Abstract
Background: Diabetes mellitus (DM) is a metabolic disorder caused by insufficient insulin production from pancreatic β-cells or insulin resistance; its prevalence rapidly increases worldwide. Increasing reports indicate that most plant bioactive agents exhibited alternative and safe effects in managing DM.
Objective: The study aims to evaluate the in vitro antioxidant and anti-diabetic efficacy of the combination of Annona squamosa Linn. (AS) leaf extract and Oleanolic acid (OA) using in vitro and in-silico approaches.
Methods: The leaf of AS was extracted by soxhlet extraction using n-hexane and methanol. The methanol extract of AS (MEAS) was subjected to GC-MS analysis. Quantification of total phenolic and flavonoid content and OA were carried out by HPLC and HPTLC analysis, respectively. In vitro antioxidant (DPPH, NO, and H2O2) and anti-diabetic (α-amylase and α-glucosidase) potentials of MEAS, OA, and a combination of MEAS and OA (MEAS + OA) were studied at different concentrations using ascorbic acid and acarbose as standard, respectively. An in-silico study determined their binding interactions with α-amylase (PDB ID-1B2Y) and α-glucosidase (PDB ID-3W37).
Results: GC-MS analysis of MEAS revealed three major bioactives like bicyclo[7.2.0]undec-4- ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-, germacrene D and undecane. The highest amount of phenolic (tannic acid and gallic acid) (150 μg/ml) and flavonoid (rutin and quercetin) (40 μg/ml) compounds were found in MEAS. OA was quantified as 356.74 ng/ml in MEAS by HPTLC. The significant inhibitory effects of MEAS, OA, and (MEAS + OA) on free radicals and α-amylase and α-glucosidase were observed concentration-dependent. However, MEAS + OA exhibited a greater percentage of inhibition than MEAS and OA alone. The in-silico analysis revealed highest docking-score of OA (-9.8 & -8.8), Germacrene D (-7.5 & -6.5) and Bicyclo[ 7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-, (-7.0 & -6.4) against IB2Y and 3W37 proteins, respectively.
Conclusion: We found that the combination of MEAS + OA exhibited the highest in vitro antioxidant and anti-diabetic activities compared to MEAS and OA. It concluded that OA has a significant role in potentiating the anti-diabetic effect of A. squamosa.
[http://dx.doi.org/10.1155/2023/8774094]
[http://dx.doi.org/10.2174/1573399820666230817154835] [PMID: 37592777]
[http://dx.doi.org/10.1155/2019/7384735]
[http://dx.doi.org/10.1111/dme.12791] [PMID: 25962518]
[http://dx.doi.org/10.1007/s12013-015-0598-4] [PMID: 25711186]
[http://dx.doi.org/10.1177/2515690X20935827]
[http://dx.doi.org/10.14233/ajchem.2020.22696]
[http://dx.doi.org/10.1016/j.jep.2003.12.017] [PMID: 15036485]
[http://dx.doi.org/10.1002/jccs.197000031]
[http://dx.doi.org/10.5530/pj.2021.13.225]
[http://dx.doi.org/10.3892/mmr.2018.9354] [PMID: 30106101]
[http://dx.doi.org/10.3389/fphys.2019.01059] [PMID: 31496954]
[http://dx.doi.org/10.2174/1389450119666180104113601] [PMID: 29299986]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.040]
[http://dx.doi.org/10.3390/ijms24043652] [PMID: 36835060]
[http://dx.doi.org/10.1186/s43094-022-00455-z]
[http://dx.doi.org/10.1186/s43094-021-00397-y]
[http://dx.doi.org/10.1002/bmc.5230] [PMID: 34407236]
[http://dx.doi.org/10.1186/s43088-022-00311-2]
[http://dx.doi.org/10.5344/ajev.1965.16.3.144]
[http://dx.doi.org/10.1016/j.foodchem.2007.08.070]
[http://dx.doi.org/10.4103/0253-7613.91880] [PMID: 22345883]
[http://dx.doi.org/10.14233/ajchem.2022.23616]
[http://dx.doi.org/10.1186/s12906-016-1452-y] [PMID: 27846876]
[http://dx.doi.org/10.1016/j.etp.2011.09.005] [PMID: 22005499]
[http://dx.doi.org/10.1074/jbc.M113.465211] [PMID: 23687304]
[http://dx.doi.org/10.1042/bj3460201] [PMID: 10657258]
[http://dx.doi.org/10.1016/j.jscs.2021.101418]
[http://dx.doi.org/10.1016/S0140-6736(78)92466-2] [PMID: 77996]
[http://dx.doi.org/10.4103/0973-1296.166018] [PMID: 26664010]
[http://dx.doi.org/10.3390/biom9100520] [PMID: 31546691]
[http://dx.doi.org/10.1021/acsomega.0c00929] [PMID: 32548486]
[PMID: 26417311]
[http://dx.doi.org/10.9734/BJPR/2015/18645]
[http://dx.doi.org/10.1016/j.foodres.2013.12.004]
[http://dx.doi.org/10.1271/bbb.64.2458] [PMID: 11193416]
[http://dx.doi.org/10.1021/jf304876g] [PMID: 23289516]
[http://dx.doi.org/10.1080/07315724.2005.10719488] [PMID: 16192263]
[http://dx.doi.org/10.1016/j.aca.2005.09.037]
[http://dx.doi.org/10.1007/s13197-018-3292-x] [PMID: 30150823]
[http://dx.doi.org/10.1016/j.lwt.2019.108249]
[http://dx.doi.org/10.1080/07391102.2022.2156923] [PMID: 36533383]
[http://dx.doi.org/10.1016/j.fjps.2017.05.005]
[http://dx.doi.org/10.1186/s13065-018-0445-y] [PMID: 30003449]
[http://dx.doi.org/10.4093/dmj.2012.36.3.190] [PMID: 22737658]
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[http://dx.doi.org/10.1900/RDS.2010.7.15] [PMID: 20703435]
[http://dx.doi.org/10.33549/physiolres.931255] [PMID: 17705681]
[http://dx.doi.org/10.2337/diabetes.52.1.1] [PMID: 12502486]
[http://dx.doi.org/10.1146/annurev.genet.37.040103.095211] [PMID: 14616064]
[http://dx.doi.org/10.1211/0022357001777261] [PMID: 11092573]
[http://dx.doi.org/10.3389/fphar.2015.00277] [PMID: 26635607]
[http://dx.doi.org/10.3389/fphar.2016.00400] [PMID: 27840607]
[http://dx.doi.org/10.3329/bjp.v12i2.31843]
[http://dx.doi.org/10.3390/molecules26195848] [PMID: 34641394]
[http://dx.doi.org/10.1016/j.jep.2022.116076] [PMID: 36567040]
[http://dx.doi.org/10.5650/jos.ess16006] [PMID: 28381767]
[http://dx.doi.org/10.1186/s12906-018-2145-5] [PMID: 29506517]
[http://dx.doi.org/10.3390/plants12020393] [PMID: 36679105]
[http://dx.doi.org/10.1080/14786419.2019.1627349] [PMID: 31177847]
[http://dx.doi.org/10.4103/0253-7613.161270] [PMID: 26288477]
[http://dx.doi.org/10.1155/2016/2082946]
[http://dx.doi.org/10.3897/pharmacia.67.e58392]
[http://dx.doi.org/10.3389/fmolb.2022.866719] [PMID: 36032689]
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02249.x] [PMID: 8001624]
[http://dx.doi.org/10.1186/s13065-022-00848-4] [PMID: 35909126]