Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Systematic Review Article

Spinacia Oleracea: Exploring the Therapeutic Potential in Persian Medicine and Modern Pharmacology

Author(s): Fatemeh Akbari, Melika Mollaei, Pendar Argani, Babak Daneshfard and Ali Reza Derakhshan*

Volume 21, Issue 6, 2024

Published on: 15 February, 2024

Article ID: e150224227025 Pages: 17

DOI: 10.2174/0115701638275971240201060710

Price: $65

Abstract

Background: Spinach is a widely cultivated dark leafy vegetable highly regarded for its medicinal properties in traditional Persian medicine. It is rich in vitamins, minerals, flavonoids, carotenoids, and other bioactive compounds, and this review aims to explore the historical applications of spinach in Persian medicine and juxtapose them with current scientific evidence. Despite its historical significance, there remains a need to comprehensively evaluate and integrate traditional knowledge with modern research on the therapeutic benefits of spinach.

Methods: To achieve this, a comprehensive search was conducted in Persian medicine references and scientific databases to gather information on the traditional uses, chemical composition, and pharmacological effects of spinach. Studies that met the inclusion criteria were meticulously categorized, and relevant data were analyzed to draw insightful comparisons.

Results: Persian medicine describes spinach as a nutrient-rich, laxative, and fast-digesting agent with therapeutic effects on inflammation, lung diseases, back pain, sore throats, jaundice, urinary disorders, joint pain, eye inflammation, insomnia, dementia, and more. Modern studies have substantially corroborated these traditional uses, revealing that spinach possesses antioxidant, anti-inflammatory, anti-cancer, blood sugar-lowering, lipid-lowering, anti-obesity, neurological, ocular, and musculoskeletal effects.

Conclusion: Spinach exhibits a wide range of beneficial effects on various health conditions. Its widespread availability, low cost, and exceptional nutritional richness position it as a promising candidate for further investigation. Future studies should explore the clinical effectiveness of spinach in various diseases, while taking into consideration the principles emphasized in Persian medicine to guide research and inform therapeutic strategies.

Graphical Abstract

[1]
Subhash G, Virbhadrappa S, Otari K. Spinacia oleracea Linn: A pharmacognostic and pharmacological overview. Int J Res Ayurveda Pharm 2010; 1: 78-84.
[2]
Xu C, Jiao C, Sun H, et al. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 2017; 8(1): 15275.
[http://dx.doi.org/10.1038/ncomms15275] [PMID: 28537264]
[3]
Roberts JL, Moreau R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct 2016; 7(8): 3337-53.
[http://dx.doi.org/10.1039/C6FO00051G] [PMID: 27353735]
[4]
Headey DD, Alderman HH. The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. J Nutr 2019; 149(11): 2020-33.
[http://dx.doi.org/10.1093/jn/nxz158] [PMID: 31332436]
[5]
Wang J, Brennan MA, Brennan CS, Serventi L. Effect of Vegetable Juice, Puree, and Pomace on Chemical and Technological Quality of Fresh Pasta. Foods 2021; 10(8): 1931.
[http://dx.doi.org/10.3390/foods10081931] [PMID: 34441708]
[6]
Milano F, Mussi F, Fornaciari S, et al. Oxygen availability during growth modulates the phytochemical profile and the chemo-protective properties of spinach juice. Biomolecules 2019; 9(2): 53.
[http://dx.doi.org/10.3390/biom9020053] [PMID: 30720723]
[7]
Miladi Gorgi H, Safakhah HA, Haghighi S. Anxiolytic effects of the aqueous extracts of spinach leaves in mice. Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Kurdistan 2010; 43-50.
[8]
Jiraungkoorskul W. Review of neuro-nutrition used as anti-alzheimer plant, spinach Spinacia oleracea. Pharmacogn Rev 2016; 10(20): 105-8.
[http://dx.doi.org/10.4103/0973-7847.194040] [PMID: 28082792]
[9]
Azimi M, Hasheminasab F, Mokaberinejad R, Qaraaty M, Mojahedi M. A review of prevention and adjuvant therapy in acute respiratory syndrome caused by COVID-19 from the perspective of Persian medicine. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul 2021; 23(1): 177-88.
[10]
Kamaneh S, Mojahedi M, Mozafari O, Memariani Z, Saravani M. Cardiotonic Medicines (Mofarrehs) and their mechanism of action in persian medicine. J Babol Univ Med Sci 2019; 21(1): 320-30.
[11]
Derakhshan AR, Choopani R, Dehghan S. A new look at epicardial adipose tissue from the perspective of Iranian traditional medicine. J Integr Med 2014; 12(6): 529-30.
[http://dx.doi.org/10.1016/S2095-4964(14)60048-0] [PMID: 25412672]
[12]
Healthcare T. PDR for Herbal Medicines In: Thomson , Ed. 2007..
[13]
Pal D, Pany DR, Mohanty B, Nayak AK. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent. J Adv Pharm Technol Res 2010; 1(3): 338-41.
[http://dx.doi.org/10.4103/0110-5558.72430] [PMID: 22247868]
[14]
Aghili MH. Makhzan al-advieh. Tehran, Iran: Research Institute for Islamic and Complementary Medicine 2008.
[15]
Aghili SMH, Healthcare T. PDR for Herbal Medicines. 4 ed: Thomson. In: Institute of history of Medicine studies and Islamic medicine. 2009; pp. 612-3.
[16]
shirazi IE. Kafayeh Mansouri. Tehran. Medical University Tehran. 2004; 255.
[17]
Abdollah mim. Tohfe khani. Tehran. Iran University of Medical Sciences. 2005; 291.
[18]
Arzani MA. Teb Akbari. In: Qom Jalaleddin. 2008; p. 58.
[19]
Nazem Jahan M. Exir-e A’zam. Tehran: Iran University of Medical Sciences, Institute of Medicine History, Islamic and Alternative Medicine 2008.
[20]
Lomnitski L, Bergman M, Nyska A, Ben-Shaul V, Grossman S. Composition, efficacy, and safety of spinach extracts. Nutr Cancer 2003; 46(2): 222-31.
[http://dx.doi.org/10.1207/S15327914NC4602_16] [PMID: 14690799]
[21]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 637542, p-Coumaric acid. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/p-Coumaric-acid (Accessed on 2023 Nov 11).
[22]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 637540, 2-Hydroxycinnamic acid. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/2-Hydroxycinnamic-acid_-_2E(Accessed on 2023 Nov 11).
[23]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 445858, Ferulic acid. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ferulic-acid (Accessed on 2023 Nov 11).
[24]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 5280489, Beta-Carotene. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Beta-Carotene(Accessed on 2023 Nov 11.)
[25]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 5281243, Lutein. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Lutein(Accessed on 2023 Nov 11).
[26]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 5282217, Neoxanthin. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Neoxanthin(Accessed on 2023 Nov 11).
[27]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 448438, Violaxanthin. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Violaxanthin(Accessed on 2023 Nov 11).
[28]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for , Vitamin E. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vitamin-E(Accessed on 2023 Nov 11).
[29]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub- Chem Compound Summary for CID 54670067, Ascorbic Acid; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ascorbic-Acid(Accessed on 2023 Nov 11).
[30]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub- Chem Compound Summary for CID 5280483, Vitamin K; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vitamin-K(Accessed on 2023 Nov 11).
[31]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 135398658, Folic Acid. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Folic-Acid(Accessed on 2023 Nov 11).
[32]
PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. Pub-Chem Compound Summary for CID 971, Oxalic Acid. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Oxalic-Acid
[33]
Cao G, Russell RM, Lischner N, Prior RL. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 1998; 128(12): 2383-90.
[http://dx.doi.org/10.1093/jn/128.12.2383] [PMID: 9868185]
[34]
Pool-Zobel BL, Bub A, Liegibel UM, Treptow-van Lishaut S, Rechkemmer G. Mechanisms by which vegetable consumption reduces genetic damage in humans. Cancer Epidemiol Biomarkers Prev 1998; 7(10): 891-9.
[PMID: 9796634]
[35]
Porrini M, Riso P, Oriani G. Spinach and tomato consumption increases lymphocyte DNA resistance to oxidative stress but this is not related to cell carotenoid concentrations. Eur J Nutr 2002; 41(3): 95-100.
[http://dx.doi.org/10.1007/s003940200014] [PMID: 12111045]
[36]
Castenmiller JJM, Lauridsen ST, Dragsted LO, Hof KH, Linssen JPH, West CE. Beta-carotene does not change markers of enzymatic and nonenzymatic antioxidant activity in human blood. J Nutr 1999; 129(12): 2162-9.
[http://dx.doi.org/10.1093/jn/129.12.2162] [PMID: 10573544]
[37]
Arru L, Mussi F, Forti L, Buschini A. Biological effect of different spinach extracts in comparison with the individual components of the phytocomplex. Foods 2021; 10(2): 382.
[http://dx.doi.org/10.3390/foods10020382] [PMID: 33572474]
[38]
Beaupré V, Boucher N, Desgagné-Penix I. Thykamine extracts from spinach reduce acute inflammation in vivo and downregulate phlogogenic functions of human blood neutrophils in vitro. Biomedicines 2020; 8(7): 219.
[http://dx.doi.org/10.3390/biomedicines8070219] [PMID: 32708802]
[39]
Lomnitski L, Foley JF, Grossman S, et al. Effects of apocynin and natural antioxidant from spinach on inducible nitric oxide synthase and cyclooxygenase-2 induction in lipopolysaccharide-induced hepatic injury in rat. Pharmacol Toxicol 2000; 87(1): 18-25.
[http://dx.doi.org/10.1111/j.0901-9928.2000.870104.x] [PMID: 10987211]
[40]
Lomnitski L, Carbonatto M, Ben-Shaul V, et al. The prophylactic effects of natural water-soluble antioxidant from spinach and apocynin in a rabbit model of lipopolysaccharide-induced endotoxemia. Toxicol Pathol 2000; 28(4): 588-600.
[http://dx.doi.org/10.1177/019262330002800413] [PMID: 10930047]
[41]
Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 2013; 36(1): 169-76.
[http://dx.doi.org/10.1007/s10753-012-9532-8] [PMID: 22923003]
[42]
Cartford MC, Gemma C, Bickford PC. Eighteen-month-old Fischer 344 rats fed a spinach-enriched diet show improved delay classical eyeblink conditioning and reduced expression of tumor necrosis factor alpha (TNFalpha) and TNFbeta in the cerebellum. J Neurosci 2002; 22(14): 5813-6.
[http://dx.doi.org/10.1523/JNEUROSCI.22-14-05813.2002] [PMID: 12122042]
[43]
Graydon R, Hogg RE, Chakravarthy U, Young IS, Woodside JV. The effect of lutein- and zeaxanthin-rich foods v. supplements on macular pigment level and serological markers of endothelial activation, inflammation and oxidation: Pilot studies in healthy volunteers. Br J Nutr 2012; 108(2): 334-42.
[http://dx.doi.org/10.1017/S0007114511005599] [PMID: 22313522]
[44]
Howard LR, Pandjaitan N, Morelock T, Gil MI. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J Agric Food Chem 2002; 50(21): 5891-6.
[http://dx.doi.org/10.1021/jf020507o] [PMID: 12358455]
[45]
Fornaciari S, Milano F, Mussi F, et al. Assessment of antioxidant and antiproliferative properties of spinach plants grown under low oxygen availability. J Sci Food Agric 2015; 95(3): 490-6.
[http://dx.doi.org/10.1002/jsfa.6756] [PMID: 24862450]
[46]
Maeda N, Kokai Y, Hada T, Yoshida H, Mizushina Y. Oral administration of monogalactosyl diacylglycerol from spinach inhibits colon tumor growth in mice. Exp Ther Med 2013; 5(1): 17-22.
[http://dx.doi.org/10.3892/etm.2012.792] [PMID: 23251235]
[47]
Kuriyama I, Musumi K, Yonezawa Y, et al. Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. J Nutr Biochem 2005; 16(10): 594-601.
[http://dx.doi.org/10.1016/j.jnutbio.2005.02.007] [PMID: 16081275]
[48]
Maeda N, Kokai Y, Ohtani S, et al. Anti-tumor effect of orally administered spinach glycolipid fraction on implanted cancer cells, colon-26, in mice. Lipids 2008; 43(8): 741-8.
[http://dx.doi.org/10.1007/s11745-008-3202-5] [PMID: 18594894]
[49]
Murakami C, Kumagai T, Hada T, et al. Effects of glycolipids from spinach on mammalian DNA polymerases. Biochem Pharmacol 2003; 65(2): 259-67.
[http://dx.doi.org/10.1016/S0006-2952(02)01483-1] [PMID: 12504801]
[50]
Longnecker MP, Newcomb PA, Mittendorf R, Greenberg ER, Willett WC. Intake of carrots, spinach, and supplements containing vitamin A in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev 1997; 6(11): 887-92.
[PMID: 9367061]
[51]
Koushik A, Hunter DJ, Spiegelman D, et al. Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst 2007; 99(19): 1471-83.
[http://dx.doi.org/10.1093/jnci/djm155] [PMID: 17895473]
[52]
Freedman ND, Park Y, Subar AF, et al. Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. Int J Cancer 2008; 122(10): 2330-6.
[http://dx.doi.org/10.1002/ijc.23319] [PMID: 18092323]
[53]
Park JH, Kim RY, Park E. Antidiabetic activity of fruits and vegetables commonly consumed in Korea: Inhibitory potential against α-glucosidase and insulin-like action in vitro. Food Sci Biotechnol 2012; 21(4): 1187-93.
[http://dx.doi.org/10.1007/s10068-012-0155-5]
[54]
Montelius C, Szwiec K, Kardas M, et al. Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test. Clin Nutr 2014; 33(6): 1122-6.
[http://dx.doi.org/10.1016/j.clnu.2013.12.009] [PMID: 24411616]
[55]
Montelius C, Osman N, Weström B, Ahrné S, Molin G, Albertsson P-Å, et al. Feeding spinach thylakoids to rats modulates the gut microbiota, decreases food intake and affects the insulin response. J Nutr Sci 2013; 2: 20.
[56]
Köhnke R, Lindbo A, Larsson T, et al. Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans. Scand J Gastroenterol 2009; 44(6): 712-9.
[http://dx.doi.org/10.1080/00365520902803499] [PMID: 19308799]
[57]
Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E. Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats. Prev Nutr Food Sci 2014; 19(1): 19-26.
[http://dx.doi.org/10.3746/pnf.2014.19.1.019] [PMID: 24772405]
[58]
Krishnamurthy V, Sharief SD, Raman R, Ilango B, Sukumar E. Antidiabetic potential of Lantana aculeata root extract in alloxan-induced diabetic rats. Int J Phytomed 2010; 2: 299-303.
[59]
Matsuda H, Ooi S, Otokozawa R, et al. Intake of green-plant membrane with dietary oil suppresses postprandial hypertriglyceridemia in rats via promoting excretion of bile acids. Biosci Biotechnol Biochem 2018; 82(1): 114-9.
[http://dx.doi.org/10.1080/09168451.2017.1409070] [PMID: 29207918]
[60]
Albertsson PÅ, Köhnke R, Emek SC, et al. Chloroplast membranes retard fat digestion and induce satiety: effect of biological membranes on pancreatic lipase/co-lipase. Biochem J 2007; 401(3): 727-33.
[http://dx.doi.org/10.1042/BJ20061463] [PMID: 17044813]
[61]
Rebello CJ, Chu J, Beyl R, Edwall D, Erlanson-Albertsson C, Greenway FL. Acute effects of a spinach extract rich in thylakoids on satiety: A randomized controlled crossover trial. J Am Coll Nutr 2015; 34(6): 470-7.
[http://dx.doi.org/10.1080/07315724.2014.1003999] [PMID: 26029978]
[62]
Bondonno CP, Downey LA, Croft KD, et al. The acute effect of flavonoid-rich apples and nitrate-rich spinach on cognitive performance and mood in healthy men and women. Food Funct 2014; 5(5): 849-58.
[http://dx.doi.org/10.1039/C3FO60590F] [PMID: 24676365]
[63]
Wang Y, Chang CF, Chou J, et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp Neurol 2005; 193(1): 75-84.
[http://dx.doi.org/10.1016/j.expneurol.2004.12.014] [PMID: 15817266]
[64]
Das S, Guha D. CNS depressive role of aqueous extract of Spinacia oleracea L. leaves in adult male albino rats. Indian J Exp Biol 2008; 46(3): 185-90.
[PMID: 18432058]
[65]
Guha S. Spinacia oleracea retards the development of Amygdala kindled epilepsy in rats. Al Ameen J Med Sci 2011; 4.
[66]
Tarasi m, asle-rousta m. Effect of spinach (Spinacia oleracea L.) extract on chronic restraint stress-induced memory deficit and anxiety in male rats. RJMS 2018; 25(4): 48-55.
[67]
Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: A randomized controlled trial. JAMA 2008; 300(15): 1774-83.
[http://dx.doi.org/10.1001/jama.300.15.1774] [PMID: 18854539]
[68]
Yadav M, Parle M, Sharma N, et al. Protective effects of Spinacia oleracea seeds extract in an experimental model of schizophrenia: Possible behavior, biochemical, neurochemical and cellular alterations. Biomed Pharmacother 2018; 105: 1015-25.
[http://dx.doi.org/10.1016/j.biopha.2018.06.043] [PMID: 30021336]
[69]
Trieschmann M, Beatty S, Nolan JM, et al. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: The LUNA study. Exp Eye Res 2007; 84(4): 718-28.
[http://dx.doi.org/10.1016/j.exer.2006.12.010] [PMID: 17306793]
[70]
Kopsell DA, Lefsrud MG, Kopsell DE, Wenzel AJ, Gerweck C, Curran-Celentano J. Spinach cultigen variation for tissue carotenoid concentrations influences human serum carotenoid levels and macular pigment optical density following a 12-week dietary intervention. J Agric Food Chem 2006; 54(21): 7998-8005.
[http://dx.doi.org/10.1021/jf0614802] [PMID: 17032001]
[71]
Choudhary D, Kothari P, Tripathi AK, et al. Spinacia oleracea extract attenuates disease progression and sub-chondral bone changes in monosodium iodoacetate-induced osteoarthritis in rats. BMC Complement Altern Med 2018; 18(1): 69.
[http://dx.doi.org/10.1186/s12906-018-2117-9] [PMID: 29463254]
[72]
Tedeschi SK, Frits M, Cui J, et al. Diet and rheumatoid arthritis symptoms: Survey results from a rheumatoid arthritis registry. Arthritis Care Res 2017; 69(12): 1920-5.
[http://dx.doi.org/10.1002/acr.23225] [PMID: 28217907]
[73]
Mladěnka P, Macáková K, Kujovská Krčmová L, et al. Vitamin K – sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2022; 80(4): 677-98.
[http://dx.doi.org/10.1093/nutrit/nuab061] [PMID: 34472618]
[74]
Schurgers LJ, Shearer MJ, Hamulyák K, Stöcklin E, Vermeer C. Effect of vitamin K intake on the stability of oral anticoagulant treatment: dose-response relationships in healthy subjects. Blood 2004; 104(9): 2682-9.
[http://dx.doi.org/10.1182/blood-2004-04-1525] [PMID: 15231565]
[75]
Karlson B, Leijd B, Hellström K. On the influence of vitamin K-rich vegetables and wine on the effectiveness of warfarin treatment. Acta Med Scand 1986; 220(4): 347-50.
[http://dx.doi.org/10.1111/j.0954-6820.1986.tb02776.x] [PMID: 3541503]
[76]
Bohn T, Davidsson L, Walczyk T, Hurrell RF. Fractional magnesium absorption is significantly lower in human subjects from a meal served with an oxalate-rich vegetable, spinach, as compared with a meal served with kale, a vegetable with a low oxalate content. Br J Nutr 2004; 91(4): 601-6.
[http://dx.doi.org/10.1079/BJN20031081] [PMID: 15035687]
[77]
genannt Bonsmann SS, Walczyk T, Renggli S, Hurrell RF. Oxalic acid does not influence nonhaem iron absorption in humans: A comparison of kale and spinach meals. Eur J Clin Nutr 2008; 62(3): 336-41.
[http://dx.doi.org/10.1038/sj.ejcn.1602721] [PMID: 17440529]
[78]
Betsche T, Fretzdorff B. Biodegradation of oxalic acid from spinach using cereal radicles. J Agric Food Chem 2005; 53(25): 9751-8.
[http://dx.doi.org/10.1021/jf051091s] [PMID: 16332126]
[79]
Schuller A, Morisset M, Maadi F, et al. Occupational asthma due to allergy to spinach powder in a pasta factory. Allergy 2005; 60(3): 408-9.
[http://dx.doi.org/10.1111/j.1398-9995.2004.00685.x] [PMID: 15679732]
[80]
Sanchez I, Rodriguez F, Garcia-Abujeta JL, Fernandez L, Quiñones D, Martin-Gil D. Oral allergy syndrome induced by spinach. Allergy 1997; 52(12): 1245-6.
[http://dx.doi.org/10.1111/j.1398-9995.1997.tb02533.x] [PMID: 9450148]
[81]
Foti C, Damiani E, Zambonin CG, et al. Urticaria and angioedema to rubisco allergen in spinach and tomato. Ann Allergy Asthma Immunol 2012; 108(1): 60-1.
[http://dx.doi.org/10.1016/j.anai.2011.09.011] [PMID: 22192968]
[82]
Ferrer M, Redón B, Bartolomé B, Michavila A. Food allergy to spinach in an infant. Allergol Immunopathol 2011; 39(6): 378-9.
[http://dx.doi.org/10.1016/j.aller.2010.10.001] [PMID: 21269751]
[83]
Özçakar L, Oğuz AK. Spinach attack: A funny turn in gouty arthritis. Rheumatol Int 2003; 23(6): 327.
[http://dx.doi.org/10.1007/s00296-003-0332-1] [PMID: 12750943]
[84]
Brogren M, Savage GP. Bioavailability of soluble oxalate from spinach eaten with and without milk products. Asia Pac J Clin Nutr 2003; 12(2): 219-24.
[PMID: 12810415]
[85]
Chen Z, Ye Z, Zeng L, Yang W. Clinical investigation on gastric oxalate absorption. Chin Med J 2003; 116(11): 1749-51.
[PMID: 14642151]
[86]
Tavakoli-Dastjerdi S, Tavakkoli-Kakhki M, Derakhshan AR, Teimouri A, Motavasselian M. Dietary Modifications in Fissure-in-ano: A qualitative study based on persian medicine. Curr Nutr Food Sci 2020; 16(6): 860-5.
[http://dx.doi.org/10.2174/1573401314666180924123007]
[87]
Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric A American Psychiatric Association DSMTF. Arlington VA, Ed. American Psychiatric Association 2013.
[88]
Maeda N, Kokai Y, Ohtani S, Hada T, Yoshida H, Mizushina Y. Inhibitory effects of preventive and curative orally administered spinach glycoglycerolipid fraction on the tumor growth of sarcoma and colon in mouse graft models. Food Chem 2009; 112(1): 205-10.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.059]
[89]
Jorjani E. Zakhireh Kharazmshahi. Qom: Institute of Natural Medicine Restoration 2013.
[90]
Bsc SN, Savage GP. Oxalate content of foods and its effect on humans. Asia Pac J Clin Nutr 1999; 8(1): 64-74.
[http://dx.doi.org/10.1046/j.1440-6047.1999.00038.x] [PMID: 24393738]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy