Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Cardiac Complications and COVID-19: A Review of Life-threatening Co-morbidities

Author(s): Zeinab Eftekhar, Habib Haybar, Alireza Mohebbi and Najmaldin Saki*

Volume 20, Issue 3, 2024

Published on: 20 February, 2024

Article ID: e200224227160 Pages: 12

DOI: 10.2174/011573403X279782240206091322

Price: $65

Abstract

The novel 2019 coronavirus disease (COVID-19) was first reported in the last days of December 2019 in Wuhan, China. The presence of certain co-morbidities, including cardiovascular diseases (CVDs), are the basis for worse outcomes in patients with COVID-19.

Relevant English-language literature was searched and retrieved from the Google Scholar search engine and PubMed database up to 2023 using COVID-19, SARS-CoV-2, Heart failure, Myocardial infarction, and Arrhythmia and Cardiac complication as keywords.

Increased hemodynamic load, ischemia-related dysfunction, ventricular remodeling, excessive neurohumoral stimulation, abnormal myocyte calcium cycling, and excessive or insufficient extracellular matrix proliferation are associated with heart failure (HF) in COVID-19 patients. Inflammatory reaction due to the excessive release of inflammatory cytokines, leads to myocardial infarction (MI) in these patients. The virus can induce heart arrhythmia through cardiac complications, hypoxia, decreased heart hemodynamics, and remarkable inflammatory markers. Moreover, studies have linked cardiac complications in COVID-19 with poor outcomes, extended hospitalization time, and increased mortality rate. Patients with COVID-19 and CVDs are at higher mortality risk and they should be given high priority when receiving the treatment and intensive care during hospitalization.

Graphical Abstract

[1]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[2]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[3]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[4]
Yang L, Liu S, Liu J, et al. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther 2020; 5(1): 128.
[http://dx.doi.org/10.1038/s41392-020-00243-2] [PMID: 32712629]
[5]
Ali Kazem T, Zeylabi F, Filayih Hassan A, Paridar P, Pezeshki SP, Pezeshki SMS. Diabetes mellitus and COVID-19: Review of a lethal interaction from the cellular and molecular level to the bedside. Expert Rev Endocrinol Metab 2022; 17(1): 1-19.
[http://dx.doi.org/10.1080/17446651.2022.2002145] [PMID: 34781797]
[6]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[7]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[8]
Bader F, Manla Y, Atallah B, Starling RC. Heart failure and COVID-19. Heart Fail Rev 2021; 26(1): 1-10.
[http://dx.doi.org/10.1007/s10741-020-10008-2] [PMID: 32720082]
[9]
Inamdar A, Inamdar A. Heart failure: Diagnosis, management and utilization. J Clin Med 2016; 5(7): 62.
[http://dx.doi.org/10.3390/jcm5070062] [PMID: 27367736]
[10]
Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017; 3(1): 7-11.
[http://dx.doi.org/10.15420/cfr.2016:25:2] [PMID: 28785469]
[11]
Dassanayaka S, Jones SP. Recent developments in heart failure. Circ Res 2015; 117(7): e58-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.305765] [PMID: 26358111]
[12]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[13]
Gao L, Jiang D, Wen X, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res 2020; 21(1): 83.
[http://dx.doi.org/10.1186/s12931-020-01352-w] [PMID: 32293449]
[14]
DeFilippis EM, Reza N, Donald E, Givertz MM, Lindenfeld J, Jessup M. Considerations for heart failure care during the COVID-19 Pandemic. JACC Heart Fail 2020; 8(8): 681-91.
[http://dx.doi.org/10.1016/j.jchf.2020.05.006] [PMID: 32493638]
[15]
Ng TMH, Toews ML. Impaired norepinephrine regulation of monocyte inflammatory cytokine balance in heart failure. World J Cardiol 2016; 8(10): 584-9.
[http://dx.doi.org/10.4330/wjc.v8.i10.584] [PMID: 27847559]
[16]
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[17]
Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci 2004; 25(6): 291-4.
[http://dx.doi.org/10.1016/j.tips.2004.04.001] [PMID: 15165741]
[18]
Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med 2020; 382(25): 2441-8.
[http://dx.doi.org/10.1056/NEJMoa2008975] [PMID: 32356628]
[19]
Zhang X, Yu J, Pan L, Jiang H. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: A systematic review and meta-analysis. Pharmacol Res 2020; 158: 104927.
[http://dx.doi.org/10.1016/j.phrs.2020.104927] [PMID: 32422341]
[20]
South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020; 16(6): 305-7.
[http://dx.doi.org/10.1038/s41581-020-0279-4] [PMID: 32246101]
[21]
Antman E, Bassand J-P, Klein W, et al. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36(3): 959-69.
[http://dx.doi.org/10.1016/S0735-1097(00)00804-4] [PMID: 10987628]
[22]
Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. J Am Coll Cardiol 2007; 50(22): 2173-95.
[http://dx.doi.org/10.1016/j.jacc.2007.09.011] [PMID: 18036459]
[23]
Deten A, Volz HC, Briest W, Zimmer H-G. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 2002; 55(2): 329-40.
[http://dx.doi.org/10.1016/S0008-6363(02)00413-3] [PMID: 12123772]
[24]
Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94(12): 1543-53.
[http://dx.doi.org/10.1161/01.RES.0000130526.20854.fa] [PMID: 15217919]
[25]
Frangogiannis N, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53(1): 31-47.
[http://dx.doi.org/10.1016/S0008-6363(01)00434-5] [PMID: 11744011]
[26]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[27]
Thygesen K, Mair J, Giannitsis E, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J 2012; 33(18): 2252-7.
[http://dx.doi.org/10.1093/eurheartj/ehs154] [PMID: 22723599]
[28]
Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019; 40(3): 237-69.
[http://dx.doi.org/10.1093/eurheartj/ehy462] [PMID: 30165617]
[29]
Thygesen K, Mair J, Katus H, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J 2010; 31(18): 2197-204.
[http://dx.doi.org/10.1093/eurheartj/ehq251] [PMID: 20685679]
[30]
Apple FS, Jaffe AS, Collinson P, et al. IFCC educational materials on selected analytical and clinical applications of high sensitivity cardiac troponin assays. Clin Biochem 2015; 48(4-5): 201-3.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.08.021] [PMID: 25204966]
[31]
Mahmud E, Dauerman HL, Welt FGP, et al. Management of acute myocardial infarction during the COVID-19 Pandemic. J Am Coll Cardiol 2020; 76(11): 1375-84.
[http://dx.doi.org/10.1016/j.jacc.2020.04.039] [PMID: 32330544]
[32]
Zeng J, Huang J, Pan L. How to balance acute myocardial infarction and COVID-19: The protocols from Sichuan Provincial People’s Hospital. Intensive Care Med 2020; 46(6): 1111-3.
[http://dx.doi.org/10.1007/s00134-020-05993-9] [PMID: 32162032]
[33]
De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J 2020; 41(22): 2083-8.
[http://dx.doi.org/10.1093/eurheartj/ehaa409] [PMID: 32412631]
[34]
Saad M, Kennedy KF, Imran H, et al. Association between COVID-19 diagnosis and in-hospital mortality in patients hospitalized with ST-segment elevation myocardial infarction. JAMA 2021; 326(19): 1940-52.
[http://dx.doi.org/10.1001/jama.2021.18890] [PMID: 34714327]
[35]
Zheng J, Chu H, Struppa D, et al. Optimal multi-stage arrhythmia classification approach. Sci Rep 2020; 10(1): 2898.
[http://dx.doi.org/10.1038/s41598-020-59821-7] [PMID: 32076033]
[36]
Tse G, Yeo JM, Chan YW, Lai ETHL, Yan BP. What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol 2016; 7: 308.
[http://dx.doi.org/10.3389/fphys.2016.00308] [PMID: 27493633]
[37]
Babapoor-Farrokhran S, Rasekhi RT, Gill D, Babapoor S, Amanullah A. Arrhythmia in COVID-19. SN Compr Clin Med 2020; 2(9): 1430-5.
[http://dx.doi.org/10.1007/s42399-020-00454-2] [PMID: 32838188]
[38]
Gaaloul I, Riabi S, Harrath R, et al. Sudden unexpected death related to enterovirus myocarditis: Histopathology, immunohistochemistry and molecular pathology diagnosis at post-mortem. BMC Infect Dis 2012; 12(1): 212.
[http://dx.doi.org/10.1186/1471-2334-12-212] [PMID: 22966951]
[39]
Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci 2020; 253: 117723.
[http://dx.doi.org/10.1016/j.lfs.2020.117723] [PMID: 32360126]
[40]
Desai AD, Boursiquot BC, Melki L, Wan EY. Management of arrhythmias associated with COVID-19. Curr Cardiol Rep 2021; 23(1): 2.
[http://dx.doi.org/10.1007/s11886-020-01434-7] [PMID: 33231782]
[41]
Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2. Circulation 2020; 142(5): 426-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047049] [PMID: 32213097]
[42]
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470-3.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[43]
Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75(18): 2352-71.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335]
[44]
Kazi DS, Martin LM, Litmanovich D, et al. Case 18-2020: A 73-year-old man with hypoxemic respiratory failure and cardiac dysfunction. N Engl J Med 2020; 382(24): 2354-64.
[http://dx.doi.org/10.1056/NEJMcpc2002417] [PMID: 32521138]
[45]
Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Eds. Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19). Mayo Clinic Proceedings. Elsevier 2020.
[http://dx.doi.org/10.1016/j.mayocp.2020.03.024]
[46]
Kir D, Mohan C, Sancassani R. Heart Brake. JACC Case Rep 2020; 2(9): 1252-5.
[http://dx.doi.org/10.1016/j.jaccas.2020.04.026] [PMID: 32368756]
[47]
Peigh G, Leya MV, Baman JR, Cantey EP, Knight BP, Flaherty JD. Novel coronavirus 19 (COVID-19) associated sinus node dysfunction: A case series. Eur Heart J Case Rep 2020; 4(FI1): 1-6.
[http://dx.doi.org/10.1093/ehjcr/ytaa132] [PMID: 33089039]
[48]
Chinitz JS, Goyal R, Harding M, et al. Bradyarrhythmias in patients with COVID‐19: Marker of poor prognosis? Pacing Clin Electrophysiol 2020; 43(10): 1199-204.
[http://dx.doi.org/10.1111/pace.14042] [PMID: 32820823]
[49]
Capoferri G, Osthoff M, Egli A, Stoeckle M, Bassetti S. Relative bradycardia in patients with COVID-19. Clin Microbiol Infect 2021; 27(2): 295-6.
[50]
Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res 2019; 115(2): 357-72.
[http://dx.doi.org/10.1093/cvr/cvy224] [PMID: 30239604]
[51]
TİMURKAAN M. Can TGF-Β1 be an important prognostic factor in predicting COVID-19 disease severity? Med J Health Sci 2022; 36(1): 46-50.
[52]
De Simone V, Guardalben S, Guarise P, Padovani N, Giacopelli D, Zanotto G. Home Monitoring trends during COVID‐19 infection. J Arrhythm 2021; 37(1): 240-5.
[http://dx.doi.org/10.1002/joa3.12483] [PMID: 33664909]
[53]
Gawałko M, Kapłon-Cieślicka A, Hohl M, Dobrev D, Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. Int J Cardiol Heart Vasc 2020; 30: 100631.
[http://dx.doi.org/10.1016/j.ijcha.2020.100631] [PMID: 32904969]
[54]
Razeghian-Jahromi I, Matta AG, Canitrot R, et al. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther 2021; 12(1): 361.
[http://dx.doi.org/10.1186/s13287-021-02443-1] [PMID: 34162424]
[55]
Wu L, Li F, Zhao C, et al. Effects and mechanisms of traditional chinese herbal medicine in the treatment of ischemic cardiomyopathy. Pharmacol Res 2020; 151: 104488.
[http://dx.doi.org/10.1016/j.phrs.2019.104488] [PMID: 31734344]
[56]
Desai HD, Sharma K, Jadeja DM, Desai HM, Moliya P. COVID-19 pandemic induced stress cardiomyopathy: A literature review. Int J Cardiol Heart Vasc 2020; 31: 100628.
[http://dx.doi.org/10.1016/j.ijcha.2020.100628] [PMID: 32923579]
[57]
Pasqualetto MC, Secco E, Nizzetto M, et al. Stress cardiomyopathy in COVID-19 disease. Eur J Case Rep Intern Med 2020; 7(6): 001718.
[PMID: 32523926]
[58]
Roca E, Lombardi C, Campana M, et al. Takotsubo syndrome associated with COVID-19. Eur J Case Rep Intern Med 2020; 7(5): 1.
[http://dx.doi.org/10.12890/2020_001665] [PMID: 32399453]
[59]
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol 2020; 75(23): 2950-73.
[http://dx.doi.org/10.1016/j.jacc.2020.04.031] [PMID: 32311448]
[60]
Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res 2020; 191: 148-50.
[http://dx.doi.org/10.1016/j.thromres.2020.04.041] [PMID: 32381264]
[61]
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intens Care Med 2020; 46(6): 1089-98.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[62]
Ali MAM, Spinler SA. COVID-19 and thrombosis: From bench to bedside. Trends Cardiovasc Med 2021; 31(3): 143-60.
[http://dx.doi.org/10.1016/j.tcm.2020.12.004] [PMID: 33338635]
[63]
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 2017.
[PMID: 29351514]
[64]
Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292(1): C82-97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[65]
Martin J, Collot-Teixeira S, McGregor L, McGregor J. The dialogue between endothelial cells and monocytes/macrophages in vascular syndromes. Curr Pharm Des 2007; 13(17): 1751-9.
[http://dx.doi.org/10.2174/138161207780831248] [PMID: 17584105]
[66]
Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol 2020; 99(6): 1205-8.
[http://dx.doi.org/10.1007/s00277-020-04019-0] [PMID: 32296910]
[67]
Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta 2020; 506: 145-8.
[http://dx.doi.org/10.1016/j.cca.2020.03.022] [PMID: 32178975]
[68]
Zhang Y, Zeng X, Jiao Y, et al. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19. Thromb Res 2020; 193: 110-5.
[http://dx.doi.org/10.1016/j.thromres.2020.06.008] [PMID: 32535232]
[69]
Fournier M, Faille D, Dossier A, et al. Arterial thrombotic events in adult inpatients with COVID-19. Mayo Clin Proc 2021; 96(2): 295-303.
[http://dx.doi.org/10.1016/j.mayocp.2020.11.018] [PMID: 33549252]
[70]
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[71]
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033-40.
[http://dx.doi.org/10.1182/blood.2020006000] [PMID: 32339221]
[72]
de Roquetaillade C, Chousterman BG, Tomasoni D, et al. Unusual arterial thrombotic events in COVID-19 patients. Int J Cardiol 2021; 323: 281-4.
[http://dx.doi.org/10.1016/j.ijcard.2020.08.103] [PMID: 32918938]
[73]
Aminasnafi A, Heidari S, Alisamir M, Mirkarimi M, Namehgoshayfard N, Pezeshki S. Hematologic evaluation of children with COVID-19 infection: Mortality biomarkers. Clin Lab 2022; 68(04/2022)
[http://dx.doi.org/10.7754/Clin.Lab.2021.210746] [PMID: 35443600]
[74]
Cabezón Villalba G, Amat-Santos IJ, Dueñas C, et al. Impact of the presence of heart disease, cardiovascular medications and cardiac events on outcome in COVID-19. Cardiol J 2021; 28(3): 360-8.
[http://dx.doi.org/10.5603/CJ.a2021.0034] [PMID: 33843043]
[75]
Doolub G, Wong C, Hewitson L, et al. Impact of COVID‐19 on inpatient referral of acute heart failure: A single‐centre experience from the south‐west of the UK. ESC Heart Fail 2021; 8(2): 1691-5.
[http://dx.doi.org/10.1002/ehf2.13158] [PMID: 33410281]
[76]
Changal K, Paternite D, Mack S, et al. Coronavirus disease 2019 (COVID-19) and QTc prolongation. BMC Cardiovasc Disord 2021; 21(1): 158.
[http://dx.doi.org/10.1186/s12872-021-01963-1] [PMID: 33784966]
[77]
Hassnine AA, Elsayed AM. COVID-19 in cirrhotic patients: Is portal vein thrombosis a potential complication? Can J Gastroenterol Hepatol 2022; 2022: 1-4.
[http://dx.doi.org/10.1155/2022/5900468] [PMID: 35345818]
[78]
Russell L, Weihe S, Madsen EK, et al. Thromboembolic and bleeding events in ICU patients with COVID ‐19: A nationwide, observational study. Acta Anaesthesiol Scand 2023; 67(1): 76-85.
[http://dx.doi.org/10.1111/aas.14157] [PMID: 36263897]
[79]
Peacock WF, Crawford JM, Chen YWC, et al. Real-world analysis of thromboembolic events and mortality of COVID-19 outpatients in the United States. Clin Appl Thromb Hemost 2022; 28.
[http://dx.doi.org/10.1177/10760296221120421] [PMID: 35996822]
[80]
Giner-Soriano M, Gomez-Lumbreras A, Vedia C, Ouchi D, Morros R. Risk of thrombotic events and other complications in anticoagulant users infected with SARS-CoV-2: An observational cohort study in primary health care in SIDIAP (Catalonia, Spain). BMC Primary Care 2022; 23(1): 147.
[http://dx.doi.org/10.1186/s12875-022-01752-5] [PMID: 35676639]
[81]
Kunal S, Sharma SM, Sharma SK, et al. Cardiovascular complications and its impact on outcomes in COVID-19. Indian Heart J 2020; 72(6): 593-8.
[http://dx.doi.org/10.1016/j.ihj.2020.10.005] [PMID: 33357651]
[82]
Huang L, Zhao P, Tang D, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging 2020; 13(11): 2330-9.
[http://dx.doi.org/10.1016/j.jcmg.2020.05.004] [PMID: 32763118]
[83]
Fox DK, Waken RJ, Johnson DY, et al. Impact of the COVID‐19 pandemic on patients without COVID‐19 with acute myocardial infarction and heart failure. J Am Heart Assoc 2022; 11(6): e022625.
[http://dx.doi.org/10.1161/JAHA.121.022625] [PMID: 35229615]
[84]
Kiris T, Avci E, Ekin T, et al. Impact of COVID-19 outbreak on patients with ST-segment elevation myocardial ınfarction (STEMI) in Turkey: Results from TURSER study (TURKISH St-segment elevation myocardial ınfarction registry). J Thromb Thrombolysis 2022; 53(2): 321-34.
[http://dx.doi.org/10.1007/s11239-021-02487-3] [PMID: 34050883]
[85]
Grave C, Gabet A, Empana JP, et al. Care management and 90-day post discharge mortality in patients hospitalized for myocardial infarction and COVID-19: A French nationwide observational study. Arch Cardiovasc Dis 2022; 115(1): 37-47.
[http://dx.doi.org/10.1016/j.acvd.2021.11.002] [PMID: 34952827]
[86]
Aye YN, Mai AS, Zhang A, Lim OZH, Lin N, Ng CH, et al. Acute myocardial infarction and myocarditis following COVID-19 vaccination. QJM 2021.
[PMID: 34586408]
[87]
Al-Ali D, Elshafeey A, Mushannen M, et al. Cardiovascular and haematological events post COVID‐19 vaccination: A systematic review. J Cell Mol Med 2022; 26(3): 636-53.
[http://dx.doi.org/10.1111/jcmm.17137] [PMID: 34967105]
[88]
Kounis NG, Koniari I, de Gregorio C, et al. Allergic reactions to current available COVID-19 vaccinations: Pathophysiology, causality, and therapeutic considerations. Vaccines 2021; 9(3): 221.
[http://dx.doi.org/10.3390/vaccines9030221] [PMID: 33807579]
[89]
Kounis NG, Mazarakis A, Tsigkas G, Giannopoulos S, Goudevenos J. Kounis syndrome: A new twist on an old disease. Future Cardiol 2011; 7(6): 805-24.
[http://dx.doi.org/10.2217/fca.11.63] [PMID: 22050066]
[90]
Franchini M, Liumbruno GM, Pezzo M. COVID‐19 vaccine‐associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol 2021; 107(2): 173-80.
[http://dx.doi.org/10.1111/ejh.13665] [PMID: 33987882]
[91]
Oldenburg J, Klamroth R, Langer F, et al. Diagnosis and management of vaccine-related thrombosis following AstraZeneca COVID-19 vaccination: Guidance statement from the GTH. Hamostaseologie 2021; 41(3): 184-9.
[http://dx.doi.org/10.1055/a-1469-7481] [PMID: 33822348]
[92]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[93]
Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med 2020; 382(25): e102.
[http://dx.doi.org/10.1056/NEJMoa2007621] [PMID: 32356626]
[94]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[95]
Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5(7): 802-10.
[http://dx.doi.org/10.1001/jamacardio.2020.0950] [PMID: 32211816]
[96]
Peric S, Stulnig TM. Diabetes and COVID-19. Wien Klin Wochenschr 2020; 132(13-14): 356-61.
[http://dx.doi.org/10.1007/s00508-020-01672-3] [PMID: 32435867]
[97]
Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest 2020; 43(6): 867-9.
[http://dx.doi.org/10.1007/s40618-020-01236-2] [PMID: 32222956]
[98]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[99]
Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14(3): 211-2.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[100]
Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID‐19. Diabetes Metab Res Rev 2020; 36(7): e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[101]
Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3(2): 149-65.
[http://dx.doi.org/10.1038/s42255-021-00347-1] [PMID: 33536639]
[102]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[103]
Gasmi A, Tippairote T, Mujawdiya PK, et al. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol 2020; 220: 108545.
[http://dx.doi.org/10.1016/j.clim.2020.108545] [PMID: 32710937]
[104]
Ganatra S, Dani SS, Shah S, et al. Management of cardiovascular disease during Coronavirus Disease (COVID-19) pandemic. Trends Cardiovasc Med 2020; 30(6): 315-25.
[http://dx.doi.org/10.1016/j.tcm.2020.05.004] [PMID: 32474135]
[105]
Pascarella G, Strumia A, Piliego C, et al. COVID‐19 diagnosis and management: A comprehensive review. J Intern Med 2020; 288(2): 192-206.
[http://dx.doi.org/10.1111/joim.13091] [PMID: 32348588]
[106]
Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol 2020; 76(1): 122-4.
[http://dx.doi.org/10.1016/j.jacc.2020.05.001] [PMID: 32387623]
[107]
Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, et al. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 2021; 19(3): 345-57.
[http://dx.doi.org/10.1080/14787210.2020.1822737] [PMID: 32921216]
[108]
Abdelhamid A, El Deeb M, Zaafan M. The protective effect of xanthenone against LPS-induced COVID-19 acute respiratory distress syndrome (ARDS) by modulating the ACE2/Ang-1-7 signaling pathway. Eur Rev Med Pharmacol Sci 2022; 26(14): 5285-96.
[109]
Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8(6): 546-50.
[http://dx.doi.org/10.1016/S2213-8587(20)30152-2] [PMID: 32334646]
[110]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy