Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Review Article

Emerging Treatments for Subarachnoid Hemorrhage

Author(s): Matthew C. Findlay*, Mrinmoy Kundu, Jayson R. Nelson, Kyril L. Cole, Candace Winterton, Samuel Tenhoeve and Brandon Lucke-Wold

Volume 23, Issue 11, 2024

Published on: 22 February, 2024

Page: [1345 - 1356] Pages: 12

DOI: 10.2174/0118715273279212240130065713

Price: $65

Abstract

The current landscape of therapeutic strategies for subarachnoid hemorrhage (SAH), a significant adverse neurological event commonly resulting from the rupture of intracranial aneurysms, is rapidly evolving. Through an in-depth exploration of the natural history of SAH, historical treatment approaches, and emerging management modalities, the present work aims to provide a broad overview of the shifting paradigms in SAH care. By synthesizing the historical management protocols with contemporary therapeutic advancements, patient-specific treatment plans can be individualized and optimized to deliver outstanding care for the best possible SAH-related outcomes.

Graphical Abstract

[1]
Etminan N, Chang HS, Hackenberg K, et al. Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population. JAMA Neurol 2019; 76(5): 588-97.
[http://dx.doi.org/10.1001/jamaneurol.2019.0006] [PMID: 30659573]
[2]
Vallée B. Subarachnoid hemorrhage syndrome and its aneurysmal etiology. From Morgagni to Moniz, Dott and Dandy. A historical overview. Neurochirurgie 1998; 44(2): 105-10.
[PMID: 9757342]
[3]
Sadamasa N, Yoshida K, Narumi O, Chin M, Yamagata S. Trends in mortality rates for subarachnoid hemorrhage, from 1999 through 2008: Single center experience. No Shinkei Geka 2010; 38(9): 811-5.
[PMID: 20864769]
[4]
Martin CO, Rymer MM. Hemorrhagic stroke: Aneurysmal subarachnoid hemorrhage. Mo Med 2011; 108(2): 124-7.
[PMID: 21568235]
[5]
Serrone JC, Maekawa H, Tjahjadi M, Hernesniemi J. Aneurysmal subarachnoid hemorrhage: Pathobiology, current treatment and future directions. Expert Rev Neurother 2015; 15(4): 367-80.
[http://dx.doi.org/10.1586/14737175.2015.1018892] [PMID: 25719927]
[6]
Abraham MK, Chang WTW. Subarachnoid Hemorrhage. Emerg Med Clin North Am 2016; 34(4): 901-16.
[http://dx.doi.org/10.1016/j.emc.2016.06.011] [PMID: 27741994]
[7]
Freeman WD. Management of Intracranial Pressure. Continuum (Minneap Minn) 2015; 5: 1299-9323.
[http://dx.doi.org/10.1212/CON.0000000000000235]
[8]
Claassen J, Park S. Spontaneous subarachnoid haemorrhage. Lancet 2022; 400(10355): 846-62.
[http://dx.doi.org/10.1016/S0140-6736(22)00938-2] [PMID: 35985353]
[9]
Naidech AM, Janjua N, Kreiter KT, et al. Predictors and impact of aneurysm rebleeding after subarachnoid hemorrhage. Arch Neurol 2005; 62(3): 410-6.
[http://dx.doi.org/10.1001/archneur.62.3.410] [PMID: 15767506]
[10]
Hart RG, Byer JA, Slaughter JR, Hewett JE, Easton DJ. Occurrence and implications of seizures in subarachnoid hemorrhage due to ruptured intracranial aneurysms. Neurosurgery 1981; 8(4): 417-21.
[http://dx.doi.org/10.1227/00006123-198104000-00002] [PMID: 7242892]
[11]
Panczykowski D, Pease M, Zhao Y, et al. Prophylactic Antiepileptics and Seizure Incidence Following Subarachnoid Hemorrhage. Stroke 2016; 47(7): 1754-60.
[http://dx.doi.org/10.1161/STROKEAHA.116.013766] [PMID: 27301932]
[12]
Lindgren A, Vergouwen MDI, van der Schaaf I, et al. Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage. Cochrane Libr 2018; 2018(8): CD003085.
[http://dx.doi.org/10.1002/14651858.CD003085.pub3] [PMID: 30110521]
[13]
Kato Y, Kumar A, Chen S. Surgical nuances of clipping after coiling: Looking beyond the international subarachnoid aneurysm trial. J Clin Neurosci 2012; 19(5): 638-42.
[http://dx.doi.org/10.1016/j.jocn.2011.08.022] [PMID: 22417455]
[14]
Molyneux A, Kerr R, Stratton I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised trial. Lancet 2002; 360(9342): 1267-74.
[http://dx.doi.org/10.1016/S0140-6736(02)11314-6] [PMID: 12414200]
[15]
Geraldini F, De Cassai A, Diana P, et al. A Comparison Between Enteral and Intravenous Nimodipine in Subarachnoid Hemorrhage: A Systematic Review and Network Meta-Analysis. Neurocrit Care 2022; 36(3): 1071-9.
[http://dx.doi.org/10.1007/s12028-022-01493-4] [PMID: 35419702]
[16]
Maher M, Schweizer TA, Macdonald RL. Treatment of Spontaneous Subarachnoid Hemorrhage. Stroke 2020; 51(4): 1326-32.
[http://dx.doi.org/10.1161/STROKEAHA.119.025997] [PMID: 31964292]
[17]
Liu J, Sun C, Wang Y, et al. Efficacy of nimodipine in the treatment of subarachnoid hemorrhage: A meta-analysis. Arq Neuropsiquiatr 2022; 80(7): 663-70.
[http://dx.doi.org/10.1055/s-0042-1755301] [PMID: 36254437]
[18]
Maruhashi T, Higashi Y. An overview of pharmacotherapy for cerebral vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage. Expert Opin Pharmacother 2021; 22(12): 1601-14.
[http://dx.doi.org/10.1080/14656566.2021.1912013] [PMID: 33823726]
[19]
Hajizadeh Barfejani A, Rabinstein AA, Wijdicks EFM, Clark SL. Poor utilization of Nimodipine in Aneurysmal Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2019; 28(8): 2155-8.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.04.024] [PMID: 31103551]
[20]
Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care 2016; 20(1): 277.
[http://dx.doi.org/10.1186/s13054-016-1447-6] [PMID: 27737684]
[21]
Chan V, Lindsay P, McQuiggan J, Zagorski B, Hill MD, O’Kelly C. Declining Admission and Mortality Rates for Subarachnoid Hemorrhage in Canada Between 2004 and 2015. Stroke 2019; 50(1): 181-4.
[http://dx.doi.org/10.1161/STROKEAHA.118.022332] [PMID: 30580710]
[22]
Gouvêa Bogossian E, Diaferia D, Minini A, et al. Time course of outcome in poor grade subarachnoid hemorrhage patients: A longitudinal retrospective study. BMC Neurol 2021; 21(1): 196.
[http://dx.doi.org/10.1186/s12883-021-02229-1] [PMID: 33985460]
[23]
Patel PD, Chalouhi N, Atallah E, et al. Off-label uses of the Pipeline embolization device: A review of the literature. Neurosurg Focus 2017; 42(6): E4.
[http://dx.doi.org/10.3171/2017.3.FOCUS1742] [PMID: 28565978]
[24]
Abraham P. Flow Diversion of Cerebral Aneurysms. New York, New York: Thieme Publishers 2018.
[25]
Altay CM, Binboga AB, Onay M. Modified balloon-assisted coiling instead of acute stenting in the treatment of ruptured wide necked intracranial aneurysms. Interv Neuroradiol 2022; 28(3): 338-46.
[http://dx.doi.org/10.1177/15910199221087010] [PMID: 35275029]
[26]
Cai K, Zhang Y, Shen L, Ni Y, Ji Q. Comparison of Stent-Assisted Coiling and Balloon-Assisted Coiling in the Treatment of Ruptured Wide-Necked Intracranial Aneurysms in the Acute Period. World Neurosurg 2016; 96: 316-21.
[http://dx.doi.org/10.1016/j.wneu.2016.09.029] [PMID: 27647035]
[27]
Koebbe CJ, Veznedaroglu E, Jabbour P, Rosenwasser RH. Endovascular management of intracranial aneurysms: Current experience and future advances. Neurosurgery 2006; 59(5)(Suppl. 5): S3-93-S3-102.
[http://dx.doi.org/10.1227/01.NEU.0000237512.10529.58] [PMID: 17053622]
[28]
Rotim K, Kalousek V, Splavski B, Tomasović S, Rotim A. Hybrid microsurgical and endovascular approach in the treatment of multiple cerebral aneurysms: An illustrative case series in correlation with literature data. Acta Clin Croat 2021; 60(1): 33-40.
[http://dx.doi.org/10.20471/acc.2021.60.01.05] [PMID: 34588719]
[29]
Hoya K, Hyodo A. Endovascular treatment for cerebral aneurysms. Brain Nerve 2009; 61(9): 1029-41.
[PMID: 19803402]
[30]
Wang JL, Yuan ZG, Qian GL, Bao WQ, Jin GL. 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine (Baltimore) 2018; 97(24): e11103.
[http://dx.doi.org/10.1097/MD.0000000000011103] [PMID: 29901628]
[31]
Purkayastha S, Sorond F. Transcranial Doppler ultrasound: Technique and application. Semin Neurol 2013; 32(4): 411-20.
[http://dx.doi.org/10.1055/s-0032-1331812] [PMID: 23361485]
[32]
Fornezza U, Carraro R, Demo P, et al. The transcranial Doppler ultrasonography in the evaluation of vasospasm and of intracranial hypertension after subarachnoid hemorrhage. Agressologie 1990; 31(5): 259-61.
[PMID: 2288338]
[33]
Park SH, Kim TJ, Ko SB. Transcranial Doppler Monitoring in Subarachnoid Hemorrhage. J Neurosonol Neuroimag 2022; 14(1): 1-9.
[http://dx.doi.org/10.31728/jnn.2022.00115]
[34]
Guan J, Zhang S, Zhou Q, Li C, Lu Z. Usefulness of transcranial Doppler ultrasound in evaluating cervical-cranial collateral circulations. Intervent Neurol 2013; 2(1): 8-18.
[http://dx.doi.org/10.1159/000354732] [PMID: 25187781]
[35]
Shah A, Oliva C, Barnes R, Presley B. Identification of intracranial hemorrhage progression by transcranial point-of-care ultrasound in a patient with prior hemicraniectomy: A case report. J Ultrasound 2022; 25(2): 399-402.
[http://dx.doi.org/10.1007/s40477-021-00588-6] [PMID: 33913120]
[36]
Walter J, Grutza M, Möhlenbruch M, et al. The Local Intraarterial Administration of Nimodipine Might Positively Affect Clinical Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage and Delayed Cerebral Ischemia. J Clin Med 2022; 11(7): 2036.
[http://dx.doi.org/10.3390/jcm11072036] [PMID: 35407643]
[37]
Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J Clin Med 2020; 9(3): 824.
[http://dx.doi.org/10.3390/jcm9030824] [PMID: 32197449]
[38]
Valerio C, Coghlan JG. Bosentan in the treatment of pulmonary arterial hypertension with the focus on the mildly symptomatic patient. Vasc Health Risk Manag 2009; 5: 607-19.
[http://dx.doi.org/10.2147/VHRM.S4713] [PMID: 19688101]
[39]
Laban KG, Vergouwen MDI, Dijkhuizen RM, et al. Effect of endothelin receptor antagonists on clinically relevant outcomes after experimental subarachnoid hemorrhage: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2015; 35(7): 1085-9.
[http://dx.doi.org/10.1038/jcbfm.2015.89] [PMID: 25944590]
[40]
Vajkoczy P, Meyer B, Weidauer S, et al. Clazosentan (AXV-034343), a selective endothelin A receptor antagonist, in the prevention of cerebral vasospasm following severe aneurysmal subarachnoid hemorrhage: Results of a randomized, double-blind, placebo-controlled, multicenter Phase IIa study. J Neurosurg 2005; 103(1): 9-17.
[http://dx.doi.org/10.3171/jns.2005.103.1.0009] [PMID: 16121967]
[41]
Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): Randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 2008; 39(11): 3015-21.
[http://dx.doi.org/10.1161/STROKEAHA.108.519942] [PMID: 18688013]
[42]
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21(24): 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[43]
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13: 1027756.
[http://dx.doi.org/10.3389/fimmu.2022.1027756] [PMID: 36505409]
[44]
Li J, Chen S, Fan J, Zhang G, Ren R. Minocycline attenuates experimental subarachnoid hemorrhage in rats. Open Life Sci 2019; 14(1): 595-602.
[http://dx.doi.org/10.1515/biol-2019-0067] [PMID: 33817197]
[45]
Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: Where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal 2008; 10(7): 1185-98.
[http://dx.doi.org/10.1089/ars.2007.1959] [PMID: 18331202]
[46]
Dodd WS, Laurent D, Dumont AS, et al. Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review. J Am Heart Assoc 2021; 10(15): e021845.
[http://dx.doi.org/10.1161/JAHA.121.021845] [PMID: 34325514]
[47]
Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 2005; 293(12): 1477-84.
[http://dx.doi.org/10.1001/jama.293.12.1477] [PMID: 15784871]
[48]
Hänggi D, Steiger HJ. Nitric oxide in subarachnoid haemorrhage and its therapeutics implications. Acta Neurochir (Wien) 2006; 148(6): 605-13.
[http://dx.doi.org/10.1007/s00701-005-0721-1] [PMID: 16541208]
[49]
Washington CW, Derdeyn CP, Dhar R, et al. A Phase I proof-of-concept and safety trial of sildenafil to treat cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg 2016; 124(2): 318-27.
[http://dx.doi.org/10.3171/2015.2.JNS142752] [PMID: 26314998]
[50]
Sadan O, Waddel H, Moore R, et al. Does intrathecal nicardipine for cerebral vasospasm following subarachnoid hemorrhage correlate with reduced delayed cerebral ischemia? A retrospective propensity score–based analysis. J Neurosurg 2022; 136(1): 115-24.
[http://dx.doi.org/10.3171/2020.12.JNS203673] [PMID: 34087804]
[51]
Kiser TH. Cerebral vasospasm in critically iii patients with aneurysmal subarachnoid hemorrhage: Does the evidence support the ever-growing list of potential pharmacotherapy interventions? Hosp Pharm 2014; 49(10): 923-41.
[http://dx.doi.org/10.1310/hpj4910-923] [PMID: 25477565]
[52]
Pollack CV, Varon J, Garrison NA, Ebrahimi R, Dunbar L, Peacock WF IV. Clevidipine, an intravenous dihydropyridine calcium channel blocker, is safe and effective for the treatment of patients with acute severe hypertension. Ann Emerg Med 2009; 53(3): 329-38.
[http://dx.doi.org/10.1016/j.annemergmed.2008.04.025] [PMID: 18534716]
[53]
Tobias JD, Meyer T. Perioperative blood pressure management with clevidipine during coiling of cerebral artery aneurysms. Saudi J Anaesth 2009; 3(2): 83-6.
[http://dx.doi.org/10.4103/1658-354X.57880] [PMID: 20532109]
[54]
Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM. Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech 2012; 5(6): dmm.008557.
[http://dx.doi.org/10.1242/dmm.008557] [PMID: 22679224]
[55]
Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998; 97(12): 1129-35.
[http://dx.doi.org/10.1161/01.CIR.97.12.1129] [PMID: 9537338]
[56]
Wassmann S, Laufs U, Bäumer AT, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 2001; 37(6): 1450-7.
[http://dx.doi.org/10.1161/01.HYP.37.6.1450] [PMID: 11408394]
[57]
Fu Y, Hao J, Zhang N, et al. Fingolimod for the treatment of intracerebral hemorrhage: A 2-arm proof-of-concept study. JAMA Neurol 2014; 71(9): 1092-101.
[http://dx.doi.org/10.1001/jamaneurol.2014.1065] [PMID: 25003359]
[58]
Naraoka M, Munakata A, Matsuda N, Shimamura N, Ohkuma H. Suppression of the Rho/Rho-kinase pathway and prevention of cerebral vasospasm by combination treatment with statin and fasudil after subarachnoid hemorrhage in rabbit. Transl Stroke Res 2013; 4(3): 368-74.
[http://dx.doi.org/10.1007/s12975-012-0247-9] [PMID: 23658597]
[59]
Satoh S, Takayasu M, Kawasaki K, et al. Antivasospastic Effects of Hydroxyfasudil, a Rho-Kinase Inhibitor, After Subarachnoid Hemorrhage. J Pharmacol Sci 2012; 118(1): 92-8.
[http://dx.doi.org/10.1254/jphs.11075FP]
[60]
Ruan CH, Dixon RA, Willerson JT, Ruan KH. Prostacyclin therapy for pulmonary arterial hypertension. Tex Heart Inst J 2010; 37(4): 391-9.
[PMID: 20844610]
[61]
Cunningham KP, Clapp LH, Mathie A, Veale EL. The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Front Pharmacol 2021; 12: 705421.
[http://dx.doi.org/10.3389/fphar.2021.705421] [PMID: 34267666]
[62]
Akagi S, Nakamura K, Matsubara H, et al. Epoprostenol Therapy for Pulmonary Arterial Hypertension. Acta Med Okayama 2015; 69(3): 129-36.
[PMID: 26101188]
[63]
Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001; 24(1): 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[64]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[65]
Chen H, Dang Y, Liu X, Ren J, Wang H. Exogenous brain derived neurotrophic factor attenuates neuronal apoptosis and neurological deficits after subarachnoid hemorrhage in rats. Exp Ther Med 2019; 18(5): 3837-44.
[http://dx.doi.org/10.3892/etm.2019.8029] [PMID: 31616511]
[66]
Lee WD, Wang KC, Tsai YF, Chou PC, Tsai LK, Chien CL. Subarachnoid hemorrhage promotes proliferation, differentiation, and migration of neural stem cells via BDNF upregulation. PLoS One 2016; 11(11): e0165460.
[http://dx.doi.org/10.1371/journal.pone.0165460] [PMID: 27832087]
[67]
Hua Z, Gu X, Dong Y, et al. PI3K and MAPK pathways mediate the BDNF/TrkB-increased metastasis in neuroblastoma. Tumour Biol 2016; 37(12): 16227-36.
[http://dx.doi.org/10.1007/s13277-016-5433-z] [PMID: 27752996]
[68]
Trejo JL, Carro E, Torres-Alemán I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 2001; 21(5): 1628-34.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01628.2001] [PMID: 11222653]
[69]
Bendel S, Koivisto T, Ryynänen OP, et al. Insulin like growth factor-I in acute subarachnoid hemorrhage: A prospective cohort study. Crit Care 2010; 14(2): R75.
[http://dx.doi.org/10.1186/cc8988] [PMID: 20426845]
[70]
Ghonim HT, Shah SS, Thompson JW, Ambekar S, Peterson EC, Elhammady MS. Stem Cells as a Potential Adjunctive Therapy in Aneurysmal Subarachnoid Hemorrhage. J Vasc Interv Neurol 2016; 8(5): 30-7.
[PMID: 26958151]
[71]
Song Z, Zhang JH. Recent Advances in Stem Cell Research in Subarachnoid Hemorrhage. Stem Cells Dev 2020; 29(4): 178-86.
[http://dx.doi.org/10.1089/scd.2019.0219] [PMID: 31752600]
[72]
Han M, Cao Y, Guo X, et al. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-κB signaling pathway. Biomed Pharmacother 2021; 133: 111048.
[http://dx.doi.org/10.1016/j.biopha.2020.111048] [PMID: 33378955]
[73]
Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM. Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis 2012; 21(6): 445-51.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2010.10.005] [PMID: 21282068]
[74]
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015; 3: 2.
[http://dx.doi.org/10.3389/fcell.2015.00002] [PMID: 25699255]
[75]
Chen KH, Lin KC, Wallace CG, et al. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am J Transl Res 2019; 11(9): 6232-48.
[PMID: 31632590]
[76]
Roh D, Park S. Brain Multimodality Monitoring: Updated Perspectives. Curr Neurol Neurosci Rep 2016; 16(6): 56.
[http://dx.doi.org/10.1007/s11910-016-0659-0] [PMID: 27095434]
[77]
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol Rev 2021; 101(4): 1487-559.
[http://dx.doi.org/10.1152/physrev.00022.2020] [PMID: 33769101]
[78]
Fiore M, Bogossian E, Creteur J, Oddo M, Taccone FS. Role of brain tissue oxygenation (PbtO2) in the management of subarachnoid haemorrhage: A scoping review protocol. BMJ Open 2020; 10(9): e035521.
[http://dx.doi.org/10.1136/bmjopen-2019-035521] [PMID: 32933956]
[79]
Freeman N, Welbourne J. Osmotherapy: Science and evidence-based practice. BJA Educ 2018; 18(9): 284-90.
[http://dx.doi.org/10.1016/j.bjae.2018.05.005] [PMID: 33456846]
[80]
Zhang Z, Guo Q, Wang E. Hyperventilation in neurological patients. Curr Opin Anaesthesiol 2019; 32(5): 568-73.
[http://dx.doi.org/10.1097/ACO.0000000000000764] [PMID: 31211719]
[81]
Volovici V, Dammers R. Cerebrospinal Fluid Drainage and Subarachnoid Hemorrhage—Proper Timing of Conversion to Ventriculoperitoneal Shunting. World Neurosurg 2022; 162: 1-2.
[http://dx.doi.org/10.1016/j.wneu.2022.02.129] [PMID: 35257956]
[82]
Darkwah Oppong M, Bastias MJ, Pierscianek D, et al. Seizures at the onset of aneurysmal SAH: Epiphenomenon or valuable predictor? J Neurol 2021; 268(2): 493-501.
[http://dx.doi.org/10.1007/s00415-020-10173-2] [PMID: 32852577]
[83]
De Marchis GM, Pugin D, Meyers E, et al. Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome. Neurology 2016; 86(3): 253-60.
[http://dx.doi.org/10.1212/WNL.0000000000002281] [PMID: 26701381]
[84]
Madden LK, Hill M, May TL, et al. The Implementation of Targeted Temperature Management: An Evidence-Based Guideline from the Neurocritical Care Society. Neurocrit Care 2017; 27(3): 468-87.
[http://dx.doi.org/10.1007/s12028-017-0469-5] [PMID: 29038971]
[85]
Schmitt KRL, Tong G, Berger F. Mechanisms of hypothermia-induced cell protection in the brain. Mol Cell Pediatr 2014; 1(1): 7.
[http://dx.doi.org/10.1186/s40348-014-0007-x] [PMID: 26567101]
[86]
Yu X, Feng Y, Liu R, Chen Q. Hypothermia protects mice against ischemic stroke by modulating macrophage polarization through upregulation of Interferon Regulatory Factor-4. J Inflamm Res 2021; 14: 1271-81.
[http://dx.doi.org/10.2147/JIR.S303053] [PMID: 33854355]
[87]
Liu B, Pu J, Li Z, Zhang X. The effects of hypothermia on glutamate and γ-aminobutyric acid metabolism during ischemia in monkeys: A repeated-measures ANOVA study. Sci Rep 2022; 12(1): 14470.
[http://dx.doi.org/10.1038/s41598-022-18783-8] [PMID: 36008544]
[88]
Tripathy S, Mahapatra A. Targeted temperature management in brain protection: An evidence-based review. Indian J Anaesth 2015; 59(1): 9-14.
[http://dx.doi.org/10.4103/0019-5049.149442] [PMID: 25684807]
[89]
Pan S, Luo C. The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury. Neural Regen Res 2015; 10(1): 153-8.
[http://dx.doi.org/10.4103/1673-5374.150725] [PMID: 25788937]
[90]
Nwafor DC, Kirby BD, Ralston JD, Colantonio MA, Ibekwe E, Lucke-Wold B. Neurocognitive Sequelae and Rehabilitation after Subarachnoid Hemorrhage: Optimizing Outcomes. Journal of Vascular Diseases 2023; 2(2): 197-211.
[http://dx.doi.org/10.3390/jvd2020014] [PMID: 37082756]
[91]
Lindner A, Brunelli L, Rass V, et al. Long-Term clinical trajectory of patients with subarachnoid hemorrhage: Linking acute care and neurorehabilitation. Neurocrit Care 2023; 38(1): 138-48.
[http://dx.doi.org/10.1007/s12028-022-01572-6] [PMID: 35962231]
[92]
Legg LA, Lewis SR, Schofield-Robinson OJ, Drummond A, Langhorne P. Occupational therapy for adults with problems in activities of daily living after stroke. Cochrane Database Syst Rev 2017; 7(7): CD003585.
[PMID: 28721691]
[93]
Springer MV, Schmidt JM, Wartenberg KE, Frontera JA, Badjatia N, Mayer SA. Predictors of global cognitive impairment 1 year after subarachnoid hemorrhage. Neurosurgery 2009; 65(6): 1043-51.
[http://dx.doi.org/10.1227/01.NEU.0000359317.15269.20] [PMID: 19934963]
[94]
Dunn K, Rumbach A, Finch E. Language function in the acute phase following non-traumatic subarachnoid haemorrhage: A prospective cohort study. J Commun Disord 2022; 96: 106192.
[http://dx.doi.org/10.1016/j.jcomdis.2022.106192] [PMID: 35149316]
[95]
Olkowski BF, Devine MA, Slotnick LE, et al. Safety and feasibility of an early mobilization program for patients with aneurysmal subarachnoid hemorrhage. Phys Ther 2013; 93(2): 208-15.
[http://dx.doi.org/10.2522/ptj.20110334] [PMID: 22652987]
[96]
Choi W, Kwon SC, Lee WJ, et al. Feasibility and Safety of Mild Therapeutic Hypothermia in Poor-Grade Subarachnoid Hemorrhage: Prospective Pilot Study. J Korean Med Sci 2017; 32(8): 1337-44.
[http://dx.doi.org/10.3346/jkms.2017.32.8.1337] [PMID: 28665071]
[97]
Laslo AM, Eastwood JD, Chen FX, Lee TY. Dynamic CT perfusion imaging in subarachnoid hemorrhage-related vasospasm. AJNR Am J Neuroradiol 2006; 27(3): 624-31.
[PMID: 16552006]
[98]
Rordorf G, Koroshetz WJ, Copen WA, et al. Diffusion- and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 1999; 30(3): 599-605.
[http://dx.doi.org/10.1161/01.STR.30.3.599] [PMID: 10066858]
[99]
Cremers CHP, van der Schaaf IC, Wensink E, et al. CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2014; 34(2): 200-7.
[http://dx.doi.org/10.1038/jcbfm.2013.208] [PMID: 24281744]
[100]
van der Kleij LA, De Vis JB, Olivot JM, et al. Magnetic Resonance Imaging and Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke 2017; 48(1): 239-45.
[http://dx.doi.org/10.1161/STROKEAHA.116.011707] [PMID: 27924052]
[101]
Batista S, Bocanegra-Becerra JE, Claassen B, et al. Biomarkers in aneurysmal subarachnoid hemorrhage: A short review. World Neurosurg X 2023; 19: 100205.
[http://dx.doi.org/10.1016/j.wnsx.2023.100205] [PMID: 37206060]
[102]
Zhao P, Xu S, Huang Z, Deng P, Zhang Y. Identify specific gene pairs for subarachnoid hemorrhage based on wavelet analysis and genetic algorithm. PLoS One 2021; 16(6): e0253219.
[http://dx.doi.org/10.1371/journal.pone.0253219] [PMID: 34138931]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy