Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

A-RFP: An Adaptive Residue Flexibility Prediction Method Improving Protein-ligand Docking Based on Homologous Proteins

Author(s): Chuqi Lei, Senbiao Fang, Yaohang Li, Fei Guo and Min Li*

Volume 19, Issue 10, 2024

Published on: 19 February, 2024

Page: [908 - 918] Pages: 11

DOI: 10.2174/0115748936258790240101062642

Price: $65

Abstract

Background: Computational molecular docking plays an important role in determining the precise receptor-ligand conformation, which becomes a powerful tool for drug discovery. In the past 30 years, most computational docking methods have treated the receptor structure as a rigid body, although flexible docking often yields higher accuracy. The main disadvantage of flexible docking is its significantly higher computational cost. Due to the fact that different protein pocket residues exhibit different degrees of flexibility, semi-flexible docking methods, balancing rigid docking and flexible docking, have demonstrated success in predicting highly accurate conformations with a relatively low computational cost.

Methods: In our study, the number of flexible pocket residues was assessed by quantitative analysis, and a novel adaptive residue flexibility prediction method, named A-RFP, was proposed to improve the docking performance. Based on the homologous information, a joint strategy is used to predict the pocket residue flexibility by combining RMSD, the distance between the residue sidechain and the ligand, and the sidechain orientation. For each receptor-ligand pair, A-RFP provides a docking conformation with the optimal affinity.

Results: By analyzing the docking affinities of 3507 target-ligand pairs in 5 different values ranging from 0 to 10, we found there is a general trend that the larger number of flexible residues inevitably improves the docking results by using Autodock Vina. However, a certain number of counterexamples still exist. To validate the effectiveness of A-RFP, the experimental assessment was tested in a small-scale virtual screening on 5 proteins, which confirmed that A-RFP could enhance the docking performance. And the flexible-receptor virtual screening on a low-similarity dataset with 85 receptors validates the accuracy of residue flexibility comprehensive evaluation. Moreover, we studied three receptors with FDA-approved drugs, which further proved A-RFP can play a suitable role in ligand discovery.

Conclusion: Our analysis confirms that the screening performance of the various numbers of flexible residues varies wildly across receptors. It suggests that a fine-grained docking method would offset the aforementioned deficiency. Thus, we presented A-RFP, an adaptive pocket residue flexibility prediction method based on homologous information. Without considering computational resources and time costs, A-RFP provides the optimal docking result.

[1]
Bull SC, Doig AJ. Properties of protein drug target classes. PLoS One 2015; 10(3): e0117955.
[http://dx.doi.org/10.1371/journal.pone.0117955] [PMID: 25822509]
[2]
Rask-Andersen M. AlmA(c)n MS, SchiAth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011; 10(8): 579-90.
[http://dx.doi.org/10.1038/nrd3478] [PMID: 21804595]
[3]
Namsani S, Pramanik D, Khan MA, Roy S, Singh JK. Metadynamics-based enhanced sampling protocol for virtual screening: Case study for 3CLpro protein for SARS-CoV-2. J Biomol Struct Dyn 2021; 1-16.
[PMID: 33663346]
[4]
Starzec A, Miteva MA, Ladam P, Villoutreix BO, Perret GY. Discovery of novel inhibitors of vascular endothelial growth factor-A?”Neuropilin-1 interaction by structure-based virtual screening. Bioorg Med Chem 2014; 22(15): 4042-8.
[http://dx.doi.org/10.1016/j.bmc.2014.05.068] [PMID: 24961874]
[5]
El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study.In: Neuroproteomics. Springer 2017; pp. 391-403.
[http://dx.doi.org/10.1007/978-1-4939-6952-4_20]
[6]
Sundberg S. High-throughput and ultra-high-throughput screening: Solution- and cell-based approaches. Curr Opin Biotechnol 2000; 11(1): 47-53.
[http://dx.doi.org/10.1016/S0958-1669(99)00051-8] [PMID: 10679349]
[7]
Tai HK, Jusoh SA, Siu SWI. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening. J Cheminform 2018; 10(1): 62.
[http://dx.doi.org/10.1186/s13321-018-0320-9] [PMID: 30552524]
[8]
Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y. FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 2013; 34(1): 67-75.
[http://dx.doi.org/10.1002/jcc.23108] [PMID: 22961860]
[9]
Ng MCK, Fong S, Siu SWI. PSOVina: The hybrid particle swarm optimization algorithm for protein?”ligand docking. J Bioinform Comput Biol 2015; 13(3): 1541007.
[http://dx.doi.org/10.1142/S0219720015410073] [PMID: 25800162]
[10]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[11]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[12]
Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput Biol 2015; 11(12): e1004586.
[http://dx.doi.org/10.1371/journal.pcbi.1004586] [PMID: 26629955]
[13]
Wong KM, Tai HK, Siu SWI. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking. Chem Biol Drug Des 2021; 97(1): 97-110.
[http://dx.doi.org/10.1111/cbdd.13764] [PMID: 32679606]
[14]
Fischer M, Coleman RG, Fraser JS, Shoichet BK. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 2014; 6(7): 575-83.
[http://dx.doi.org/10.1038/nchem.1954] [PMID: 24950326]
[15]
Kumar A, Zhang KYJ. Computational fragment-based screening using RosettaLigand: The SAMPL3 challenge. J Comput Aided Mol Des 2012; 26(5): 603-16.
[http://dx.doi.org/10.1007/s10822-011-9523-0] [PMID: 22246345]
[16]
Koveal D, Clarkson MW, Wood TK, Page R, Peti W. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa. J Mol Biol 2013; 425(12): 2219-31.
[http://dx.doi.org/10.1016/j.jmb.2013.03.023] [PMID: 23524133]
[17]
Rauh D, Klebe G, Stubbs MT. Understanding protein-ligand interactions: The price of protein flexibility. J Mol Biol 2004; 335(5): 1325-41.
[http://dx.doi.org/10.1016/j.jmb.2003.11.041] [PMID: 14729347]
[18]
Cosconati S, Marinelli L, Di Leva FS, et al. Protein flexibility in virtual screening: The BACE-1 case study. J Chem Inf Model 2012; 52(10): 2697-704.
[http://dx.doi.org/10.1021/ci300390h] [PMID: 23005250]
[19]
Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9.
[http://dx.doi.org/10.1093/bioinformatics/btl158] [PMID: 16731699]
[20]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera?”A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[21]
Najmanovich R, Kuttner J, Sobolev V, Edelman M. Side-chain flexibility in proteins upon ligand binding. Proteins 2000; 39(3): 261-8.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000515)39:3261::AID-PROT903.0.CO;2-4] [PMID: 10737948]
[22]
Kuriata A, Gierut AM, Oleniecki T, et al. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 2018; 46(W1): W338-43.
[http://dx.doi.org/10.1093/nar/gky356] [PMID: 29762700]
[23]
Wang Z, Sun H, Yao X, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein?”ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 2016; 18(18): 12964-75.
[http://dx.doi.org/10.1039/C6CP01555G] [PMID: 27108770]
[24]
Gaillard T. Evaluation of AutoDock and AutoDock vina on the CASF-2013 benchmark. J Chem Inf Model 2018; 58(8): 1697-706.
[http://dx.doi.org/10.1021/acs.jcim.8b00312] [PMID: 29989806]
[25]
Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[26]
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. And modeling (2012). ZINC: A free tool to discover chemistry for biology. J Chem Inform 2012; 52: 1757-68.
[27]
Kouranov A, Xie L, de la Cruz J, et al. The RCSB PDB information portal for structural genomics. Nucleic Acids Res 2006; 34(90001): D302-5.
[http://dx.doi.org/10.1093/nar/gkj120] [PMID: 16381872]
[28]
Liu T, Lin Y, Wen X, Jorissen RN. Gilson MKJNar. BindingDB: A web-accessible database of experimentally determined proteinligand binding affinities 2007; 35: 198-201.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy