Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Review Article

Unraveling the Emerging Niche Role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI)

Author(s): Sumel Ashique*, Radheshyam Pal, Himanshu Sharma, Neeraj Mishra and Ashish Garg

Volume 23, Issue 11, 2024

Published on: 13 February, 2024

Page: [1357 - 1370] Pages: 14

DOI: 10.2174/0118715273288155240201065041

Price: $65

Abstract

Extracellular vesicles or exosomes, often known as EVs, have acquired significant attention in the investigations of traumatic brain injury (TBI) and have a distinct advantage in actively researching the fundamental mechanisms underlying various clinical symptoms and diagnosing the wide range of traumatic brain injury cases. The mesenchymal stem cells (MSCs) can produce and release exosomes, which offer therapeutic benefits. Exosomes are tiny membranous vesicles produced by various cellular entities originating from endosomes. Several studies have reported that administering MSC-derived exosomes through intravenous infusions improves neurological recovery and promotes neuroplasticity in rats with traumatic brain damage. The therapeutic advantages of exosomes can be attributed to the microRNAs (miRNAs), which are small non-coding regulatory RNAs that significantly impact the regulation of posttranscriptional genes. Exosome-based therapies, which do not involve cells, have lately gained interest as a potential breakthrough in enhancing neuroplasticity and accelerating neurological recovery for various brain injuries and neurodegenerative diseases. This article explores the benefits and drawbacks of exosome treatment for traumatic brain injury while emphasizing the latest advancements in this field with clinical significance.

Graphical Abstract

[1]
Dey A, Ghosh S, Bhuniya T, et al. Clinical theragnostic signature of extracellular vesicles in traumatic brain injury (TBI). ACS Chem Neurosci 2023; 14(17): 2981-94.
[http://dx.doi.org/10.1021/acschemneuro.3c00386] [PMID: 37624044]
[2]
Beard K, Meaney DF, Issadore D. Clinical applications of extracellular vesicles in the diagnosis and treatment of traumatic brain injury. J Neurotrauma 2020; 37(19): 2045-56.
[http://dx.doi.org/10.1089/neu.2020.6990] [PMID: 32312151]
[3]
Harrison EB, Hochfelder CG, Lamberty BG, et al. Traumatic brain injury increases levels of miR‐21 in extracellular vesicles: Implications for neuroinflammation. FEBS Open Bio 2016; 6(8): 835-46.
[http://dx.doi.org/10.1002/2211-5463.12092] [PMID: 27516962]
[4]
Hazelton I, Yates A, Dale A, et al. Exacerbation of acute traumatic brain injury by circulating extracellular vesicles. J Neurotrauma 2018; 35(4): 639-51.
[http://dx.doi.org/10.1089/neu.2017.5049] [PMID: 29149810]
[5]
Zhang CN, Li FJ, Zhao ZL, Zhang JN. The role of extracellular vesicles in traumatic brain injury-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 321(5): L885-91.
[http://dx.doi.org/10.1152/ajplung.00023.2021] [PMID: 34549593]
[6]
Guedes VA, Devoto C, Leete J, et al. Extracellular vesicle proteins and microRNAs as biomarkers for traumatic brain injury. Front Neurol 2020; 11: 663.
[http://dx.doi.org/10.3389/fneur.2020.00663] [PMID: 32765398]
[7]
Mondello S, Thelin EP, Shaw G, et al. Extracellular vesicles: Pathogenetic, diagnostic and therapeutic value in traumatic brain injury. Expert Rev Proteomics 2018; 15(5): 451-61.
[http://dx.doi.org/10.1080/14789450.2018.1464914] [PMID: 29671356]
[8]
Sun MK, Passaro AP, Latchoumane CF, et al. Extracellular vesicles mediate neuroprotection and functional recovery after traumatic brain injury. J Neurotrauma 2020; 37(11): 1358-69.
[http://dx.doi.org/10.1089/neu.2019.6443] [PMID: 31774030]
[9]
Ko J, Hemphill M, Yang Z, et al. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. Lab Chip 2018; 18(23): 3617-30.
[http://dx.doi.org/10.1039/C8LC00672E] [PMID: 30357245]
[10]
Beard K, Yang Z, Haber M, et al. Extracellular vesicles as distinct biomarker reservoirs for mild traumatic brain injury diagnosis. Brain Commun 2021; 3(3): fcab151.
[http://dx.doi.org/10.1093/braincomms/fcab151] [PMID: 34622206]
[11]
Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J Neurotrauma 2019; 36(7): 975-87.
[http://dx.doi.org/10.1089/neu.2018.5898] [PMID: 30039737]
[12]
Gao Y, Wang C, Jin F, Han G, Cui C. Therapeutic effect of extracellular vesicles from different cell sources in traumatic brain injury. Tissue Cell 2022; 76: 101772.
[http://dx.doi.org/10.1016/j.tice.2022.101772] [PMID: 35272241]
[13]
Panaro MA, Benameur T, Porro C. Extracellular vesicles miRNA cargo for microglia polarization in traumatic brain injury. Biomolecules 2020; 10(6): 901.
[http://dx.doi.org/10.3390/biom10060901] [PMID: 32545705]
[14]
Ko J, Hemphill M, Yang Z, et al. Multi-dimensional mapping of brain-derived extracellular vesicle microRNA biomarker for traumatic brain injury diagnostics. J Neurotrauma 2020; 37(22): 2424-34.
[http://dx.doi.org/10.1089/neu.2018.6220] [PMID: 30950328]
[15]
Puffer RC, Cumba Garcia LM, Himes BT, et al. Plasma extracellular vesicles as a source of biomarkers in traumatic brain injury. J Neurosurg 2021; 134(6): 1921-8.
[http://dx.doi.org/10.3171/2020.4.JNS20305] [PMID: 32707544]
[16]
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14: 933434.
[http://dx.doi.org/10.3389/fnagi.2022.933434] [PMID: 36275010]
[17]
Chen Y, Lin J, Yan W. A prosperous application of hydrogels with extracellular vesicles release for traumatic brain injury. Front Neurol 2022; 13: 908468.
[http://dx.doi.org/10.3389/fneur.2022.908468] [PMID: 35720072]
[18]
Guedes VA, Lai C, Devoto C, et al. Extracellular vesicle proteins and micrornas are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury. Front Pharmacol 2021; 12: 745348.
[http://dx.doi.org/10.3389/fphar.2021.745348] [PMID: 34690777]
[19]
He B, Chen W, Zeng J, Tong W, Zheng P. Long noncoding RNA NKILA transferred by astrocyte-derived extracellular vesicles protects against neuronal injury by upregulating NLRX1 through binding to mir-195 in traumatic brain injury. Aging 2021; 13(6): 8127-45.
[http://dx.doi.org/10.18632/aging.202618] [PMID: 33686956]
[20]
Li Y, Sun M, Wang X, et al. Dental stem cell-derived extracellular vesicles transfer miR-330-5p to treat traumatic brain injury by regulating microglia polarization. Int J Oral Sci 2022; 14(1): 44.
[http://dx.doi.org/10.1038/s41368-022-00191-3] [PMID: 36064768]
[21]
Flynn S, Leete J, Shahim P, et al. Extracellular vesicle concentrations of glial fibrillary acidic protein and neurofilament light measured 1 year after traumatic brain injury. Sci Rep 2021; 11(1): 3896.
[http://dx.doi.org/10.1038/s41598-021-82875-0] [PMID: 33594224]
[22]
Deng Q-J, Liu L. Role of platelet-derived extracellular vesicles in traumatic brain injury-induced coagulopathy and inflammation. Neural Regen Res 2022; 17(10): 2102-7.
[http://dx.doi.org/10.4103/1673-5374.335825] [PMID: 35259815]
[23]
Upadhya D, Shetty AK. Extracellular vesicles as therapeutics for brain injury and disease. Curr Pharm Des 2019; 25(33): 3500-5.
[http://dx.doi.org/10.2174/1381612825666191014164950] [PMID: 31612823]
[24]
Zhang Y, Zhang Y, Chopp M, et al. Therapeutic role of microRNAs of small extracellular vesicles from human mesenchymal stromal/stem cells in treatment of experimental traumatic brain injury. J Neurotrauma 2023; 40(7-8): 758-71.
[http://dx.doi.org/10.1089/neu.2022.0296] [PMID: 36394949]
[25]
Singleton Q, Vaibhav K, Braun M, et al. Bone marrow derived extracellular vesicles activate osteoclast differentiation in traumatic brain injury induced bone loss. Cells 2019; 8(1): 63.
[http://dx.doi.org/10.3390/cells8010063] [PMID: 30658394]
[26]
Kuharić J, Grabušić K, Tokmadžić VS, et al. Severe traumatic brain injury induces early changes in the physical properties and protein composition of intracranial extracellular vesicles. J Neurotrauma 2019; 36(2): 190-200.
[http://dx.doi.org/10.1089/neu.2017.5515] [PMID: 29690821]
[27]
Delila L, Nebie O, Le NTN, et al. Neuroprotective activity of a virus‐safe nanofiltered human platelet lysate depleted of extracellular vesicles in Parkinson’s disease and traumatic brain injury models. Bioeng Transl Med 2023; 8(1): e10360.
[http://dx.doi.org/10.1002/btm2.10360] [PMID: 36684076]
[28]
Gottshall JL, Guedes VA, Pucci JU, et al. Poor sleep quality is linked to elevated extracellular vesicle-associated inflammatory cytokines in warfighters with chronic mild traumatic brain injuries. Front Pharmacol 2022; 12: 762077.
[http://dx.doi.org/10.3389/fphar.2021.762077] [PMID: 35153739]
[29]
Lin Z, Xiong Y, Sun Y, et al. Circulating MiRNA-21-enriched extracellular vesicles promote bone remodeling in traumatic brain injury patients. Exp Mol Med 2023; 55(3): 587-96.
[http://dx.doi.org/10.1038/s12276-023-00956-8] [PMID: 36869070]
[30]
Guedes VA, Lange RT, Lippa SM, et al. Extracellular vesicle neurofilament light is elevated within the first 12-months following traumatic brain injury in a U.S military population. Sci Rep 2022; 12(1): 4002.
[http://dx.doi.org/10.1038/s41598-022-05772-0] [PMID: 35256615]
[31]
Xiong Y, Mahmood A, Chopp M. Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration. Neural Regen Res 2024; 19(1): 49-54.
[http://dx.doi.org/10.4103/1673-5374.374143] [PMID: 37488843]
[32]
Yang ZL, Liang ZY, Lin YK, et al. Efficacy of extracellular vesicles of different cell origins in traumatic brain injury: A systematic review and network meta-analysis. Front Neurosci 2023; 17: 1147194.
[http://dx.doi.org/10.3389/fnins.2023.1147194] [PMID: 37065922]
[33]
Bambakidis T, Dekker SE, Williams AM, et al. Early treatment with a single dose of mesenchymal stem cell derived extracellular vesicles modulates the brain transcriptome to create neuroprotective changes in a porcine model of traumatic brain injury and hemorrhagic shock. Shock: Injury, Inflammation, and Sepsis. Shock 2022; 57(2): 281-90.
[http://dx.doi.org/10.1097/SHK.0000000000001889] [PMID: 34798633]
[34]
Roura S, Monguió-Tortajada M, Munizaga-Larroudé M, et al. Potential of extracellular vesicle-associated TSG-6 from adipose mesenchymal stromal cells in traumatic brain injury. Int J Mol Sci 2020; 21(18): 6761.
[http://dx.doi.org/10.3390/ijms21186761] [PMID: 32942629]
[35]
Li L, Li F, Bai X, et al. Circulating extracellular vesicles from patients with traumatic brain injury induce cerebrovascular endothelial dysfunction. Pharmacol Res 2023; 192: 106791.
[http://dx.doi.org/10.1016/j.phrs.2023.106791] [PMID: 37156450]
[36]
Li F, Liu Y, Li L, et al. Brain-derived extracellular vesicles mediate traumatic brain injury associated multi-organ damage. Biochem Biophys Res Commun 2023; 665: 141-51.
[http://dx.doi.org/10.1016/j.bbrc.2023.04.119] [PMID: 37163934]
[37]
Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017; 60: 220-32.
[http://dx.doi.org/10.1016/j.bbi.2016.11.011] [PMID: 27847282]
[38]
Reymond S, Vujić T, Sanchez JC. Neurovascular unit-derived extracellular vesicles: From their physiopathological roles to their clinical applications in acute brain injuries. Biomedicines 2022; 10(9): 2147.
[http://dx.doi.org/10.3390/biomedicines10092147] [PMID: 36140248]
[39]
Dickens AM, Tovar-y-Romo LB, Yoo SW, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal 2017; 10(473): eaai7696.
[http://dx.doi.org/10.1126/scisignal.aai7696] [PMID: 28377412]
[40]
Kumar A, Kumar S. Inhibition of extracellular vesicle pathway using neutral sphingomyelinase inhibitors as a neuroprotective treatment for brain injury. Neural Regen Res 2021; 16(12): 2349-52.
[http://dx.doi.org/10.4103/1673-5374.313014] [PMID: 33907005]
[41]
Kodali M, Madhu LN, Reger RL, et al. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16: 1185883.
[http://dx.doi.org/10.3389/fnmol.2023.1185883] [PMID: 37284464]
[42]
Seršić LV, Alić VK, Biberić M, et al. Real-time PCR quantification of 87 miRNAs from cerebrospinal fluid: miRNA dynamics and association with extracellular vesicles after severe traumatic brain injury. Int J Mol Sci 2023; 24(5): 4751.
[http://dx.doi.org/10.3390/ijms24054751] [PMID: 36902179]
[43]
Karttunen J, Heiskanen M, Lipponen A, Poulsen D, Pitkänen A. Extracellular vesicles as diagnostics and therapeutics for structural epilepsies. Int J Mol Sci 2019; 20(6): 1259.
[http://dx.doi.org/10.3390/ijms20061259] [PMID: 30871144]
[44]
Dutta D, Khan N, Wu J, Jay SM. Extracellular vesicles as an emerging frontier in spinal cord injury pathobiology and therapy. Trends Neurosci 2021; 44(6): 492-506.
[http://dx.doi.org/10.1016/j.tins.2021.01.003] [PMID: 33581883]
[45]
Amini A, Shekari F, Assar Kashani S, et al. Clonal mesenchymal stem cell-derived extracellular vesicles improve mouse model of weight drop-induced traumatic brain injury through reducing cistauosis and apoptosis. Exp Neurol 2023; 367: 114467.
[http://dx.doi.org/10.1016/j.expneurol.2023.114467] [PMID: 37302747]
[46]
Liu X, Zhang L, Cao Y, et al. Neuroinflammation of traumatic brain injury: Roles of extracellular vesicles. Front Immunol 2023; 13: 1088827.
[http://dx.doi.org/10.3389/fimmu.2022.1088827] [PMID: 36741357]
[47]
Kim D, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci 2016; 113(1): 170-5.
[http://dx.doi.org/10.1073/pnas.1522297113] [PMID: 26699510]
[48]
Xia W, Xie J, Cai Z, et al. Damaged brain accelerates bone healing by releasing small extracellular vesicles that target osteoprogenitors. Nat Commun 2021; 12(1): 6043.
[http://dx.doi.org/10.1038/s41467-021-26302-y] [PMID: 34654817]
[49]
Shetty AK, Upadhya R. Extracellular vesicles in health and disease. Aging Dis 2021; 12(6): 1358-62.
[http://dx.doi.org/10.14336/AD.2021.0827] [PMID: 34527414]
[50]
Nakano M, Fujimiya M. Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen Res 2021; 16(12): 2359-66.
[http://dx.doi.org/10.4103/1673-5374.313026] [PMID: 33907007]
[51]
Leavitt RJ, Limoli CL, Baulch JE. miRNA-based therapeutic potential of stem cell-derived extracellular vesicles: A safe cell-free treatment to ameliorate radiation-induced brain injury. Int J Radiat Biol 2019; 95(4): 427-35.
[http://dx.doi.org/10.1080/09553002.2018.1522012] [PMID: 30252569]
[52]
Holm MM, Kaiser J, Schwab ME. Extracellular vesicles: Multimodal envoys in neural maintenance and repair. Trends Neurosci 2018; 41(6): 360-72.
[http://dx.doi.org/10.1016/j.tins.2018.03.006] [PMID: 29605090]
[53]
Pereira M, Cheng Y, Raukar N, et al. Inflammation-related gene expression profiles of salivary extracellular vesicles in patients with head trauma. Neural Regen Res 2020; 15(4): 676-81.
[http://dx.doi.org/10.4103/1673-5374.266924] [PMID: 31638091]
[54]
Turovsky EA, Golovicheva VV, Varlamova EG, et al. Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations. Int J Biol Sci 2022; 18(14): 5345-68.
[http://dx.doi.org/10.7150/ijbs.73747] [PMID: 36147480]
[55]
Yates AG, Anthony DC, Ruitenberg MJ, Couch Y. Systemic immune response to traumatic CNS injuries—are extracellular vesicles the missing link? Front Immunol 2019; 10: 2723.
[http://dx.doi.org/10.3389/fimmu.2019.02723] [PMID: 31824504]
[56]
Guedes VA, Mithani S, Williams C, et al. Extracellular vesicle levels of nervous system injury biomarkers in critically ill trauma patients with and without traumatic brain injury. Neurotrauma Reports 2022; 3(1): 545-53.
[http://dx.doi.org/10.1089/neur.2022.0058] [PMID: 36636744]
[57]
Gharbi T, Zhang Z, Yang GY. The function of astrocyte mediated extracellular vesicles in central nervous system diseases. Front Cell Dev Biol 2020; 8: 568889.
[http://dx.doi.org/10.3389/fcell.2020.568889] [PMID: 33178687]
[58]
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130: 433-47.
[http://dx.doi.org/10.1016/j.neubiorev.2021.08.029] [PMID: 34474049]
[59]
Leavitt RJ, Acharya MM, Baulch JE, Limoli CL. Extracellular vesicle-derived miR-124 resolves radiation-induced brain injury. Cancer Res 2020; 80(19): 4266-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1599] [PMID: 32816912]
[60]
Rizvanov AA, Shaimardanova AA, Solovyeva VV, Chulpanova DS, James V, Kitaeva KV. Extracellular vesicles in the diagnosis and treatment of central nervous system diseases. Neural Regen Res 2020; 15(4): 586-96.
[http://dx.doi.org/10.4103/1673-5374.266908] [PMID: 31638080]
[61]
Muraoka S, Jedrychowski MP, Tatebe H, et al. Proteomic profiling of extracellular vesicles isolated from cerebrospinal fluid of former national football league players at risk for chronic traumatic encephalopathy. Front Neurosci 2019; 13: 1059.
[http://dx.doi.org/10.3389/fnins.2019.01059] [PMID: 31649498]
[62]
Taylor DD, Gercel-Taylor C. Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond B Biol Sci 2014; 369(1652): 20130503.
[http://dx.doi.org/10.1098/rstb.2013.0503] [PMID: 25135964]
[63]
Seim RF, Willis ML, Wallet SM, Maile R, Coleman LG Jr. Extracellular vesicles as regulators of immune function in traumatic injuries and sepsis. Shock 2023; 59(2): 180-9.
[http://dx.doi.org/10.1097/SHK.0000000000002023] [PMID: 36516458]
[64]
Xiao Y, Wang SK, Zhang Y, et al. Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201: 102022.
[http://dx.doi.org/10.1016/j.pneurobio.2021.102022] [PMID: 33617919]
[65]
Lino MM, Simões S, Tomatis F, et al. Engineered extracellular vesicles as brain therapeutics. J Control Release 2021; 338: 472-85.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.037] [PMID: 34428481]
[66]
Wallensten J, Nager A, Åsberg M, et al. Leakage of astrocyte-derived extracellular vesicles in stress-induced exhaustion disorder: A cross-sectional study. Sci Rep 2021; 11(1): 2009.
[http://dx.doi.org/10.1038/s41598-021-81453-8] [PMID: 33479350]
[67]
Wang J, Xie X, Wu Y, et al. Brain-derived extracellular vesicles induce vasoconstriction and reduce cerebral blood flow in mice. J Neurotrauma 2022; 39(11-12): 879-90.
[http://dx.doi.org/10.1089/neu.2021.0274] [PMID: 35316073]
[68]
Ghaith HS, Nawar AA, Gabra MD, et al. A literature review of traumatic brain injury biomarkers. Mol Neurobiol 2022; 59(7): 4141-58.
[http://dx.doi.org/10.1007/s12035-022-02822-6] [PMID: 35499796]
[69]
Ali A, Zambrano R, Duncan MR, et al. Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Sci Rep 2021; 11(1): 8791.
[http://dx.doi.org/10.1038/s41598-021-87706-w] [PMID: 33888735]
[70]
Shi X, Zhong X, Deng L, et al. Mesenchymal stem cell-derived extracellular vesicle-enclosed microRNA-93 prevents hypoxic-ischemic brain damage in rats. Neuroscience 2022; 500: 12-25.
[http://dx.doi.org/10.1016/j.neuroscience.2022.06.037] [PMID: 35803492]
[71]
Patel DB, Santoro M, Born LJ, Fisher JP, Jay SM. Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: impact of the bioproduction microenvironment. Biotechnol Adv 2018; 36(8): 2051-9.
[http://dx.doi.org/10.1016/j.biotechadv.2018.09.001] [PMID: 30218694]
[72]
Krämer-Albers EM. Extracellular vesicles at CNS barriers: Mode of action. Curr Opin Neurobiol 2022; 75: 102569.
[http://dx.doi.org/10.1016/j.conb.2022.102569] [PMID: 35667340]
[73]
Marcatti M, Saada J, Okereke I, et al. Quantification of circulating cell free mitochondrial dna in extracellular vesicles with PicoGreen™ in liquid biopsies: Fast assessment of disease/trauma severity. Cells 2021; 10(4): 819.
[http://dx.doi.org/10.3390/cells10040819] [PMID: 33917426]
[74]
Clarke-Bland CE, Bill RM, Devitt A. Emerging roles for AQP in mammalian extracellular vesicles. Biochim Biophys Acta Biomembr 2022; 1864(3): 183826.
[http://dx.doi.org/10.1016/j.bbamem.2021.183826] [PMID: 34843700]
[75]
van Hezel ME, Nieuwland R, van Bruggen R, Juffermans NP. The ability of extracellular vesicles to induce a pro-inflammatory host response. Int J Mol Sci 2017; 18(6): 1285.
[http://dx.doi.org/10.3390/ijms18061285] [PMID: 28621719]
[76]
Kodali M, Castro OW, Kim DK, et al. Intranasally administered human MSC-derived extracellular vesicles pervasively incorporate into neurons and microglia in both intact and status epilepticus injured forebrain. Int J Mol Sci 2019; 21(1): 181.
[http://dx.doi.org/10.3390/ijms21010181] [PMID: 31888012]
[77]
Bang OY, Kim JE. Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases. BMB Rep 2022; 55(1): 20-9.
[http://dx.doi.org/10.5483/BMBRep.2022.55.1.162] [PMID: 35000673]
[78]
Gamage TKJB, Fraser M. The role of extracellular vesicles in the developing brain: current perspective and promising source of biomarkers and therapy for perinatal brain injury. Front Neurosci 2021; 15: 744840.
[http://dx.doi.org/10.3389/fnins.2021.744840] [PMID: 34630028]
[79]
Gao Y, Zhang H, Li X, et al. NS1619 alleviate brain-derived extracellular vesicle-induced brain injury by regulating BKca channel and Nrf2/HO-1/NF-ĸB pathway. Oxid Med Cell Longev 2022; 2022: 1-20.
[http://dx.doi.org/10.1155/2022/2257427]
[80]
Ophelders DRMG, Wolfs TGAM, Jellema RK, et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 2016; 5(6): 754-63.
[http://dx.doi.org/10.5966/sctm.2015-0197] [PMID: 27160705]
[81]
Wang D, Guan S, Lu P, Li Y, Xu H. Extracellular vesicles: Critical bilateral communicators in periphery-brain crosstalk in central nervous system disorders. Biomed Pharmacother 2023; 160: 114354.
[http://dx.doi.org/10.1016/j.biopha.2023.114354] [PMID: 36753954]
[82]
Hotta N, Tadokoro T, Henry J, et al. Monitoring of post-brain injuries by measuring plasma levels of neuron-derived extracellular vesicles. Biomark Insights 2022; 17.
[http://dx.doi.org/10.1177/11772719221128145] [PMID: 36324609]
[83]
Upadhya D, Shetty AK. Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav 2021; 121(Pt B)): 106499.
[http://dx.doi.org/10.1016/j.yebeh.2019.106499] [PMID: 31636006]
[84]
Alsaadi N, Srinivasan AJ, Seshadri A, Shiel M, Neal MD, Scott MJ. The emerging therapeutic potential of extracellular vesicles in trauma. J Leukoc Biol 2021; 111(1): 93-111.
[http://dx.doi.org/10.1002/JLB.3MIR0621-298R] [PMID: 34533241]
[85]
Jin Q, Wu P, Zhou X, Qian H, Xu W. Extracellular vesicles: Novel roles in neurological disorders. Stem Cells Int 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/6640836] [PMID: 33679989]
[86]
Reed SL, Escayg A. Extracellular vesicles in the treatment of neurological disorders. Neurobiol Dis 2021; 157: 105445.
[http://dx.doi.org/10.1016/j.nbd.2021.105445] [PMID: 34271084]
[87]
Chavez L, Meguro J, Chen S, et al. Circulating extracellular vesicles activate the pyroptosis pathway in the brain following ventilation-induced lung injury. J Neuroinflammation 2021; 18(1): 310.
[http://dx.doi.org/10.1186/s12974-021-02364-z] [PMID: 34965880]
[88]
Jin T, Gu J, Li Z, Xu Z, Gui Y. Recent advances on extracellular vesicles in central nervous system diseases. Clin Interv Aging 2021; 16: 257-74.
[http://dx.doi.org/10.2147/CIA.S288415] [PMID: 33603351]
[89]
Kodali M, Madhu LN, Reger RL, et al. Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. Brain Behav Immun 2023; 108: 118-34.
[http://dx.doi.org/10.1016/j.bbi.2022.11.014] [PMID: 36427808]
[90]
Krämer-Albers EM, Hill AF. Extracellular vesicles: Interneural shuttles of complex messages. Curr Opin Neurobiol 2016; 39: 101-7.
[http://dx.doi.org/10.1016/j.conb.2016.04.016] [PMID: 27183381]
[91]
Gratpain V, Mwema A, Labrak Y, Muccioli GG, van Pesch V, des Rieux A. Extracellular vesicles for the treatment of central nervous system diseases. Adv Drug Deliv Rev 2021; 174: 535-52.
[http://dx.doi.org/10.1016/j.addr.2021.05.006] [PMID: 33991589]
[92]
Chen SY, Lin MC, Tsai JS, et al. EP4 antagonist-elicited extracellular vesicles from mesenchymal stem cells rescue cognition/learning deficiencies by restoring brain cellular functions. Stem Cells Transl Med 2019; 8(7): 707-23.
[http://dx.doi.org/10.1002/sctm.18-0284] [PMID: 30891948]
[93]
Weber B, Franz N, Marzi I, Henrich D, Leppik L. Extracellular vesicles as mediators and markers of acute organ injury: current concepts. Eur J Trauma Emerg Surg 2021; 1-20.
[PMID: 33533957]
[94]
Shen H, Zaitseva D, Yang Z, et al. Brain-derived extracellular vesicles as serologic markers of brain injury following cardiac arrest: A pilot feasibility study. Resuscitation 2023; 191: 109937.
[http://dx.doi.org/10.1016/j.resuscitation.2023.109937] [PMID: 37591443]
[95]
Tian Y, Zhao R, Li X, et al. Alterations of microRNAs expression profiles in small extracellular vesicle after traumatic brain injury in mice. Exp Anim 2022; 71(3): 329-37.
[http://dx.doi.org/10.1538/expanim.21-0148] [PMID: 35249933]
[96]
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9(1): 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[97]
Chu X, Liu D, Li T, et al. Hydrogen sulfide-modified extracellular vesicles from mesenchymal stem cells for treatment of hypoxic-ischemic brain injury. J Control Release 2020; 328: 13-27.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.037] [PMID: 32858071]
[98]
Matuk R, Pereira M, Baird J, et al. The role of salivary vesicles as a potential inflammatory biomarker to detect traumatic brain injury in mixed martial artists. Sci Rep 2021; 11(1): 8186.
[http://dx.doi.org/10.1038/s41598-021-87180-4] [PMID: 33854105]
[99]
Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178: 113961.
[http://dx.doi.org/10.1016/j.addr.2021.113961] [PMID: 34481030]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy