Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

A Convenient and Practical Synthesis of Novel Pyrimidine Derivatives and its Therapeutic Potential

Author(s): Kaushal Arora, Amit Kumar and Prabhakar Kumar Verma*

Volume 20, Issue 10, 2024

Published on: 22 February, 2024

Article ID: e220224227309 Pages: 18

DOI: 10.2174/0115734072282575240213091008

Price: $65

Abstract

Background: A new series of 2-(2-(substituted aldehyde)hydrazinyl)-4-(2- chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile analogs (1–19) was prepared by using the Biginelli reaction.

Methods: TLC was employed to ensure the progress and confirmation of the reactions. Silica gel G was employed as the stationary phase, and mobile phases such as chloroform: toluene and acetone: n-hexane were used for the synthesized compounds. NMR.MS, IR, CHN spectral techniques used for the characterization of synthesized compound.

Results: The prepared derivatives were evaluated in vitro for antimicrobial activity against various bacteria and fungi using the tube dilution technique. Notably, compounds 2-(2-(3-Ethoxy-4- hydroxybenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5- carbonitrile T1, 2-(2-(2-Hydroxybenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6- dihydropyrimidine-5 carbonitrile T6, and 2-(2-(4-Hydroxybenzylidene)hydrazinyl)-4-(2- chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile T16, displayed significant antibacterial activity, surpassing the standard drug Ampicillin. In the antifungal category, compounds 2-(2-(3-Ethoxy-4-hydroxybenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyri midine-5-carbonitrile T1, 2-(2-(3,4-Dimethoxybenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6- oxo-1,6-dihydropyrimidine-5-carbonitrile T2, and 2-(2-(2,4-Dichlorobenzylidene)hydrazinyl)-4-(2- chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile T13, were very much effective against both fungal strains A. niger as well as C. albicans. Furthermore, compounds 2-(2-(2- Hydroxybenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5 carbonitrile T6, 2-(2-(2-Nitrobenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyri midine-5-carbonitrile T8, 2-(2-(4-Chlorobenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo- 1,6-dihydropyrimidine-5-carbonitrile T12, and 2-(2-(4-Dimethylaminobenzylidene)hydrazinyl)-4-(2- chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile T14 demonstrated remarkable antioxidant properties, because of their low IC50 values in the DPPH assay. In the realm of anticancer activity, 2-(2-(substituted aldehyde)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydro pyrimidine-5-carbonitrile T9 outperformed the standard drug Adriamycin in terms of its effectiveness against human lung cancer cells (A-549) with a GI50 value of less than 10 according to the SRB assay. In addition, the antidiabetic assessment highlighted the excellent performance of compounds 2-(2- (2-Nitrobenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5- carbonitrile T8, 2-(2-(4-Chlorobenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6- dihydropyrimidine-5-carbonitrile T12, and 2-(2-(3-Nitrobenzylidene)hydrazinyl)-4-(2-chloro phenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile T15, with low IC50 values, when tested for their inhibition of α-amylase enzyme activity.

Conclusions: The synthesized derivatives demonstrated strong antimicrobial, antioxidant, anticancer, and antidiabetic properties when assessed using specific methods and compared to established drugs. Notably, compounds 2-(2-(3-Ethoxy-4-hydroxybenzylidene)hydrazinyl)-4-(2-chloro phenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile T1, 2-(2-(2-Hydroxybenzylidene) hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5 carbonitrile T6, and 2- (2-(2,4-Dichlorobenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine -5-carbonitrile T13, 2-(2-(4-Chlorobenzylidene)hydrazinyl)-4-(2-chlorophenyl)-1-methyl-6-oxo- 1,6-dihydropyrimidine-5-carbonitrile T12 and 2-(2-(substituted aldehyde)hydrazinyl)-4-(2-chloro phenyl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile T9 exhibited even higher activity levels than the standard medications. The presence of electron-releasing groups in the synthesized compounds enhanced their antibacterial and antioxidant effects, particularly against B. subtilis. On the other hand, electron-withdrawing groups improved their anticancer and antidiabetic properties.

[1]
Patel, A.A.; Mehta, A.G. Synthesis of novel heterocyclic compounds and their biological evaluation. Pharma Chem., 2010, 2(1), 215-223.
[2]
Selvam, TP; James, CR; Dniandev, PV; Valzita, SK A mini review of pyrimidine and fused pyrimidine marketed drugs. Pharm. Res., 2015, 2(4)
[3]
Chen, P.J.; Yang, A.; Gu, Y.F.; Zhang, X.S.; Shao, K.P.; Xue, D.Q.; He, P.; Jiang, T.F.; Zhang, Q.R.; Liu, H.M. Synthesis, in vitro antimicrobial and cytotoxic activities of novel pyrimidine–benzimidazol combinations. Bioorg. Med. Chem. Lett., 2014, 24(12), 2741-2743.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.037] [PMID: 24798098]
[4]
Narwal, S.; Kumar, S.; Verma, P.K. Design, synthesis and antimicrobial evaluation of pyrimidin-2-ol/thiol/amine analogues. Chem. Cent. J., 2017, 11(1), 52.
[http://dx.doi.org/10.1186/s13065-017-0284-2] [PMID: 29086852]
[5]
Khan, Z.U.H.; Khan, A.; Wan, P.; Khan, A.U.; Tahir, K.; Muhammad, N.; Khan, F.U.; Shah, H.U.; Khan, Z.U. New natural product -an efficient antimicrobial applications of new newly synthesized pyrimidine derivatives by the electrochemical oxidation of hydroxyl phenol in the presence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol as nucleophile. Nat. Prod. Res., 2018, 32(10), 1161-1169.
[http://dx.doi.org/10.1080/14786419.2017.1326043] [PMID: 28494613]
[6]
Gold, H.S.; Moellering, R.C. Jr Antimicrobial-Drug Resistance. N. Engl. J. Med., 1996, 335(19), 1445-1453.
[http://dx.doi.org/10.1056/NEJM199611073351907] [PMID: 8875923]
[7]
Nair, N.; Majeed, J.; Pandey, P.K.; Sweety, R.; Thakur, R. Antioxidant potential of pyrimidine derivatives against oxidative stress. Indian J. Pharm. Sci., 2022, 84(1)
[8]
Cappuccino, J.G. Microbiology: a laboratory manual/James G; Cappuccino and Natalie Sherman, 1999.
[9]
Andrews, B.; Komathi, K.; Mohan, S. Synthesis and comparing the antibacterial activities of pyrimidine derivatives. J. Chem. Sci., 2017, 129(3), 335-341.
[http://dx.doi.org/10.1007/s12039-017-1228-z]
[10]
Khan, Z.U.H.; Khan, A.U.; Wan, P.; Chen, Y.; Kong, D.; Khan, S.; Tahir, K. In vitro pharmacological screening of three newly synthesised pyrimidine derivatives. Nat. Prod. Res., 2015, 29(10), 933-938.
[http://dx.doi.org/10.1080/14786419.2014.964707] [PMID: 25280048]
[11]
Maadadi, R.; Benmerache, A.; Menacer, R.; Ziani, B.E.C.; Kabouche, Z.; Saher, L.; Bachari, K.; Harakat, D. Facile green in situ hemisynthesis of new chiral chromeno-pyrimidine derivatives: Antibacterial, antioxidant activities and molecular docking study. Nat. Prod. Res., 2023, 1-11.
[http://dx.doi.org/10.1080/14786419.2023.2290148] [PMID: 38062847]
[12]
Rahaman, S.A.; Rajendra Pasad, Y.; Kumar, P.; Kumar, B. Synthesis and anti-histaminic activity of some novel pyrimidines. Saudi Pharm. J., 2009, 17(3), 255-258.
[http://dx.doi.org/10.1016/j.jsps.2009.08.001] [PMID: 23964169]
[13]
Kumar, S.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A.; Narasimhan, B. Design, synthesis, antimicrobial and cytotoxicity study on human colorectal carcinoma cell line of new 4,4′-(1,4-phenylene)bis(pyrimidin-2-amine) derivatives. Chem. Cent. J., 2018, 12(1), 73.
[http://dx.doi.org/10.1186/s13065-018-0440-3] [PMID: 29318401]
[14]
Mallikarjunaswamy, C.; Ranganatha, V.; Mallesha, L.; Bhadregowda, D. Novel pyrimidine Schiff bases: synthesis and pharmacological screening. Indian. J. Pharm. Edu. Res., 2017, 2231-6876.
[15]
Shortnacy-Fowler, A.T.; Tiwari, K.N.; Montgomery, J.A.; Buckheit, R.W., Jr; Secrist, J.A., III; Seela, F. Synthesis and biological activity of 2′-Fluoro-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine nucleosides. Helv. Chim. Acta, 1999, 82(12), 2240-2245.
[http://dx.doi.org/10.1002/(SICI)1522-2675(19991215)82:12<2240:AID-HLCA2240>3.0.CO;2-2]
[16]
Kadry, H.H. Synthesis, biological evaluation of certain pyrazolo[3,4-d]pyrimidines as novel anti-inflammatory and analgesic agents. Med. Chem. Res., 2014, 23(12), 5269-5281.
[http://dx.doi.org/10.1007/s00044-014-1079-9]
[17]
Gorle, S; Maddila, S; Chokkakula, S; Lavanya, P; Singh, M; Jonnalagadda, S Synthesis, biological activity of pyrimidine linked with morpholinophenyl derivatives. J. Heterocycl. Chem., 2015, 61(2)
[18]
Bukhari, S.N.A.; Butt, A.M.; Amjad, M.W.B.; Ahmad, W.; Shah, V.H.; Trivedi, A.R. Synthesis and evaluation of chalcone analogues based pyrimidines as angiotensin converting enzyme inhibitors. Pak. J. Biol. Sci., 2013, 16(21), 1368-1372.
[http://dx.doi.org/10.3923/pjbs.2013.1368.1372] [PMID: 24511749]
[19]
Bishnoi, A.; Singh, S.; Tiwari, A.K.; Srivastava, K.; Raghuvir, R.; Tripathi, C.M. Synthesis, characterization and biological activity of new cyclization products of 3-(4-substituted benzylidene)-2H-pyrido[1,2-a]pyrimidine 2,4-(3H)-diones. J. Chem. Sci., 2013, 125(2), 305-312.
[http://dx.doi.org/10.1007/s12039-013-0367-0]
[20]
Chaudhary, A.; Sharma, P.K.; Verma, P.; Kumar, N.; Dudhe, R. Microwave assisted synthesis of novel pyrimidine derivatives and investigation of their analgesic and ulcerogenic activity. Med. Chem. Res., 2012, 21(11), 3629-3645.
[http://dx.doi.org/10.1007/s00044-011-9907-7]
[21]
Dongre, R.S.; Bhat, A.R.; Meshram, J.S. Anticancer activity of assorted annulated pyrimidine: A comprehensive review. Am J Pharm Tech Res., 2014, 4(1), 138-155.
[22]
Mishra, R.; Tomar, I. Pyrimidine: The molecule of diverse biological and medicinal importance. Int. J. Pharm. Sci. Res., 2011, 2(4), 758.
[23]
Gholap, A.R.; Toti, K.S.; Shirazi, F.; Deshpande, M.V.; Srinivasan, K.V. Efficient synthesis of antifungal pyrimidines via palladium catalyzed Suzuki/Sonogashira cross-coupling reaction from Biginelli 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron, 2008, 64(44), 10214-10223.
[http://dx.doi.org/10.1016/j.tet.2008.08.033]
[24]
Nakagawa, Y.; Bobrov, S.; Semer, C.R.; Kucharek, T.A.; Harmoto, M. Fungicidal pyrimidine derivatives. U.S. Patent 6,818,631B1, 2004.
[25]
Balzarini, J.; McGuigan, C. Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication. J. Antimicrob. Chemother., 2002, 50(1), 5-9.
[http://dx.doi.org/10.1093/jac/dkf037] [PMID: 12096000]
[26]
Verma, M.; Verma, P.K. Anticancer and antimicrobial prospective of Pyrimidine derivatives: A review. Pharm. Innov. J., 2019, 8, 566-571.
[27]
Awad, S.M.; Fathalla, O.A.; Wietrzyk, J.; Milczarek, M.; Soliman, A.M.; Mohamed, M.S. Synthesis of new pyrimidine derivatives and their antiproliferative activity against selected human cancer cell lines. Res. Chem. Intermed., 2015, 41(3), 1789-1801.
[http://dx.doi.org/10.1007/s11164-013-1312-z]
[28]
Alam, O.; Khan, S.A.; Siddiqui, N.; Ahsan, W.; Verma, S.P.; Gilani, S.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2010, 45(11), 5113-5119.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.022] [PMID: 20813434]
[29]
Bassyouni, F; Tarek, M; Salama, A Promising antidiabetic and antimicrobial agents based on fused pyrimidine derivatives: Molecular modeling and biological evaluation with histopathological effect. Molecules, 2021, 26(8), 2370.
[http://dx.doi.org/10.3390/molecules26082370]
[30]
Gadhachanda, V.R.; Wu, B.; Wang, Z.; Kuhen, K.L.; Caldwell, J.; Zondler, H.; Walter, H.; Havenhand, M.; He, Y. 4-Aminopyrimidines as novel HIV-1 inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(1), 260-265.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.047] [PMID: 17035019]
[31]
Ouyang, Y.; Yang, H.; Zhang, P.; Wang, Y.; Kaur, S.; Zhu, X.; Wang, Z.; Sun, Y.; Hong, W.; Ngeow, Y.; Wang, H. Synthesis of 2, 4-diaminopyrimidine core-based derivatives and biological evaluation of their anti-tubercular activities. Molecules, 2017, 22(10), 1592.
[http://dx.doi.org/10.3390/molecules22101592] [PMID: 28937657]
[32]
Asha, D.; Kavitha, C.V.; Chandrappa, S.; Prasanna, D.S.; Vinaya, K.; Raghavan, S.C.; Rangappa, K.S. Novel ethyl 2-(1-aminocyclobutyl)-5-(benzoyloxy)-6-hydroxy-pyrimidine-4-carboxylate derivatives: Synthesis and anticancer activities. J. Cancer Ther., 2010, 1(1), 21-28.
[http://dx.doi.org/10.4236/jct.2010.11003]
[33]
Kaplancıklı, Z.; Yurttas, L.; Turan-Zitouni, G.; Özdemir, A.; Göger, G.; Demirci, F.; Mohsen, U. Synthesis and antimicrobial activity of new pyrimidine-hydrazones. Lett. Drug Des. Discov., 2013, 11(1), 76-81.
[http://dx.doi.org/10.2174/15701808113109990037]
[34]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov., 2002, 1(7), 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[35]
Ozeki, K.; Ichikawa, T.; Takehara, H.; Tanimura, K.; Sato, M.; Yaginuma, H. Studies on antiallergy agents. III. Synthesis of 2-anilino-1,6-dihydro-6-oxo-5-pyrimidinecarboxylic acids and related compounds. Chem. Pharm. Bull., 1989, 37(7), 1780-1787.
[http://dx.doi.org/10.1248/cpb.37.1780] [PMID: 2572333]
[36]
Hassan, A.S.; Mady, M.F.; Awad, H.M.; Hafez, T.S. Synthesis and antitumor activity of some new pyrazolo[1,5- a]pyrimidines. Chin. Chem. Lett., 2017, 28(2), 388-393.
[http://dx.doi.org/10.1016/j.cclet.2016.10.022]
[37]
Gupta, A.K.; Kayath, H.P.; Ajit, S.; Geeta, S.; Mishra, K.C. Anticonvulsant activity of pyrimidine thiols. Indian J. Pharmacol., 1994, 26(3), 227.
[http://dx.doi.org/10.4103/ijp.IJP_486_20]
[38]
Lindner, W.; Brandes, W. Pesticidal thiazolopyrimidine derivatives. United States Patent US 4,996,208, 1991.
[39]
Liu, X.H.; Wang, Q.; Sun, Z.H.; Wedge, D.E.; Becnel, J.J.; Estep, A.S.; Tan, C.X.; Weng, J.Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti. Pest Manag. Sci., 2017, 73(5), 953-959.
[http://dx.doi.org/10.1002/ps.4370] [PMID: 27448764]
[40]
Nezu, Y.; Miyazaki, M.; Sugiyama, K.; Kajiwara, I. Dimethoxypyrimidines as novel herbicides. Part 1. Synthesis and herbicidal activity of dimethoxyphenoxyphenoxypyrimidines and analogues. Pestic. Sci., 1996, 47(2), 103-113.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199606)47:2<103:AID-PS396>3.0.CO;2-Z]
[41]
Patil, R.; Kumbhar, D.; Mohire, P.; Jadhav, S.; Patravale, A.; Deshmukh, M. DBN catalyzed one-pot efficient synthesis and antioxidant activity of pyrano [2, 3-d] pyrimidine derivatives. Chem. Sci. Rev. Lett., 2015, 4(16), 979-984.
[42]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[43]
Abida, M.I.; Alsalman, A.J. Synthesis and evaluation of antimicrobial activity of some 2-morpholinomethylamino-4-(7-unsubstituted/] substituted coumarin-3-yl)-6-chlorosubstitutedphenyl pyrimidines. Trop. J. Pharm. Res., 2016, 15(2), 393-404.
[http://dx.doi.org/10.4314/tjpr.v15i2.24]
[44]
Stevens, D.L.; Dotter, B.; Madaras-Kelly, K. A review of linezolid: The first oxazolidinone antibiotic. Expert Rev. Anti Infect. Ther., 2004, 2(1), 51-59.
[http://dx.doi.org/10.1586/14787210.2.1.51] [PMID: 15482171]
[45]
Fandakli, S.; Kahri̇man, N.; Yücel, B.T.; Karaoğlu, A.Ş.; Yayli, N. Biological evaluation and synthesis of new pyrimidine-2(1H)-ol/-thiol derivatives derived from chalcones using the solid phase microwave method. Turk. J. Chem., 2018, 42(2), 520-535.
[http://dx.doi.org/10.3906/kim-1711-9]
[46]
Kaur, N.; Gautam, S.; Sohal, H.S. Anti-diabetic activity of pyrimidine derivatives. Intl J Res., 2012, 4(7), 199-204.
[47]
Agrebi, A.; Allouche, F.; Fetoui, H.; Chabchoub, F. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives. Mediterr. J. Chem., 2014, 3(2), 864-876.
[http://dx.doi.org/10.13171/mjc.3.2.2014.13.05.23]
[48]
Sharma, A.; Verma, R.; Singh, H.; Verma, A.K.; Varshney, S. A review on the synthesis and biological evaluation of pyrido-pyrimidine derivatives. World J. Pharm. Pharm. Sci., 2018, 10(7), 955-965.
[49]
Matada, G.S.P.; Abbas, N.; Dhiwar, P.S.; Basu, R.; Devasahayam, G. Design, synthesis, in silico and in vitro evaluation of novel pyrimidine derivatives as EGFR inhibitors. Anticancer. Agents Med. Chem., 2021, 21(4), 451-461.
[http://dx.doi.org/10.2174/1871520620666200721102726] [PMID: 32698735]
[50]
Abdel-Rahman, A.A.H.; Zeid, I.F.; Barakat, H.A.; El-Sayed, W.A. Anti-hepatitis B virus activity of new substituted pyrimidine acyclic nucleoside analogues. Z. Naturforsch. C J. Biosci., 2009, 64(11-12), 767-772.
[http://dx.doi.org/10.1515/znc-2009-11-1202] [PMID: 20158143]
[51]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13(15), 4645-4650.
[http://dx.doi.org/10.1016/j.bmc.2005.04.061] [PMID: 15896965]
[52]
Dudhe, R.; Sharma, P.K.; Verma, P.K. Synthesis and biological activities of some new pyrimidine derivatives from chalcones. Int J Res Dev Pharm Life Sci., 2015, 4, 1.
[53]
Pandey, S.; Suryawanshi, S.N.; Gupta, S.; Srivastava, V.M. Synthesis and antileishmanial profile of some novel terpenyl pyrimidines. Eur. J. Med. Chem., 2004, 39(11), 969-973.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.007] [PMID: 15501546]
[54]
Ram, V.J.; Haque, N.; Guru, P.Y. Chemotherapeutic agents XXV: synthesis and leishmanicidal activity of carbazolylpyrimidines. Eur. J. Med. Chem., 1992, 27(8), 851-855.
[http://dx.doi.org/10.1016/0223-5234(92)90121-G]
[55]
Shi, J.B.; Chen, L.Z.; Wang, B.S.; Huang, X.; Jiao, M.M.; Liu, M.M.; Tang, W.J.; Liu, X.H. Novel pyrazolo [4, 3-d] pyrimidine as potent and orally active inducible nitric oxide synthase (iNOS) dimerization inhibitor with efficacy in rheumatoid arthritis mouse model. J. Med. Chem., 2019, 62(8), 4013-4031.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00039] [PMID: 30925056]
[56]
Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Venkata Rao, C. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 58, 340-345.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.007] [PMID: 23149297]
[57]
Rani, J.; Saini, M.; Kumar, S.; Verma, P.K. Design, synthesis and biological potentials of novel tetrahydroimidazo[1,2-a]pyrimidine derivatives. Chem. Cent. J., 2017, 11, 16.
[http://dx.doi.org/10.1186/s13065-017-0245-9]
[58]
Sarkar, A.; Kumar, K.A.; Dutta, N.K.; Chakraborty, P.; Dastidar, S.G. Evaluation of in vitro and in vivo antibacterial activity of dobutamine hydrochloride. Indian J. Med. Microbiol., 2003, 21(3), 172-178.
[http://dx.doi.org/10.1016/S0255-0857(21)03067-X] [PMID: 17643013]
[59]
Liu, Z.; Wu, S.; Wang, Y.; Li, R.; Wang, J.; Wang, L.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur. J. Med. Chem., 2014, 87, 782-793.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.022] [PMID: 25440879]
[60]
Kotb, E.R.; Morsy, E.M.; Anwar, M.; Mohi, E.M.; Awad, H. New pyrimidine derivatives: Synthesis, antitumor and antioxidant evaluation. Int. J. Pharm. Technol., 2015, 7, 8061-8085.
[61]
Senbagam, R.; Rajarajan, M.; Vijayakumar, R.; Manikandan, V.; Balaji, S.; Vanangamudi, G.; Thirunarayana, G. Synthesis, spectral correlations and antimicrobial activities of 2-pyrimidine Schiff’s bases. ILCPA, 2015, 53, 154-164.
[62]
Chaudhary, A.; Singh, A.; Verma, P.K. Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer. Org. Med. Chem. Lett., 2014, 4(1), 15.
[http://dx.doi.org/10.1186/s13588-014-0015-9] [PMID: 26548991]
[63]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9(1), 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[64]
Mohammadi Ziarani, G.; Hosseini Nasab, N.; Rahimifard, M.; Abolhasani Soorki, A. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities. J. Saudi Chem. Soc., 2015, 19(6), 676-681.
[http://dx.doi.org/10.1016/j.jscs.2014.06.007]
[65]
Mohana, K.N.; Kumar, B.N.; Mallesha, L. Synthesis and biological activity of some pyrimidine derivatives. Drug Invent. Today., 2013, 5(3), 216-222.
[http://dx.doi.org/10.1016/j.dit.2013.08.004]
[66]
Abdel-latif, E.; Abdel-fattah, S.; Gaffer, H.E.; Etman, H.A. Synthesis and antitumor activity of some new pyrazolo[3,4-d]pyrimidine and pyrazolo[3,4-b]pyridine derivatives. Egypt. J. Basic Appl. Sci., 2016, 3(1), 118-124.
[http://dx.doi.org/10.1016/j.ejbas.2015.11.001]
[67]
El-Agrody, A.M.; Halawa, A.H.; Fouda, A.M.; Al-Dies, A.A.M. The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J. Saudi Chem. Soc., 2017, 21(1), 82-90.
[http://dx.doi.org/10.1016/j.jscs.2016.03.002]
[68]
Abuelizz, H.A.; Iwana, N.A.N.I.; Ahmad, R.; Anouar, E.H.; Marzouk, M.; Al-Salahi, R. Synthesis, biological activity and molecular docking of new tricyclic series as α-glucosidase inhibitors. BMC Chem., 2019, 13(1), 52.
[http://dx.doi.org/10.1186/s13065-019-0560-4] [PMID: 31384800]
[69]
Pragna, T.; Dhaval, H.; Jayesh, M. Synthesis and characterization of aroylhydrazino derivatives of pharmacologically active pyrimidine-5-carbonitrile. Int. Lett. Chem. Phys. Astron, 2014, 39, 129-135.
[70]
Pharmacopoeia, I. Ministry of Health and Family Welfare. Govt. of India; Indian Pharmacopoeia Commission: Ghaziabad, 2007, 2, p. 1050.
[71]
Mukherjee, P.K. Pharmacological screening of herbal drugs. In: Quality control of herbal drugs; IntechOpen, 2012; p. 564.
[72]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[73]
Nickavar, B.; Amin, G. Bioassay-guided separation of an α-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries. Z. Naturforsch. C J. Biosci., 2010, 65(9-10), 567-570.
[http://dx.doi.org/10.1515/znc-2010-9-1006] [PMID: 21138057]
[74]
Kumar, P.; Mehta, M.; Satija, S.; Garg, M. Enzymatic in vitro anti-diabetic activity of few traditional Indian medicinal plants. J. Biol. Sci., 2013, 13(6), 540-544.
[http://dx.doi.org/10.3923/jbs.2013.540.544]
[75]
Ahmed, O.M.; Hussein, A.M.; Ahmed, R.R. Antidiabetic and antioxidant effects of newly synthesized pyrimido [1, 6-a] pyrimidine derivatives in neonatal streptozotocin-induced diabetic Rats. Med. Chem., 2012, 2(1)
[76]
Alwan, S.M.; Al-Kaabi, J.A.; Hashim, R.M. Synthesis and preliminary antimicrobial activity of new Schiff bases of pyrido [1, 2-a] pyrimidine derivatives with certain amino acids. Med. Chem., 2014, 4(9), 635-639.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy