Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

STNMDA: A Novel Model for Predicting Potential Microbe-Drug Associations with Structure-Aware Transformer

Author(s): Liu Fan, Xiaoyu Yang, Lei Wang* and Xianyou Zhu*

Volume 19, Issue 10, 2024

Published on: 02 February, 2024

Page: [919 - 932] Pages: 14

DOI: 10.2174/0115748936272939231212102627

Price: $65

Abstract

Introduction: Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches.

Methods: We proposed an efficient computational model, STNMDA, that integrated a Structure- Aware Transformer (SAT) with a Deep Neural Network (DNN) classifier to infer latent microbedrug associations. The STNMDA began with a “random walk with a restart” approach to construct a heterogeneous network using Gaussian kernel similarity and functional similarity measures for microorganisms and drugs. This heterogeneous network was then fed into the SAT to extract attribute features and graph structures for each drug and microbe node. Finally, the DNN classifier calculated the probability of associations between microbes and drugs.

Results: Extensive experimental results showed that STNMDA surpassed existing state-of-the-art models in performance on the MDAD and aBiofilm databases. In addition, the feasibility of STNMDA in confirming associations between microbes and drugs was demonstrated through case validations.

Conclusion: Hence, STNMDA showed promise as a valuable tool for future prediction of microbedrug associations.

[1]
Ma P, Li C, Rahaman MM, et al. A state-of-the-art survey of object detection techniques in microorganism image analysis: From classical methods to deep learning approaches. Artif Intell Rev 2023; 56(2): 1627-98.
[http://dx.doi.org/10.1007/s10462-022-10209-1] [PMID: 35693000]
[2]
Cotter PD, Hill C, Ross RP. Bacteriocins: Developing innate immunity for food. Nat Rev Microbiol 2005; 3(10): 777-88.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[3]
Frąc M, Hannula ES, Bełka M, Salles JF, Jedryczka M. Soil mycobiome in sustainable agriculture. Front Microbiol 2022; 13: 1033824.
[http://dx.doi.org/10.3389/fmicb.2022.1033824] [PMID: 36519160]
[4]
Ventura M, O’Flaherty S, Claesson MJ, et al. Genome-scale analyses of health-promoting bacteria: Probiogenomics. Nat Rev Microbiol 2009; 7(1): 61-71.
[http://dx.doi.org/10.1038/nrmicro2047] [PMID: 19029955]
[5]
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474(7351): 327-36.
[http://dx.doi.org/10.1038/nature10213] [PMID: 21677749]
[6]
Sommer F, Bäckhed F. The gut microbiota - masters of host development and physiology. Nat Rev Microbiol 2013; 11(4): 227-38.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[7]
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28(48): 6846-66.
[http://dx.doi.org/10.3748/wjg.v28.i48.6846] [PMID: 36632317]
[8]
Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 2008; 190(13): 4632-40.
[http://dx.doi.org/10.1128/JB.00276-08] [PMID: 18441055]
[9]
Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci 2009; 106(7): 2365-70.
[http://dx.doi.org/10.1073/pnas.0812600106] [PMID: 19164560]
[10]
Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455(7216): 1109-13.
[http://dx.doi.org/10.1038/nature07336] [PMID: 18806780]
[11]
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science 2021; 371(6536): eabc4552.
[http://dx.doi.org/10.1126/science.abc4552] [PMID: 33766858]
[12]
Chen J, Douglass J, Prasath V, et al. The microbiome and breast cancer: A review. Breast Cancer Res Treat 2019; 178(3): 493-6.
[http://dx.doi.org/10.1007/s10549-019-05407-5] [PMID: 31456069]
[13]
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019; 570(7762): 462-7.
[http://dx.doi.org/10.1038/s41586-019-1291-3] [PMID: 31158845]
[14]
Ramirez M, Rajaram S, Steininger RJ, et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 2016; 7(1): 10690.
[http://dx.doi.org/10.1038/ncomms10690] [PMID: 26891683]
[15]
Mann M, Kumar C, Zeng WF, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst 2021; 12(8): 759-70.
[http://dx.doi.org/10.1016/j.cels.2021.06.006] [PMID: 34411543]
[16]
Dahmen J, Kayaalp ME, Ollivier M, et al. Artificial intelligence bot ChatGPT in medical research: The potential game changer as a double-edged sword. Knee Surg Sports Traumatol Arthrosc 2023; 31(4): 1187-9.
[http://dx.doi.org/10.1007/s00167-023-07355-6] [PMID: 36809511]
[17]
Kurant DE. Opportunities and challenges with artificial intelligence in genomics. Clin Lab Med 2023; 43(1): 87-97.
[http://dx.doi.org/10.1016/j.cll.2022.09.007] [PMID: 36764810]
[18]
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[19]
Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021; 373(6557): 871-6.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[20]
Guedes IA, Barreto AMS, Marinho D, et al. New machine learning and physics-based scoring functions for drug discovery. Sci Rep 2021; 11(1): 3198.
[http://dx.doi.org/10.1038/s41598-021-82410-1] [PMID: 33542326]
[21]
Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022; 17(9): 929-47.
[http://dx.doi.org/10.1080/17460441.2022.2114451] [PMID: 35983695]
[22]
Sun YZ, Zhang DH, Cai SB, Ming Z, Li JQ, Chen X. MDAD: A special resource for microbe-drug associations. Front Cell Infect Microbiol 2018; 8: 424.
[http://dx.doi.org/10.3389/fcimb.2018.00424] [PMID: 30581775]
[23]
Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[24]
Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[25]
Zhu L, Duan G, Yan C, Wang J. Prediction of microbe-drug associations based on Katz measure. 2019 IEEE international conference on bioinformatics and biomedicine 2019 Nov 18-21; San Diego, CA, USA 2019.
[http://dx.doi.org/10.1109/BIBM47256.2019.8983209]
[26]
Cheng X, Qu J, Song S, Bian Z. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ 2022; 10: e13848.
[http://dx.doi.org/10.7717/peerj.13848] [PMID: 35990901]
[27]
Long Y, Wu M, Liu Y, Kwoh CK, Luo J, Li X. Ensembling graph attention networks for human microbe–drug association prediction. Bioinformatics 2020; 36(S2): i779-86.
[http://dx.doi.org/10.1093/bioinformatics/btaa891] [PMID: 33381844]
[28]
Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36(19): 4918-27.
[http://dx.doi.org/10.1093/bioinformatics/btaa598] [PMID: 32597948]
[29]
Deng L, Huang Y, Liu X, Liu H. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe–drug associations. Bioinformatics 2022; 38(4): 1118-25.
[http://dx.doi.org/10.1093/bioinformatics/btab792] [PMID: 34864873]
[30]
Tan Y, Zou J, Kuang L, et al. GSAMDA: A computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder. BMC Bioinformatics 2022; 23(1): 492.
[http://dx.doi.org/10.1186/s12859-022-05053-7] [PMID: 36401174]
[31]
Ma Y, Liu Q. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction. Comput Biol Med 2022; 145: 105503.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105503] [PMID: 35427986]
[32]
Tian Z, Yu Y, Fang H, Xie W, Guo M. Predicting microbe–drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy. Brief Bioinform 2023; 24(2): bbac634.
[http://dx.doi.org/10.1093/bib/bbac634] [PMID: 36715986]
[33]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN. Attention is all you need. Adv Neural Inf Process Syst 2017; 30: 5998-6008.
[34]
Dosovitskiy A, Beyer L, Kolesnikov A. An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations.
[35]
Rives A, Meier J, Sercu T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci 2021; 118(15): e2016239118.
[http://dx.doi.org/10.1073/pnas.2016239118] [PMID: 33876751]
[36]
Oono K, Suzuki T. Graph neural networks exponentially lose expressive power for node classification. International Conference on Learning Representations. 2020 Apr 26-31; 2021.
[37]
Alon U, Yahav E. On the bottleneck of graph neural networks and its practical implications. International Conference on Learning Representations. 2021 May 3-7; 2021.
[38]
Liu S, Wang Y, Deng Y, et al. Improved drug–target interaction prediction with intermolecular graph transformer. Brief Bioinform 2022; 23(5): bbac162.
[http://dx.doi.org/10.1093/bib/bbac162] [PMID: 35514186]
[39]
Yuan Q, Chen S, Rao J, Zheng S, Zhao H, Yang Y. AlphaFold2-aware protein–DNA binding site prediction using graph transformer. Brief Bioinform 2022; 23(2): bbab564.
[http://dx.doi.org/10.1093/bib/bbab564] [PMID: 35039821]
[40]
Huang K, Xiao C, Glass LM, Sun J. MolTrans: Molecular interaction transformer for drug–target interaction prediction. Bioinformatics 2021; 37(6): 830-6.
[http://dx.doi.org/10.1093/bioinformatics/btaa880] [PMID: 33070179]
[41]
Zhang P, Wei Z, Che C, Jin B. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction. Comput Biol Med 2022; 142: 105214.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105214] [PMID: 35030496]
[42]
Zhang R, Wang Z, Wang X, Meng Z, Cui W. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug–target interaction prediction. Brief Bioinform 2023; 24(2): bbad079.
[http://dx.doi.org/10.1093/bib/bbad079] [PMID: 36892155]
[43]
Jha K, Saha S, Karmakar S. Prediction of protein-protein interactions using vision transformer and language model. IEEE/ACM Trans Comput Biol Bioinform 2023; 20(5): 3215-25.
[http://dx.doi.org/10.1109/TCBB.2023.3248797]
[44]
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: From biological data to computational models. Brief Bioinform 2022; 23(3): bbac080.
[http://dx.doi.org/10.1093/bib/bbac080] [PMID: 35325024]
[45]
Zhou Y, Wang X, Yao L, Zhu M. LDAformer: Predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder. Brief Bioinform 2022; 23(6): bbac370.
[http://dx.doi.org/10.1093/bib/bbac370] [PMID: 36094081]
[46]
Schriml LM, Mitraka E, Munro J, et al. Human disease ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res 2019; 47(D1): D955-62.
[http://dx.doi.org/10.1093/nar/gky1032] [PMID: 30407550]
[47]
Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007; 23(10): 1274-81.
[http://dx.doi.org/10.1093/bioinformatics/btm087] [PMID: 17344234]
[48]
Wang D, Wang J, Lu M, Song F, Cui Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 2010; 26(13): 1644-50.
[http://dx.doi.org/10.1093/bioinformatics/btq241] [PMID: 20439255]
[49]
Chen D, O’Bray L, Borgwardt K. Structure-aware transformer for graph representation learning. International Conference on Machine Learning. 2022 June 17-23; Baltimore, Maryland, United States. 2022.
[50]
Mialon G, Chen D, Selosse M, Mairal J. Graphit: Encoding graph structure in transformers. arXiv:210605667 2021.
[51]
Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? International Conference on Learning Representations. 2019 May 6-9; New Orleans, United States. 2019.
[52]
Imran M, Aslam M, Alsagaby SA, et al. Therapeutic application of carvacrol: A comprehensive review. Food Sci Nutr 2022; 10(11): 3544-61.
[http://dx.doi.org/10.1002/fsn3.2994] [PMID: 36348778]
[53]
Churklam W, Chaturongakul S, Ngamwongsatit B, Aunpad R. The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control 2020; 108: 106864.
[http://dx.doi.org/10.1016/j.foodcont.2019.106864]
[54]
Arkali G, Aksakal M, Kaya ŞÖ. Protective effects of carvacrol against diabetes‐induced reproductive damage in male rats: Modulation of Nrf2/HO‐1 signalling pathway and inhibition of Nf‐kB‐mediated testicular apoptosis and inflammation. Andrologia 2021; 53(2): e13899.
[http://dx.doi.org/10.1111/and.13899] [PMID: 33242925]
[55]
Elbe H, Yigitturk G, Cavusoglu T, Baygar T, Ozgul Onal M, Ozturk F. Comparison of ultrastructural changes and the anticarcinogenic effects of thymol and carvacrol on ovarian cancer cells: Which is more effective? Ultrastruct Pathol 2020; 44(2): 193-202.
[http://dx.doi.org/10.1080/01913123.2020.1740366] [PMID: 32183603]
[56]
Saghrouchni H, Barnossi AE, Mssillou I, et al. Potential of carvacrol as plant growth-promotor and green fungicide against fusarium wilt disease of perennial ryegrass. Front Plant Sci 2023; 14: 973207.
[http://dx.doi.org/10.3389/fpls.2023.973207] [PMID: 36866385]
[57]
Benbrahim KF, Chraibi M, Farah A, Elamin O, Iraqui HM. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. J Adv Pharm Technol Res 2020; 11(1): 25-9.
[http://dx.doi.org/10.4103/japtr.JAPTR_74_19] [PMID: 32154155]
[58]
Patel S. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(7): 1049-64.
[http://dx.doi.org/10.1080/19440049.2015.1040081] [PMID: 25893282]
[59]
Abdelhamid AG, Yousef AE. Carvacrol and thymol combat desiccation resistance mechanisms in Salmonella enterica serovar tennessee. Microorganisms 2021; 10(1): 44.
[http://dx.doi.org/10.3390/microorganisms10010044] [PMID: 35056493]
[60]
Javed H, Meeran MFN, Jha NK, Ojha S. Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19. Front Plant Sci 2021; 11: 601335.
[http://dx.doi.org/10.3389/fpls.2020.601335] [PMID: 33664752]
[61]
Wang Y, Hong X, Liu J, Zhu J, Chen J. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiol 2020; 91: 103506.
[http://dx.doi.org/10.1016/j.fm.2020.103506] [PMID: 32539951]
[62]
McCurdy S, Lawrence L, Quintas M, et al. In vitro activity of delafloxacin and microbiological response against fluoroquinolone-susceptible and nonsusceptible staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2017; 61(9): e00772-17.
[http://dx.doi.org/10.1128/AAC.00772-17] [PMID: 28630189]
[63]
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68(1): 1-10.
[http://dx.doi.org/10.1099/jmm.0.000873] [PMID: 30605076]
[64]
Liu X, Xiang L, Yin Y, Li H, Ma D, Qu Y. Pneumonia caused by Pseudomonas fluorescens: A case report. BMC Pulm Med 2021; 21(1): 212.
[http://dx.doi.org/10.1186/s12890-021-01573-9] [PMID: 34225696]
[65]
Trinh SA, Gavin HE, Satchell KJF. Efficacy of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy for vibrio vulnificus foodborne septicemia. Antimicrob Agents Chemother 2017; 61(12): e01106-17.
[http://dx.doi.org/10.1128/AAC.01106-17] [PMID: 28971862]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy