Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

In Vitro and in-silico Anti-diabetic Evaluation of the Combination of Annona squamosa Linn., Leaf Extract and Oleanolic Acid

Author(s): Sasmita Dash, Nityananda Sahoo, Gurudutta Pattnaik, Chandan Das, Sovan Pattanaik, Goutam Ghosh, Goutam Rath and Biswakanth Kar*

Volume 20, Issue 10, 2024

Published on: 15 February, 2024

Article ID: e150224227005 Pages: 17

DOI: 10.2174/0115734072294929240206060527

Price: $65

Abstract

Background: Diabetes mellitus (DM) is a metabolic disorder caused by insufficient insulin production from pancreatic β-cells or insulin resistance; its prevalence rapidly increases worldwide. Increasing reports indicate that most plant bioactive agents exhibited alternative and safe effects in managing DM.

Objective: The study aims to evaluate the in vitro antioxidant and anti-diabetic efficacy of the combination of Annona squamosa Linn. (AS) leaf extract and Oleanolic acid (OA) using in vitro and in-silico approaches.

Methods: The leaf of AS was extracted by soxhlet extraction using n-hexane and methanol. The methanol extract of AS (MEAS) was subjected to GC-MS analysis. Quantification of total phenolic and flavonoid content and OA were carried out by HPLC and HPTLC analysis, respectively. In vitro antioxidant (DPPH, NO, and H2O2) and anti-diabetic (α-amylase and α-glucosidase) potentials of MEAS, OA, and a combination of MEAS and OA (MEAS + OA) were studied at different concentrations using ascorbic acid and acarbose as standard, respectively. An in-silico study determined their binding interactions with α-amylase (PDB ID-1B2Y) and α-glucosidase (PDB ID-3W37).

Results: GC-MS analysis of MEAS revealed three major bioactives like bicyclo[7.2.0]undec-4- ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-, germacrene D and undecane. The highest amount of phenolic (tannic acid and gallic acid) (150 μg/ml) and flavonoid (rutin and quercetin) (40 μg/ml) compounds were found in MEAS. OA was quantified as 356.74 ng/ml in MEAS by HPTLC. The significant inhibitory effects of MEAS, OA, and (MEAS + OA) on free radicals and α-amylase and α-glucosidase were observed concentration-dependent. However, MEAS + OA exhibited a greater percentage of inhibition than MEAS and OA alone. The in-silico analysis revealed highest docking-score of OA (-9.8 & -8.8), Germacrene D (-7.5 & -6.5) and Bicyclo[ 7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-, (-7.0 & -6.4) against IB2Y and 3W37 proteins, respectively.

Conclusion: We found that the combination of MEAS + OA exhibited the highest in vitro antioxidant and anti-diabetic activities compared to MEAS and OA. It concluded that OA has a significant role in potentiating the anti-diabetic effect of A. squamosa.

[1]
Cele, D.N.; Ntokozo, E.; Mthimunye, Q.B.; Mkhwanazi, S.N.; Freedom, T.; Ofentse, J.P.; Nireshni, C.; Matthew, S.M.; Andy, R.O. In vitro antidiabetic, antioxidant, and cytotoxic evaluation of honeybush tea (cyclopia genistoides) extracts. Hindawi J Food Biochem, 2023, 8774094.
[http://dx.doi.org/10.1155/2023/8774094]
[2]
Ratha, D.; kar, B.; pattnaik, G.; Bhukta, P. Synergistic effect of naringin and glimepiride in streptozotocin-induced diabetic rats. Curr. Diabetes Rev., 2023, 20
[http://dx.doi.org/10.2174/1573399820666230817154835] [PMID: 37592777]
[3]
El Omari, N.; Sayah, K.; Fettach, S.; El Blidi, O.; Bouyahya, A.; Faouzi, M.E.A.; Kamal, R.; Barkiyou, M. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/7384735]
[4]
Holman, N.; Young, B.; Gadsby, R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet. Med., 2015, 32(9), 1119-1120.
[http://dx.doi.org/10.1111/dme.12791] [PMID: 25962518]
[5]
Tao, Z.; Shi, A.; Zhao, J. Epidemiological perspectives of diabetes. Cell Biochem. Biophys., 2015, 73(1), 181-185.
[http://dx.doi.org/10.1007/s12013-015-0598-4] [PMID: 25711186]
[6]
Kifle, Z.D.; Enyew, E.F. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (Melianthaceae). J. Evid. Based Integr. Med., 2020, 25, 2515690X2093582.
[http://dx.doi.org/10.1177/2515690X20935827]
[7]
Marles, R.; Farnsworth, N.R. Plants as sources of antidiabetic agents. in Economic and Medicinal Plant Research;; , 1994, pp. 149-187.
[8]
Dash, S.; Kar, B.; Sahoo, N.; Pattnaik, G. Annonaine an alkaloid from the leaves of Custard Apple (Annona squamosa): A comprehensive review on its phytochemicals and pharmacological activities. Asian J. Chem., 2020, 32(8), 1824-1836.
[http://dx.doi.org/10.14233/ajchem.2020.22696]
[9]
Shirwaikar, A.; Rajendran, K.; Dinesh Kumar, C.; Bodla, R. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats. J. Ethnopharmacol., 2004, 91(1), 171-175.
[http://dx.doi.org/10.1016/j.jep.2003.12.017] [PMID: 15036485]
[10]
Yang, T.H.; Chen, C.M. Studies on the constituents of Annona squamosa L. J. Chin. Chem. Soc., 1970, 17(4), 243-250.
[http://dx.doi.org/10.1002/jccs.197000031]
[11]
Marahatta, A.B.; Aryal, A.; Basnyat, R.C. The phytochemical and nutritional analysis and biological activity of Annona squamosa Linn. Int. J. Herb. Med., 2019, 7(4), 19-28.
[12]
Zahid, M.; Mujahid, M.; Singh, P.K.; Farooqui, S.; Singh, K.; Parveen, S.; Arif, M. Annona squamosa Linn. (Custard Apple): An aromatic medicinal plant fruit with immense nutraceutical and therapeutic potentials. Int. J. Pharm. Sci. Res., 2018, 9(5), 1745-1759.
[13]
Saha, R. Pharmacognosy and pharmacology of Annona squamosa: A review. Int J Pharm Life Sci, 2011, 2(10), 1183-1189.
[14]
Mustanir, M.; Nurdin, N.; Ginting, B. Antioxidant activity and phytochemical identification of Annona squamosa leaves methanolic extracts. Pharmacogn. J., 2021, 13(6s), 1746-1750.
[http://dx.doi.org/10.5530/pj.2021.13.225]
[15]
Zhang, W.; Feng, J.; Cheng, B.; Lu, Q.; Chen, X. Oleanolic acid protects against oxidative stress induced human umbilical vein endothelial cell injury by activating AKT/eNOS signaling. Mol. Med. Rep., 2018, 18(4), 3641-3648.
[http://dx.doi.org/10.3892/mmr.2018.9354] [PMID: 30106101]
[16]
Msibi, Z.N.P.; Mabandla, M.V. Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains. Front. Physiol., 2019, 10, 1059.
[http://dx.doi.org/10.3389/fphys.2019.01059] [PMID: 31496954]
[17]
Rohilla, S.; Bhatt, D.C. Significance of hepatoprotective liver specific targeted drug delivery: A review on novel herbal and formulation approaches in the management of hepatotoxicity. Curr. Drug Targets, 2018, 19(13), 1519-1549.
[http://dx.doi.org/10.2174/1389450119666180104113601] [PMID: 29299986]
[18]
Huafang, D. Hu, Xing; Xu, Ximing; Guowen, Z; Deming, G. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. Int J Biol Macromol, 2018, 107, 1844-1855.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.040]
[19]
Haguet, Q.; Le Joubioux, F.; Chavanelle, V.; Groult, H.; Schoonjans, N.; Langhi, C.; Michaux, A.; Otero, Y.F.; Boisseau, N.; Peltier, S.L.; Sirvent, P.; Maugard, T. Inhibitory potential of α-amylase, α-glucosidase, and pancreatic lipase by a formulation of five plant extracts: TOTUM-63. Int. J. Mol. Sci., 2023, 24(4), 3652.
[http://dx.doi.org/10.3390/ijms24043652] [PMID: 36835060]
[20]
Dash, S.; Pattnaik, G. The promising role of oleanolic acid in the management of diabetes mellitus: A review. J Appl Pharm Sci., 2021, 11(9), 149-157.
[21]
Dash, S.; Sahoo, N.; Pattnaik, G.; Ghosh, G.; Rath, G.; Bhattacharya, S.; Kar, B. Antihyperglycemic effect of Annona squamosa leaf and Oleanolic acid combination in diabetic albino rats. Curr. Trends Biotechnol. Pharm., 2023, 17(3), 1004-1012.
[22]
Devi, P.; Meera, R. Study of antioxdant, antiinflammatory and wound healing activity of extracts of Litseaglutinosa. J Pharmaceut Sci Res, 2010, 2(3), 155-163.
[23]
Ani, N.I.; Okolo, K.O.; Offiah, R.O. Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. & Diels). Future Journal of Pharmaceutical Sciences, 2023, 9(1), 3.
[http://dx.doi.org/10.1186/s43094-022-00455-z]
[24]
Hota, R.N.; Nanda, B.K.; Behera, B.R.; Bose, A.; Das, D. Ameliorative effect of ethanolic extract of Limnophila rugosa (Scrophulariaceae) in paracetamol- and carbon tetrachloride-induced hepatotoxicity in rats. Future Journal of Pharmaceutical Sciences, 2022, 8(1), 6.
[http://dx.doi.org/10.1186/s43094-021-00397-y]
[25]
Ashraf, G.J.; Das, P.; Dua, T.K.; Paul, P.; Nandi, G.; Sahu, R. High‐performance thin‐layer chromatography based approach for bioassay and ATR–FTIR spectroscopy for the evaluation of antioxidant compounds from Asparagus racemosus Willd. aerial parts. Biomed. Chromatogr., 2021, 35(12), e5230.
[http://dx.doi.org/10.1002/bmc.5230] [PMID: 34407236]
[26]
Nonglang, F.P.; Khale, A.; Wankhar, W.; Bhan, S. Pharmacognostic evaluation of Eranthemum indicum extracts for its in-vitro antioxidant activity, acute toxicology, and investigation of potent bioactive phytocompounds using HPTLC and GCMS. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 129.
[http://dx.doi.org/10.1186/s43088-022-00311-2]
[27]
Singleton, V.L.; Rossi, J.A., Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16(3), 144-158.
[http://dx.doi.org/10.5344/ajev.1965.16.3.144]
[28]
Park, Y.S.; Jung, S.T.; Kang, S.G.; Heo, B.G.; Arancibia-Avila, P.; Toledo, F.; Drzewiecki, J.; Namiesnik, J.; Gorinstein, S. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem., 2008, 107(2), 640-648.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.070]
[29]
Meena, H.; Pandey, H.; Pandey, P.; Arya, M.; Ahmed, Z. Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica. Indian J. Pharmacol., 2012, 44(1), 114-117.
[http://dx.doi.org/10.4103/0253-7613.91880] [PMID: 22345883]
[30]
Hota, R.N.; Nanda, B.K.; Behera, B.R.; Bose, A.; Das, D. GC-MS analysis, molecular docking and hepatoprotective effect of ethanolic extract of capparis zeylanica on CCl4-Induced hepatotoxicity in rats. Asian J. Chem., 2022, 34(4), 979-988.
[http://dx.doi.org/10.14233/ajchem.2022.23616]
[31]
Wickramaratne, M.N.; Punchihewa, J.C.; Wickramaratne, D.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement. Altern. Med., 2016, 16(1), 466-470.
[http://dx.doi.org/10.1186/s12906-016-1452-y] [PMID: 27846876]
[32]
Ademiluyi, A.O.; Oboh, G. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol., 2013, 65(3), 305-309.
[http://dx.doi.org/10.1016/j.etp.2011.09.005] [PMID: 22005499]
[33]
Tagami, T.; Yamashita, K.; Okuyama, M.; Mori, H.; Yao, M.; Kimura, A. Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. J. Biol. Chem., 2013, 288(26), 19296-19303.
[http://dx.doi.org/10.1074/jbc.M113.465211] [PMID: 23687304]
[34]
Nahoum, V.; Roux, G.; Anton, V.; Rougé, P.; Puigserver, A.; Bischoff, H.; Henrissat, B.; Payan, F. Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem. J., 2000, 346(1), 201-208.
[http://dx.doi.org/10.1042/bj3460201] [PMID: 10657258]
[35]
Ravishankara, B.; Riaz Mahmood, V.K.; Vinaykumar, N.M.; Shastri, S.L. Hepatoprotective activity and molecular docking studies of Chloroxylon swietenia DC. fruit extract phytocompounds. Int J Pharmaceut Res, 2021, 13(4), 2704-2717.
[36]
Siddique, M.H.; Ashraf, A.; Hayat, S.; Aslam, B.; Fakhar-e-Alam, M.; Muzammil, S.; Atif, M.; Shahid, M.; Shafeeq, S.; Afzal, M.; Ahmad, S. Antidiabetic and antioxidant potentials of Abelmoschus esculentus: In vitro combined with molecular docking approach. J. Saudi Chem. Soc., 2022, 26(2), 101418.
[http://dx.doi.org/10.1016/j.jscs.2021.101418]
[37]
Caspary, W.F. Sucrose malabsorption in man after ingestion of α-glucosidehydrolase inhibitor. Lancet, 1978, 311(8076), 1231-1233.
[http://dx.doi.org/10.1016/S0140-6736(78)92466-2] [PMID: 77996]
[38]
Islam, M.S.; Chipiti, T.; Ibrahim, M.A.; Singh, M. In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts. Pharmacogn. Mag., 2015, 11(44)(Suppl. 2), 231.
[http://dx.doi.org/10.4103/0973-1296.166018] [PMID: 26664010]
[39]
Msomi, N.Z.; Shode, F.O.; Pooe, O.J.; Mazibuko-Mbeje, S.; Simelane, M.B.C. Iso- mukaadial acetate from Warburgiasalutaris enhances glucose uptake in the L6 rat myoblast cell line. Biomolecules, 2019, 9(10), 520.
[http://dx.doi.org/10.3390/biom9100520] [PMID: 31546691]
[40]
Paun, G.; Neagu, E.; Albu, C.; Savin, S.; Radu, G.L. In vitro evaluation of antidiabetic and anti-inflammatory activities of polyphenolic-rich extracts from Anchusa officinalis and Melilotus officinalis. ACS Omega, 2020, 5(22), 13014-13022.
[http://dx.doi.org/10.1021/acsomega.0c00929] [PMID: 32548486]
[41]
Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI J., 2014, 13, 897-921.
[PMID: 26417311]
[42]
Poongunran, J.; Perera, H.; Fernando, W.; Jayasinghe, L.; Sivakanesan, R. α-Glucosidase and α-amylase inhibitory activities of nine Sri Lankan anti diabetic plants. Br. J. Pharm. Res., 2015, 7(5), 365-374.
[http://dx.doi.org/10.9734/BJPR/2015/18645]
[43]
Mahomoodally, MF; Subratty, AH; Gurib-Fakim, A; Choudhary, MI; Khan, SN Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo. Sci World J, 2012.
[44]
da Silva, S.M.; Koehnlein, E.A.; Bracht, A.; Castoldi, R.; de Morais, G.R.; Baesso, M.L.; Peralta, R.A.; de Souza, C.G.M.; de Sá-Nakanishi, A.B.; Peralta, R.M. Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Food Res. Int., 2014, 56, 1-8.
[http://dx.doi.org/10.1016/j.foodres.2013.12.004]
[45]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[http://dx.doi.org/10.1271/bbb.64.2458] [PMID: 11193416]
[46]
Barrett, A.; Ndou, T.; Hughey, C.A.; Straut, C.; Howell, A.; Dai, Z.; Kaletunc, G. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes. J. Agric. Food Chem., 2013, 61(7), 1477-1486.
[http://dx.doi.org/10.1021/jf304876g] [PMID: 23289516]
[47]
Song, Y.; Manson, J.E.; Buring, J.E.; Sesso, H.D.; Liu, S. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J. Am. Coll. Nutr., 2005, 24(5), 376-384.
[http://dx.doi.org/10.1080/07315724.2005.10719488] [PMID: 16192263]
[48]
Fan, X.H.; Cheng, Y.Y.; Ye, Z.L.; Lin, R.C.; Qian, Z.Z. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Anal. Chim. Acta, 2006, 555(2), 217-224.
[http://dx.doi.org/10.1016/j.aca.2005.09.037]
[49]
Lou, W.; Chen, Y.; Ma, H.; Liang, G.; Liu, B. Antioxidant and α-amylase inhibitory activities of tannic acid. J. Food Sci. Technol., 2018, 55(9), 3640-3646.
[http://dx.doi.org/10.1007/s13197-018-3292-x] [PMID: 30150823]
[50]
Li, R.; Wang, S.; McClements, D.J.; Wan, Y.; Liu, C.; Fu, G. Antioxidant activity and α-amylase and α-glucosidase inhibitory activity of a fermented tannic acid product. Trigalloylglucose. Lebensm. Wiss. Technol., 2019, 112, 108249.
[http://dx.doi.org/10.1016/j.lwt.2019.108249]
[51]
Kokila, N.R.; Mahesh, B.; Ramu, R.; Mruthunjaya, K.; Bettadaiah, B.K.; Madhyastha, H. Inhibitory effect of gallic acid from Thunbergia mysorensis against α-glucosidase, α-amylase, aldose reductase and their interaction: Inhibition kinetics and molecular simulations. J. Biomol. Struct. Dyn., 2022, 19, 1-17.
[http://dx.doi.org/10.1080/07391102.2022.2156923] [PMID: 36533383]
[52]
Dubey, S.; Ganeshpurkar, A.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Glycolytic enzyme inhibitory and antiglycation potential of rutin. Fut. J. Pharm. Sci., 2017, 3(2), 158-162.
[http://dx.doi.org/10.1016/j.fjps.2017.05.005]
[53]
Li, K.; Yao, F.; Xue, Q.; Fan, H.; Yang, L.; Li, X.; Sun, L.; Liu, Y. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method. Chem. Cent. J., 2018, 12(1), 82.
[http://dx.doi.org/10.1186/s13065-018-0445-y] [PMID: 30003449]
[54]
Son, S.M. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab. J., 2012, 36(3), 190-198.
[http://dx.doi.org/10.4093/dmj.2012.36.3.190] [PMID: 22737658]
[55]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[56]
Pitocco, D.; Zaccardi, F.; Di Stasio, E.; Romitelli, F.; Santini, S.A.; Zuppi, C.; Ghirlanda, G. Oxidative stress, nitric oxide, and diabetes. Rev. Diabet. Stud., 2010, 7(1), 15-25.
[http://dx.doi.org/10.1900/RDS.2010.7.15] [PMID: 20703435]
[57]
Žourek, M.; Kyselová, P.; Mudra, J.; Krčma, M.; Jankovec, Z.; Lacigová, S.; Víšek, J.; Rušavý, Z. The relationship between glycemia, insulin and oxidative stress in hereditary hypertriglyceridemic rat. Physiol. Res., 2008, 57(4), 531-538.
[http://dx.doi.org/10.33549/physiolres.931255] [PMID: 17705681]
[58]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 2003, 52(1), 1-8.
[http://dx.doi.org/10.2337/diabetes.52.1.1] [PMID: 12502486]
[59]
Helfand, S.L.; Rogina, B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu. Rev. Genet., 2003, 37(1), 329-348.
[http://dx.doi.org/10.1146/annurev.genet.37.040103.095211] [PMID: 14616064]
[60]
Bonina, F.; Puglia, C.; Tomaino, A.; Saija, A.; Mulinacci, N.; Romani, A.; Vincieri, F.F. In-vitro antioxidant and in-vivo photoprotective effect of three lyophilized extracts of Sedum telephium L. leaves. J. Pharm. Pharmacol., 2010, 52(10), 1279-1285.
[http://dx.doi.org/10.1211/0022357001777261] [PMID: 11092573]
[61]
Sarwar, R.; Farooq, U.; Khan, A.; Naz, S.; Khan, S.; Khan, A.; Rauf, A.; Bahadar, H.; Uddin, R. Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of Quercus incana roxb. Front. Pharmacol., 2015, 6, 277.
[http://dx.doi.org/10.3389/fphar.2015.00277] [PMID: 26635607]
[62]
Kumari, S.; Deori, M.; Elancheran, R.; Kotoky, J.; Devi, R. In vitro and In vivo antioxidant, anti-hyperlipidemic properties and chemical characterization of Centella asiatica (L.). Extract. Front. Pharmacol., 2016, 7, 400.
[http://dx.doi.org/10.3389/fphar.2016.00400] [PMID: 27840607]
[63]
Nile, S.H.; Keum, Y.S. Anti-oxidant, anti-inflammatory and enzyme inhibitory activities of 10 selected Unani herbs. Bangladesh J. Pharmacol., 2017, 12(2), 162-164.
[http://dx.doi.org/10.3329/bjp.v12i2.31843]
[64]
Ferreira, O.O.; Franco, C.J.P.; Varela, E.L.P.; Silva, S.G.; Cascaes, M.M.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.A. Chemical composition and antioxidant activity of essential oils from leaves of two specimens of Eugenia florida DC. Molecules, 2021, 26(19), 5848.
[http://dx.doi.org/10.3390/molecules26195848] [PMID: 34641394]
[65]
Sahoo, S.; Rath, D.; Kar, D.M.; Pattanaik, S. Hepatoprotective potency of Litsea glutinosa (L.) C.B. Rob. leaf methanol extract on H2O2-induced toxicity in HepG2 cells. J. Ethnopharmacol., 2023, 304, 116076.
[http://dx.doi.org/10.1016/j.jep.2022.116076] [PMID: 36567040]
[66]
Kunihiro, K.; Myoda, T.; Tajima, N.; Gotoh, K.; Kaneshima, T.; Someya, T.; Toeda, K.; Fujimori, T.; Nishizawa, M. Volatile components of the essential oil of Artemisia montana and their sedative effects. J. Oleo Sci., 2017, 66(8), 843-849.
[http://dx.doi.org/10.5650/jos.ess16006] [PMID: 28381767]
[67]
Mosbah, H.; Chahdoura, H.; Kammoun, J.; Hlila, M.B.; Louati, H.; Hammami, S.; Flamini, G.; Achour, L.; Selmi, B. Rhaponticum acaule (L) DC essential oil: Chemical composition, in vitro antioxidant and enzyme inhibition properties. BMC Complement. Altern. Med., 2018, 18(1), 79.
[http://dx.doi.org/10.1186/s12906-018-2145-5] [PMID: 29506517]
[68]
Gazali, M.; Jolanda, O.; Husni, A. Nurjanah; Majid, F.A.A.; Zuriat; Syafitri, R. In vitro α-amylase and α-glucosidase inhibitory activity of green seaweed Halimeda tuna extract from the coast of lhok bubon, aceh. Plants, 2023, 12(2), 393.
[http://dx.doi.org/10.3390/plants12020393] [PMID: 36679105]
[69]
Xu, Q.; Zhang, L.; Yu, S.; Xia, G.; Zhu, J.; Zang, H. Chemical composition and biological activities of an essential oil from the aerial parts of Artemisia Gmelinii weber ex Stechm. Nat. Prod. Res., 2021, 35(2), 346-349.
[http://dx.doi.org/10.1080/14786419.2019.1627349] [PMID: 31177847]
[70]
Hullatti, K.; Telagari, M. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J. Pharmacol., 2015, 47(4), 425-429.
[http://dx.doi.org/10.4103/0253-7613.161270] [PMID: 26288477]
[71]
Hanh, T.T.H.; Dang, N.H.; Dat, N.T. α -Amylase and α -Glucosidase Inhibitory Saponins from Polyscias fruticosa Leaves. J. Chem., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/2082946]
[72]
Okechukwu, P.; Sharma, M.; Tan, W.H.; Chan, H.K.; Chirara, K.; Gaurav, A.; Al-Nema, M. In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. Pharmacia, 2020, 67(4), 363-371.
[http://dx.doi.org/10.3897/pharmacia.67.e58392]
[73]
Ogunyemi, O.M.; Gyebi, G.A.; Saheed, A.; Paul, J.; Nwaneri-Chidozie, V.; Olorundare, O.; Adebayo, J.; Koketsu, M.; Aljarba, N.; Alkahtani, S.; Batiha, G.E.S.; Olaiya, C.O. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front. Mol. Biosci., 2022, 9, 866719.
[http://dx.doi.org/10.3389/fmolb.2022.866719] [PMID: 36032689]
[74]
Ag, H.B.I.S.C.H.O.F.F.B. Pharmacology of α‐glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24(S3)(Suppl. 3), 3-10.
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02249.x] [PMID: 8001624]
[75]
Pedrood, K.; Rezaei, Z.; Khavaninzadeh, K.; Larijani, B.; Iraji, A.; Hosseini, S.; Mojtabavi, S.; Dianatpour, M.; Rastegar, H.; Faramarzi, M.A.; Hamedifar, H.; Hajimiri, M.H.; Mahdavi, M. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors. BMC Chem., 2022, 16(1), 57.
[http://dx.doi.org/10.1186/s13065-022-00848-4] [PMID: 35909126]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy