Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Pyrazole Scaffold: Potential PTP1B Inhibitors for Diabetes Treatment

In Press, (this is not the final "Version of Record"). Available online 13 February, 2024
Author(s): Kishor R. Danao, Vijayshri V. Rokde, Deweshri M. Nandurkar* and Ujwala N. Mahajan
Published on: 13 February, 2024

Article ID: e130224226925

DOI: 10.2174/0115733998280245240130075909

Price: $95

Abstract

The overexpression of the Protein Tyrosine Phosphatase 1B (PTP1B), a key role in the development of insulin resistance, diabetes (T2DM) and obesity, seems to have a substantial impact as a negative regulator of the insulin and leptin signaling pathways. Therefore, inhibiting PTP1B is a prospective therapeutic approach for the treatment of diabetes and obesity. However, the pyrazole scaffold is expected to be of significant pharmaceutical interest due to its broad spectrum of pharmacological actions. This study aims to focus on the significance of pyrazole scaffold in medicinal chemistry, the impact of PTP1B in diabetes and the therapeutic approach of pyrazole scaffold to treat T2DM. A comprehensive analysis of the published literature in several pharmaceutical and medical databases, such as the Web of Science (WoS), PubMed, ResearchGate, ScienceDirect etc., were indeed successfully completed and classified accordingly.

Results: As reviewed, the various derivatives of the pyrazole scaffold exhibited prominent PTP1B inhibitory activity. The result showed that derivatives of oxadiazole and dibenzyl amine, chloro substituents, 1, 3-diaryl pyrazole derivatives with rhodanine-3-alkanoic acid groups, naphthalene and also 1, 3, 5-triazine-1H-pyrazole-triazolothiadiazole derivatives, octyl and tetradecyl derivative, indole- and N-phenylpyrazole-glycyrrhetinic acid derivatives with trifluoromethyl group, 2,3-pyrazole ring-substituted-4,4-dimethyl lithocholic acid derivatives with 4- fluoro phenyl substituted and additional benzene ring in the pyrazole scaffold significantly inhibits PTP1B. In silico study observed that pyrazole scaffold interacted with amino acid residues like TYR46, ASP48, PHE182, TYR46, ALA217 and ILE219. Diabetes is a metabolic disorder that elevates the risk of mortality and severe complications. PTP1B is a crucial component in the management of diabetes and obesity. As a result, PTP1B is a promising therapeutic target for the treatment of T2DM and obesity in humans. We concluded that the pyrazole scaffold has prominent inhibitory potential against PTP1B.

[1]
He R, Yu Z, Zhang R, Zhang Z. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35(10): 1227-46.
[http://dx.doi.org/10.1038/aps.2014.80] [PMID: 25220640]
[2]
Mascarello A, Orbem Menegatti AC, Calcaterra A, et al. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur J Med Chem 2018; 144: 277-88.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.087] [PMID: 29275228]
[3]
Tonks NK. Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS J 2013; 280(2): 346-78.
[http://dx.doi.org/10.1111/febs.12077] [PMID: 23176256]
[4]
Liu WS, Wang RR, Yue H, et al. Design, synthesis, biological evaluation and molecular dynamics studies of 4-thiazolinone derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors. J Biomol Struct Dyn 2020; 38(13): 3814-24.
[http://dx.doi.org/10.1080/07391102.2019.1664333] [PMID: 31490104]
[5]
Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. PTP1B: A simple enzyme for a complex world. Crit Rev Biochem Mol Biol 2013; 48(5): 430-45.
[http://dx.doi.org/10.3109/10409238.2013.819830] [PMID: 23879520]
[6]
Seely BL, Staubs PA, Reichart DR, et al. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 1996; 45(10): 1379-85.
[http://dx.doi.org/10.2337/diab.45.10.1379] [PMID: 8826975]
[7]
Kenner KA, Anyanwu E, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 1996; 271(33): 19810-6.
[http://dx.doi.org/10.1074/jbc.271.33.19810] [PMID: 8702689]
[8]
Santaniemi M, Ukkola O, Kesäniemi YA. Tyrosine phosphatase 1B and leptin receptor genes and their interaction in type 2 diabetes. J Intern Med 2004; 256(1): 48-55.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01339.x] [PMID: 15189365]
[9]
Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 2000; 275(6): 4283-9.
[http://dx.doi.org/10.1074/jbc.275.6.4283] [PMID: 10660596]
[10]
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9(1): 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[11]
Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 2002; 1(9): 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[12]
Kim J, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008; 102(4): 401-14.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.165472] [PMID: 18309108]
[13]
Klaman LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000; 20(15): 5479-89.
[http://dx.doi.org/10.1128/MCB.20.15.5479-5489.2000] [PMID: 10891488]
[14]
Krishnan N, Konidaris KF, Gasser G, Tonks NK. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J Biol Chem 2018; 293(5): 1517-25.
[http://dx.doi.org/10.1074/jbc.C117.819110] [PMID: 29217773]
[15]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[16]
Perreault L, Skyler JS, Rosenstock J. Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17(6): 364-77.
[http://dx.doi.org/10.1038/s41574-021-00489-y] [PMID: 33948015]
[17]
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249: 115119.
[http://dx.doi.org/10.1016/j.ejmech.2023.115119] [PMID: 36680985]
[18]
Rokde V, Danao K, Bali N, Mahajan U. The severity of COVID-19 in diabetes patients. Curr Diabetes Rev 2023; 19(5): e061022209633.
[http://dx.doi.org/10.2174/1573399819666221006103113] [PMID: 36201275]
[19]
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 2016; 15(11): 786-804.
[http://dx.doi.org/10.1038/nrd.2016.151] [PMID: 27516169]
[20]
International Diabetes Federation. IDF Diabetes Atlas. (10th ed.), Brussels, Belgium 2021.
[21]
Seewoodhary J, Bain SC. Novel treatments for type 2 diabetes. Br J Gen Pract 2011; 61(582): 5-6.
[http://dx.doi.org/10.3399/bjgp11X548884] [PMID: 21401982]
[22]
Ansari A, Ali A, Asif M, Shamsuzzaman S. Review: Biologically active pyrazole derivatives. New J Chem 2017; 41(1): 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[23]
Santos C, Silva V, Silva A. Synthesis of chromone-related pyrazole compounds. Molecules 2017; 22(10): 1665.
[http://dx.doi.org/10.3390/molecules22101665] [PMID: 28981465]
[24]
Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam Horm 2013; 91: 405-24.
[http://dx.doi.org/10.1016/B978-0-12-407766-9.00017-1] [PMID: 23374726]
[25]
Silva VLM, Elguero J, Silva AMS. Current progress on antioxidants incorporating the pyrazole core. Eur J Med Chem 2018; 156: 394-429.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.007] [PMID: 30015075]
[26]
Dewi RM, Megawati M, Antika LD. Antidiabetic properties of dietary chrysin: A cellular mechanism review. Mini Rev Med Chem 2022; 22(10): 1450-7.
[http://dx.doi.org/10.2174/1389557521666211101162449] [PMID: 34720081]
[27]
Panzhinskiy E, Hua Y, Lapchak PA, et al. Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance. J Pharmacol Exp Ther 2014; 349(2): 248-57.
[http://dx.doi.org/10.1124/jpet.113.208728] [PMID: 24549372]
[28]
Wang LJ, Jiang B, Wu N, Wang SY, Shi DY. Small molecules as potent protein tyrosine phosphatase 1B (PTP1B) inhibitors documented in patents from 2009 to 2013. Mini Rev Med Chem 2015; 15(2): 104-22.
[http://dx.doi.org/10.2174/1389557515666150203144339] [PMID: 25643610]
[29]
Sun L, Wang P, Xu L, Gao L, Li J, Piao H. Discovery of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups as potential PTP1B inhibitors. Bioorg Med Chem Lett 2019; 29(10): 1187-93.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.023] [PMID: 30910462]
[30]
Chenglu Z, Chuanyin L, Yaodong G, Xiaona S. Synthesis and bioactivity evaluation of novel 1, 3, 5-triazine-1h-pyrazole-triazol-ethiadiazole derivatives. Youji Huaxue 2019; (38): 1223-32.
[31]
Cho SY, Ahn JH, Ha JD, et al. Protein tyrosine phosphatase 1b inhibitors: Heterocyclic carboxylic acids. Bull Korean Chem Soc 2003; 24(10): 1455-64.
[http://dx.doi.org/10.5012/bkcs.2003.24.10.1455]
[32]
De-la-Cruz-Martínez L, Duran-Becerra C, González-Andrade M, et al. Indole-and pyrazole-glycyrrhetinic acid derivatives as PTP1B inhibitors: Synthesis, in vitro and in silico studies. Molecules 2021; 26(14): 4375.
[http://dx.doi.org/10.3390/molecules26144375] [PMID: 34299651]
[33]
Mao SW, Shuai L, He HB, et al. Synthesis and biological evaluation of novel 2,3-pyrazole ring-substituted-4,4-dimethyl lithocholic acid derivatives as selective protein tyrosine phosphatase 1B (PTP1B) inhibitors with cellular efficacy. RSC Advances 2015; 5(129): 106551-60.
[http://dx.doi.org/10.1039/C5RA20238H]
[34]
Nandurkar D, Menghani S, Danao K, et al. New benzopyrrole derivatives: Synthesis and appraisal of their potential as antimicrobial agents. Chem Biodivers 2023; 20(7): e202300394.
[http://dx.doi.org/10.1002/cbdv.202300394] [PMID: 37300516]
[35]
Danao K, Nandurkar D, Rokde V, Shivhare R, Mahajan U. Molecular docking: Metamorphosis in drug discovery. In: Molecular Docking-Recent Advances 2022 Sep 2. IntechOpen 2022.
[36]
Rokde V, Danao K, Nimje J, et al. Design, synthesis, antimicrobial evaluation of novel 2‐Oxo‐4‐substituted aryl‐azetidine benzotriazole derivatives**. Chem Biodivers 2023; 20(7): e202300433.
[http://dx.doi.org/10.1002/cbdv.202300433] [PMID: 37306062]
[37]
Shivhare R, Danao K, Nandurkar D, et al. Schiff base as multifaceted bioactive core. In: Schiff Base in Organic. Inorganic and Physical Chemistry. Intechopen 2022.
[38]
Danao K, Kale S, Rokde V, et al. In silico prediction of antidiabetic activity of phytoconstituents of pterocarpus marsupium targeting α-amylase enzyme. Biosci Biotechnol Res Asia 2023; 20(1): 147-62.
[http://dx.doi.org/10.13005/bbra/3077]
[39]
Rocha RF, Rodrigues T, Menegatti ACO, Bernardes GJL, Terenzi H. The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity. Bioorg Chem 2020; 100: 103927.
[http://dx.doi.org/10.1016/j.bioorg.2020.103927] [PMID: 32422389]
[40]
Tamrakar AK, Maurya CK, Rai AK. PTP1B inhibitors for type 2 diabetes treatment: A patent review (2011 – 2014). Expert Opin Ther Pat 2014; 24(10): 1101-15.
[http://dx.doi.org/10.1517/13543776.2014.947268] [PMID: 25120222]
[41]
Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell 2002; 2(4): 489-95.
[http://dx.doi.org/10.1016/S1534-5807(02)00148-X] [PMID: 11970898]
[42]
Verma M, Gupta SJ, Chaudhary A, Garg VK. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review. Bioorg Chem 2017; 70: 267-83.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.004] [PMID: 28043717]
[43]
Liu M, Wang L, Sun X, Zhao X. Investigating the impact of Asp181 point mutations on interactions between PTP1B and phosphotyrosine substrate. Sci Rep 2014; 4(1): 5095.
[http://dx.doi.org/10.1038/srep05095] [PMID: 24865376]
[44]
Basu S, Prathipati P, Thorat S, et al. Rational design, synthesis, and structure-activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 2017; 25(1): 67-74.
[http://dx.doi.org/10.1016/j.bmc.2016.10.012] [PMID: 28340988]
[45]
Montalibet J, Kennedy BP. Therapeutic strategies for targeting PTP1B in diabetes. Drug Discov Today Ther Strateg 2005; 2(2): 129-35.
[http://dx.doi.org/10.1016/j.ddstr.2005.05.002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy