54]
Committee on the State of the Science in Ovarian Cancer ResearchOvarian Cancers: Evolving Paradigms in Research and Care; National Academies Press, 2016.
[55]
Vergote, I.; Amant, F.; Kristensen, G.; Ehlen, T.; Reed, N.S.; Casado, A. A Primary surgery or neoadjuvant chemotherapy followed by interval debulking surgery in advanced ovarian cancer. Europ. J. Cancer, 2011, 47(S3), S88-92.
[http://dx.doi.org/10.1016/S0959-8049(11)70152-6]
[56]
Bristow, R.E.; Chi, D.S. Platinum-based neoadjuvant chemotherapy and interval surgical cytoreduction for advanced ovarian cancer: A meta-analysis. Gynecol. Oncol., 2006, 103(3), 1070-1076.
[http://dx.doi.org/10.1016/j.ygyno.2006.06.025] [PMID: 16875720]
[57]
Griffiths, C.T.; Fuller, A.F. Intensive surgical and chemotherapeutic management of advanced ovarian cancer. Surg. Clin. North Am., 1978, 58(1), 131-142.
[http://dx.doi.org/10.1016/S0039-6109(16)41440-4] [PMID: 417410]
[58]
Chi, D.S.; Eisenhauer, E.L.; Lang, J.; Huh, J.; Haddad, L.; Abu-Rustum, N.R.; Sonoda, Y.; Levine, D.A.; Hensley, M.; Barakat, R.R. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol. Oncol., 2006, 103(2), 559-564.
[http://dx.doi.org/10.1016/j.ygyno.2006.03.051] [PMID: 16714056]
[59]
Zivanovic, O.; Eisenhauer, E.L.; Zhou, Q.; Iasonos, A.; Sabbatini, P.; Sonoda, Y.; Abu-Rustum, N.R.; Barakat, R.R.; Chi, D.S. The impact of bulky upper abdominal disease cephalad to the greater omentum on surgical outcome for stage IIIC epithelial ovarian, fallopian tube, and primary peritoneal cancer. Gynecol. Oncol., 2008, 108(2), 287-292.
[http://dx.doi.org/10.1016/j.ygyno.2007.10.001] [PMID: 17996927]
[60]
Wright, A.A.; Bohlke, K.; Armstrong, D.K.; Bookman, M.A.; Cliby, W.A.; Coleman, R.L.; Dizon, D.S.; Kash, J.J.; Meyer, L.A.; Moore, K.N.; Olawaiye, A.B.; Oldham, J.; Salani, R.; Sparacio, D.; Tew, W.P.; Vergote, I.; Edelson, M.I. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of gynecologic oncology and american society of clinical oncology clinical practice guideline. Gynecol. Oncol., 2016, 143(1), 3-15.
[http://dx.doi.org/10.1016/j.ygyno.2016.05.022] [PMID: 27650684]
[61]
Fagotti, A.; Ferrandina, M.G.; Vizzielli, G.; Pasciuto, T.; Fanfani, F.; Gallotta, V. Randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer (SCORPION-NCT01461850). Int. J. Gynecol. Cancer, 2020, 30(11), 1657-1664.
[62]
Fracasso, P.M.; Blessing, J.A.; Molpus, K.L.; Adler, L.M.; Sorosky, J.I.; Rose, P.G. Phase II study of oxaliplatin as second-line chemotherapy in endometrial carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol., 2006, 103(2), 523-526.
[http://dx.doi.org/10.1016/j.ygyno.2006.03.043] [PMID: 16712905]
[63]
Chung, M.T.; Lai, H.C.; Sytwu, H.K.; Yan, M.D.; Shih, Y.L.; Chang, C.C.; Yu, M.H.; Liu, H.S.; Chu, D.W.; Lin, Y.W. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol. Oncol., 2009, 112(3), 646-653.
[http://dx.doi.org/10.1016/j.ygyno.2008.10.026] [PMID: 19095296]
[64]
Chang, S.J.; Bristow, R.E.; Chi, D.S.; Cliby, W.A. Role of aggressive surgical cytoreduction in advanced ovarian cancer. J. Gynecol. Oncol., 2015, 26(4), 336-342.
[http://dx.doi.org/10.3802/jgo.2015.26.4.336] [PMID: 26197773]
[65]
Bristow, R.E.; Puri, I.; Chi, D.S. Cytoreductive surgery for recurrent ovarian cancer: A meta-analysis. Gynecol. Oncol., 2009, 112(1), 265-274.
[http://dx.doi.org/10.1016/j.ygyno.2008.08.033] [PMID: 18937969]
[66]
Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer Meta-analysis Collaboration. Neoadjuvant chemotherapy for locally advanced cervical cancer: A systematic review and meta-analysis of individual patient data from 21 randomised trials. Europ. J. Cancer, 2003, 39(17), 2470-2486.
[67]
Neumann, E.; Schaefer-Ridder, M.; Wang, Y.; Hofschneider, P.H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J., 1982, 1(7), 841-845.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01257.x] [PMID: 6329708]
[68]
Gabrielsson, S.; Tuvesson, H.; Wiklund Gustin, L.; Jormfeldt, H. Positioning Psychiatric and Mental Health Nursing as a Transformative Force in Health Care. Issues Ment. Health Nurs., 2020, 41(11), 976-984.
[http://dx.doi.org/10.1080/01612840.2020.1756009] [PMID: 32584618]
[69]
Schnetz, E.; Fartasch, M. Microdialysis for the evaluation of penetration through the human skin barrier - a promising tool for future research? Eur. J. Pharm. Sci., 2001, 12(3), 165-174.
[http://dx.doi.org/10.1016/S0928-0987(00)00155-X] [PMID: 11113635]
[70]
Riviere, J.E.; Heit, M.C. Electrically-assisted transdermal drug delivery. Pharm. Res., 1997, 14(6), 687-697.
[http://dx.doi.org/10.1023/A:1012129801406] [PMID: 9210183]
[71]
Abramson, H.A.; Gorin, M.H. Skin Reactions. IX. The electrophoretic demonstration of the patent pores of the living human skin; its relation to the charge of the skin. J. Phys. Chem., 1940, 44(9), 1094-1102.
[http://dx.doi.org/10.1021/j150405a008]
[72]
Grimnes, S. Pathways of ionic flow through human skin in vivo. Acta Derm. Venereol., 1984, 64(2), 93-98.
[http://dx.doi.org/10.2340/00015555649398] [PMID: 6203315]
[73]
Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov., 2004, 3(2), 115-124.
[http://dx.doi.org/10.1038/nrd1304] [PMID: 15040576]
[74]
Badwe, R.A.; Gregory, W.M.; Chaudary, M.A.; Richards, M.A.; Bentley, A.E.; Rubens, R.D.; Fentiman, I.S. Timing of surgery during menstrual cycle and survival of premenopausal women with operable breast cancer. Lancet, 1991, 337(8752), 1261-1264.
[http://dx.doi.org/10.1016/0140-6736(91)92927-T] [PMID: 1674070]
[75]
Lübbe, A.S.; Alexiou, C.; Bergemann, C. Clinical applications of magnetic drug targeting. J. Surg. Res., 2001, 95(2), 200-206.
[http://dx.doi.org/10.1006/jsre.2000.6030] [PMID: 11162046]
[76]
Wang, A.Z.; Gu, F.; Zhang, L.; Chan, J.M.; Radovic-Moreno, A.; Shaikh, M.R.; Farokhzad, O.C. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther., 2008, 8(8), 1063-1070.
[http://dx.doi.org/10.1517/14712598.8.8.1063] [PMID: 18613759]
[77]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[78]
Alaouie, A.M.; Sofou, S. Liposomes with triggered content release for cancer therapy. J. Biomed. Nanotechnol., 2008, 4(3), 234-244.
[http://dx.doi.org/10.1166/jbn.2008.335]
[79]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[80]
Tomalia, D.A.; Reyna, L.A.; Svenson, S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging; Portland Press Ltd., 2007.
[http://dx.doi.org/10.1042/BST0350061]
[81]
Majoros, I.; Williams, C.; Baker, J., Jr Current dendrimer applications in cancer diagnosis and therapy. Curr. Top. Med. Chem., 2008, 8(14), 1165-1179.
[http://dx.doi.org/10.2174/156802608785849049] [PMID: 18855703]
[82]
Liao, J.Y. Construction of nanogold hollow balls with dendritic surface as immobilized affinity support for protein adsorption. Colloids Surf. B Biointerfaces, 2007, 57(1), 75-80.
[http://dx.doi.org/10.1016/j.colsurfb.2007.01.006] [PMID: 17303394]
[83]
Bakri, S.J.; Pulido, J.S.; Mukherjee, P.; Marler, R.J.; Mukhopadhyay, D. Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina, 2008, 28(1), 147-149.
[http://dx.doi.org/10.1097/IAE.0b013e3180dc9360] [PMID: 18185152]
[84]
Tiwari, S.B.; Amiji, M.M. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J. Nanosci. Nanotechnol., 2006, 6(9), 3215-3221.
[http://dx.doi.org/10.1166/jnn.2006.440] [PMID: 17048539]
[85]
Leamon, C.P.; Low, P.S. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov. Today, 2001, 6(1), 44-51.
[http://dx.doi.org/10.1016/S1359-6446(00)01594-4] [PMID: 11165172]
[86]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[87]
Fenske, D.B.; Cullis, P.R. Liposomal nanomedicines. Expert Opin. Drug Deliv., 2008, 5(1), 25-44.
[http://dx.doi.org/10.1517/17425247.5.1.25] [PMID: 18095927]
[88]
Fenske, D.B.; Chonn, A.; Cullis, P.R. Liposomal nanomedicines: An emerging field. Toxicol. Pathol., 2008, 36(1), 21-29.
[http://dx.doi.org/10.1177/0192623307310960] [PMID: 18337218]
[89]
Ko, Y.T.; Kale, A.; Hartner, W.C.; Papahadjopoulos-Sternberg, B.; Torchilin, V.P. Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J. Control. Release, 2009, 133(2), 132-138.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.079]
[90]
Xu, L.; Pirollo, K.F.; Tang, W.H.; Rait, A.; Chang, E.H. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther., 1999, 10(18), 2941-2952.
[http://dx.doi.org/10.1089/10430349950016357] [PMID: 10609655]
[91]
Yu, W.; Pirollo, K.F.; Rait, A.; Yu, B.; Xiang, L.M.; Huang, W.Q.; Zhou, Q.; Ertem, G.; Chang, E.H. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther., 2004, 11(19), 1434-1440.
[http://dx.doi.org/10.1038/sj.gt.3302304] [PMID: 15229629]
[92]
Stover, T.C.; Kim, Y.S.; Lowe, T.L.; Kester, M. Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials, 2008, 29(3), 359-369.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.037] [PMID: 17964645]
[93]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[94]
Allen, T.M. Liposomes. Opportunities in drug delivery. Drugs, 1997, 54, 8-14.
[http://dx.doi.org/10.2165/00003495-199700544-00004] [PMID: 9361956]
[95]
Staddon, A.P.; Kilcoyne, S.; Latham, J.N.; Henry, D.H. Tolerability of pegylated liposomal doxorubicin 20 mg/m 2 every 2 weeks in the management of solid or hematologic malignancies. J. Clin. Oncol., 2006, 24(18_suppl), 18500.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.18500]
[96]
Batist, G.; Barton, J.; Chaikin, P.; Swenson, C.; Welles, L. Myocet (liposome-encapsulated doxorubicin citrate): A new approach in breast cancer therapy. Expert Opin. Pharmacother., 2002, 3(12), 1739-1751.
[http://dx.doi.org/10.1517/14656566.3.12.1739] [PMID: 12472371]
[97]
Palumbo, R.; Sottotetti, F.; Trifirò, G.; Piazza, E.; Ferzi, A.; Gambaro, A.; Spinapolice, E.G.; Pozzi, E.; Tagliaferri, B.; Teragni, C.; Bernardo, A. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) as second-line chemotherapy in HER2-negative, taxane-pretreated metastatic breast cancer patients: Prospective evaluation of activity, safety, and quality of life. Drug Des. Devel. Ther., 2015, 9, 2189-2199.
[http://dx.doi.org/10.2147/DDDT.S79563] [PMID: 25931813]
[98]
Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7(5), 467-480.
[http://dx.doi.org/10.1016/j.nantod.2012.08.005]
[99]
Cragg, G.M.; Newman, D.J. Natural products as sources of anticancer agents: Current approaches and perspectives. In: Natural Products as Source of Molecules with Therapeutic Potential; Springer, 2018; pp. 309-331.
[100]
Passero, F.C., Jr; Grapsa, D.; Syrigos, K.N.; Saif, M.W. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev. Anticancer Ther., 2016, 16(7), 697-703.
[http://dx.doi.org/10.1080/14737140.2016.1192471] [PMID: 27219482]
[101]
Tardi, P.; Boman, N.; Cullis, P. Liposomal doxorubicin. J. Drug Target., 1996, 4(3), 129-140.
[http://dx.doi.org/10.3109/10611869609015970] [PMID: 8959485]
[102]
Rana, D.; Salave, S.; Patel, R.; Khunt, D.; Misra, M.; Prajapati, B.; Patel, G.; Patel, J. Solid lipid nanoparticles in tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases; Springer, 2023.
[http://dx.doi.org/10.1007/978-3-031-14100-3_6]
[103]
Bhattacharya, S.; Sharma, S. Prajapati, BG Development of D-α-Tocopherol polyethylene glycol 1000 succinate fabricated nanostructural lipid carrier of sorafenib tosylate for metastatic colorectal targeting application: Stability, physical characterization, cytotoxicity, and apoptotic studies against SW48 cells PTEN. Front. Oncol., 2022, 12, 990841.
[http://dx.doi.org/10.3389/fonc.2022.990841]
[104]
Tarahomi, M.; Firouzi Amandi, A.; Eslami, M.; Yazdani, Y.; Salek Farrokhi, A.; Ghorbani, F.; Taherian, M.; Yousefi, B. Niosomes nanoparticles as a novel approach in drug delivery enhances anticancer properties of chrysin in human ovarian carcinoma cells (SKOV3): An in vitro study. Med. Oncol., 2023, 40(3), 87.
[http://dx.doi.org/10.1007/s12032-023-01952-8] [PMID: 36723692]
[105]
Rajendra, P.K.M.; Nidamanuri, B.S.S.; Swaroop, A.K.; Krishnamurali, J.S.; Balan, A.P.; Selvaraj, J.; Raman, R.; Shivakumar, H.N.; Reddy, M.V.; Jawahar, N. Fabrication and in vitro evaluation of silk fibroin-folic acid decorated paclitaxel and hydroxyurea nanostructured lipid carriers for targeting ovarian cancer cells: A double sword approach. J. Drug Deliv. Sci. Technol., 2023, 81, 104270.
[http://dx.doi.org/10.1016/j.jddst.2023.104270]
[106]
Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent trends in nanocarrier-based targeted chemotherapy: Selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J. Nanomater., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/9184284]
[107]
Yu, H.; Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem., 2012, 60(21), 5373-5379.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[108]
Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.; Wang, C.; Zhang, W.Q.; Zhang, X.; Zhang, Q. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release, 2016, 222, 56-66.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.006] [PMID: 26682502]
[109]
Ruckmani, K.; Sivakumar, M.; Ganeshkumar, P.A. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol., 2006, 6(9), 2991-2995.
[http://dx.doi.org/10.1166/jnn.2006.457] [PMID: 17048509]
[110]
Aldawsari, H.M.; Singh, S. Rapid microwave-assisted cisplatin-loaded solid lipid nanoparticles: Synthesis, characterization and anticancer study. Nanomaterials, 2020, 10(3), 510.
[http://dx.doi.org/10.3390/nano10030510]
[111]
Zhang, P.; Chen, L.; Zhang, Z.; Lin, L.; Li, Y. Pharmacokinetics in rats and efficacy in murine ovarian cancer model for solid lipid nanoparticles loading docetaxel. J. Nanosci. Nanotechnol., 2010, 10(11), 7541-7544.
[http://dx.doi.org/10.1166/jnn.2010.2819] [PMID: 21137978]
[112]
Alyautdin, R.N.; Petrov, V.E.; Langer, K.; Berthold, A.; Kharkevich, D.A.; Kreuter, J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res., 1997, 14(3), 325-328.
[http://dx.doi.org/10.1023/A:1012098005098] [PMID: 9098875]
[113]
Li, R.; Zhang, Q.; Wang, X.; Chen, X.; He, Y.; Yang, W.; Yang, X. A targeting drug delivery system for ovarian carcinoma: Transferrin modified lipid coated paclitaxel-loaded nanoparticles. Drug Res., 2014, 64(10), 541-547.
[http://dx.doi.org/10.1055/s-0033-1363957] [PMID: 24443309]
[114]
Zhai, J.; Luwor, R.B.; Ahmed, N.; Escalona, R.; Tan, F.H.; Fong, C.; Ratcliffe, J.; Scoble, J.A.; Drummond, C.J.; Tran, N. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl. Mater. Interfaces, 2018, 10(30), 25174-25185.
[http://dx.doi.org/10.1021/acsami.8b08125] [PMID: 29963859]
[115]
Kim, J.E.; Park, Y.J. Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int. J. Nanomedicine, 2017, 12, 645-658.
[http://dx.doi.org/10.2147/IJN.S124158] [PMID: 28176896]
[116]
Cho, E.J.; Holback, H.; Liu, K.C.; Abouelmagd, S.A.; Park, J.; Yeo, Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol. Pharm., 2013, 10(6), 2093-2110.
[http://dx.doi.org/10.1021/mp300697h] [PMID: 23461379]
[117]
Jung, K.W.; Won, Y.J.; Kong, H.J.; Oh, C.M.; Lee, D.H.; Lee, J.S. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2011. Cancer Res. Treat., 2014, 46(2), 109-123.
[http://dx.doi.org/10.4143/crt.2014.46.2.109] [PMID: 24851102]
[118]
Miller, T.; Rachel, R.; Besheer, A.; Uezguen, S.; Weigandt, M.; Goepferich, A. Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm. Res., 2012, 29(2), 448-459.
[http://dx.doi.org/10.1007/s11095-011-0555-x] [PMID: 21879388]
[119]
Li, C.; Liu, Y.; Wang, C.; Du, Y.; Wang, X.; Shen, X. Use of mitoxantrone hydrochloride liposome. C.A. Patent 3202019A1, 2021.
[120]
Li, C.; Liu, Y.; Wang, C.; Du, Y.; Wang, X.; Shen, X. Use of mitoxantrone hydrochloride liposome. W.O. Patent 2022/127760A1, 2021.
[121]
Li, C.; Liu, Y.; Wang, C.; Du, Y.; Wang, X.; Shen, X. Use of mitoxantrone hydrochloride liposome. A.U. Patent 2021/399438A1, 2021.
[122]
Cao, W.E.I.; Wang, S.; Li, Y.; Xie, Y.; Yang, Q. Preparation method therefor and application thereof. U.S. Patent 2015/0328234A1, 2013.
[123]
Lirong, T.; Dongsheng, Y.; Mingzhi, Y.; Liyan, W.U.; Yuanbao, J.I.N.; Yanzhen, W. Pegylated liposome of folate-targeted anticancer drug and preparation method. C.N. Patent 102579353A, 2012.
[124]
Chang Esther, H.; Kim, S.; Antonina, R. Targeted liposomes. J.P. Patent 2014062084A, 2013.
[125]
Xiaoju, Z.; Jiong, W.; Xianming, H.U. Glycyrrhetinic acid solid lipid nanoparticles and preparation method for same. CN Patent 102512369A, 2011.
[126]
Lin, W.; He, C.; Liu, D. Nanoscale carriers for the delivery or codelivery of chemotherapeutics, nucleic acids and photosensitizers. U.S. Patent 10517822B2, 2014.
[127]
Ayres Sandra, L.; Xu, Q.; Meadows Kristy, L. Antibodyconjugated nanoparticles and medical uses thereof. W.O. Patent 2018/022292A1, 2017.
[128]
Cullis, P.; Bally, M.; Ciufolini, M.; Mauer, N.; Jigaltsev, I. Modified drugs for use in liposomal nanoparticles. U.S. Patent 8568772B2, 2013.
[129]
Lowery, C. Composition comprising liposome-entrapped doxorubicin and methods of administration. U.S. Patent 2011/0159080A1, 2009.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy