Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Space Docking Simulation Simulator Overview

In Press, (this is not the final "Version of Record"). Available online 09 February, 2024
Author(s): Yuan Zhang* and Yibing Wang
Published on: 09 February, 2024

Article ID: e090224226826

DOI: 10.2174/0118722121278354240131121043

Price: $95

Abstract

Background: Docking mechanism ground simulation test technology has been a significant issue in the aerospace industry. Docking mechanisms must pass various conventional evaluation tests as a class of electromechanical space products and other space products. Due to the unique nature of the working object environment in space engineering, it is very expensive to simultaneously simulate the docking work under space conditions and conduct ground reproduction tests, so the test technology of the docking mechanism must be thoroughly investigated.

Objective: This paper reviews patents on aircraft ground docking and space environment simulation systems to provide insights and references to scholars and researchers in spacecraft simulator manufacturing.

Methods: The representative patents associated with each simulation equipment for space docking simulators, including mechanical docking dynamics equipment, space-integrated environment simulation experimental equipment, and thermal vacuum experimental equipment, are described by analyzing the structural functions of these simulators and elaborating on their operating principles and characteristics.

Results: By describing various types of space simulators, the current direction of space docking simulators can be optimized, and their future development direction is summarized and analyzed.

Conclusion: The comprehensive environmental reproduction of the space docking simulator facilitates the examination of actual problems and potential flaws in spacecraft and has a significant effect on the advancement of the space field

[1]
W. Fehse, Automated rendezvous and docking of spacecraft, Cambridge university press, 2003.
[http://dx.doi.org/10.1017/CBO9780511543388]
[2]
M. Giezen, "Adaptive and strategic capacity: navigating megaprojects through uncertainty and complexity", Environ. Plann. B Plann. Des., vol. 40, no. 4, pp. 723-741, 2013.
[http://dx.doi.org/10.1068/b38184]
[3]
S. Pellegrinelli, R. Murray-Webster, and N. Turner, "Facilitating organizational ambidexterity through the complementary use of projects and programs", Int. J. Proj. Manag., vol. 33, no. 1, pp. 153-164, 2015.
[http://dx.doi.org/10.1016/j.ijproman.2014.04.008]
[4]
M.E. Polites, An assessment of the technology of automated rendezvous and capture in space., NASA, 1998.
[5]
J. Crusan, J. Bleacher, J. Caram, D. Craig, K. Goodliff, N. Herrmann, E. Mahoney, and M. Smith, "NASA’s gateway: An update on progress and plans for extending human presence to cislunar space", In: 2019 IEEE Aerospace Conference, 2019, pp. 1-19.
[http://dx.doi.org/10.1109/AERO.2019.8741561]
[6]
D. Barnhart, L. Hill, E. Fowler, R. Hunter, L. Hoag, B. Sullivan, and P. Will, "A market for satellite cellularization: A first look at the implementation and potential impact of satlets", In: AIAA Space 2013 Conference and Exposition, 2013, pp. 1-11.
[7]
S. Breon, R. Boyle, M. Francom, C. DeLee, J. Francis, S. Mustafi, P. Barfknecht, J. McGuire, A. Krenn, and G. Zimmerli, "Robotic Refueling Mission-3—an overview", In: IOP Conference Series: Materials Science and Engineering., vol. 755. IOP Publishing, 2020, no. 1, p. 012002.
[http://dx.doi.org/10.1088/1757-899X/755/1/012002]
[8]
J. Pan, and D. Liu, "Analysis of the development of unmanned on-orbit service and modular reconfigurable spacecraft abroad", In: Unmanned system technology, vol. 2. 2019, pp. 56-61.
[http://dx.doi.org/10.19942/j.issn.2096-5915.2019.03.006]
[9]
J. Choi, J. Jung, D. Lee, and B. Kim, "Articulated linkage arms based reliable capture device for janitor satellites", Acta Astronaut., vol. 163, pp. 91-99, 2019.
[http://dx.doi.org/10.1016/j.actaastro.2019.03.002]
[10]
R. Fullerton, and R. Trevino, Review of components for large spacecraft implementationProceedings, IEEE Aerospace Conference, vol. vol. 7. 2002, pp. 7-7.
[http://dx.doi.org/10.1109/AERO.2002.1035342]
[11]
Y. Qu, C. Zhang, and M. Zhao, "Kinematic characteristics analysis of differential buffer system of space docking mechanism", J. Space Sci., pp. 100-105, 2002.
[12]
H. Cai, Y. Gao, Q. Bing, and Y. Lu, "Research status and key technology analysis of foreign space non-cooperative target capture system", J. Inst. Equip. Com. Tech, vol. 21, pp. 71-77, 2010.
[13]
B. Chen, and P. Tang, "Technology and development of space docking mechanism", Shanghai Aerospace, vol. 22, pp. 6-8, 2005.
[14]
H. Lou, B. Zhang, and Y. Liu, "echnical development of space docking mechanism", Hangtianqi Gongcheng, vol. 3, pp. 1-22, 1994.
[15]
G. Brondino, P. Marchal, D. Grimbert, and P. Noirault, "A dynamic motion simulator for future European docking systems", NASA, John F. Kennedy Space Center, The 24th Aerospace Mechanisms Symposium, 1990.
[16]
S. McDonald, "Mir mission chronicle", NASA , 1998.
[17]
D.S. Portree, Mir hardware heritage., Lyndon B. Johnson Space Center, 1995.
[18]
V.S. Syromiatnikov, Manipulator system for module re docking on the Mir Orbital ComplexProceedings 1992 IEEE International Conference on Robotics and Automation, 1992, p. 913.
[http://dx.doi.org/10.1109/ROBOT.1992.220180]
[19]
L.C. Walters, "To create space on earth: the space environment simulation laboratory and project apollo", In: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 2003.
[20]
G. Qu, C. Peng, Z. Ma, and J. Yu, "Dynamics and test technology of russian large spacecraft", Hangtianqi Gongcheng, pp. 1-7, 1992.
[21]
R.R. Bate, D.D. Mueller, J.E. White, and W.W. Saylor, Fundamentals of astrodynamics., Courier Dover Publications, 2020.
[22]
R. Carr, O. Ma, G. Yang, H. Jones, J. Bolger, E. Martin, J. Piedboeuf, and D. Crabtree, "A simulink-based satellite docking simulator with generic contact dynamics capabilities", 6th Int. Symp. on Artificial. Intel., Robotics & Auto. in Space, CSA, St-Hubert, Quebec, 2001.
[23]
P.C. Hughes, Spacecraft attitude dynamics., Courier Corporation, 2012.
[24]
H. Kawabe, E. Inohira, T. Kubota, and M. Uchiyama, "Analytical and experimental evaluation of impact dynamics on a high-speed zero G motion simulator", Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. vol. 4, pp. 1870-1875, 2001.
[http://dx.doi.org/10.1109/IROS.2001.976346]
[25]
B. Fox, L.S. Jennings, and A.Y. Zomaya, "Numerical computation of differential-algebraic equations for the approximation of artificial satellite trajectories and planetary ephemerides", J. Appl. Mech., vol. 67, no. 3, pp. 574-580, 2000.
[http://dx.doi.org/10.1115/1.1313820]
[26]
A. Scibilia, N. Pedrocchi, and L. Fortuna, "Modeling nonlinear dynamics in human-machine interaction", IEEE Access, vol. 11, pp. 58664-58678, 2023.
[http://dx.doi.org/10.1109/ACCESS.2023.3284135]
[27]
Y.K. Chang, M.Y. Yun, and B.H. Lee, "A new modeling and validation of two-axis miniature fine sun sensor", Sens. Actuators A Phys., vol. 134, no. 2, pp. 357-365, 2007.
[http://dx.doi.org/10.1016/j.sna.2006.05.037]
[28]
P. Flores, and J. Ambrósio, "On the contact detection for contact-impact analysis in multibody systems", Multibody Syst. Dyn., vol. 24, no. 1, pp. 103-122, 2010.
[http://dx.doi.org/10.1007/s11044-010-9209-8]
[29]
Y. Hu, F. Gao, C. Qi, X. Zhao, and Q. Wang, "A force and moment compensation method for a hardware-in-the-loop docking simulator based on the stiffness identification of the docking mechanism", Mechatronics, vol. 76, p. 102513, 2021.
[http://dx.doi.org/10.1016/j.mechatronics.2021.102513]
[30]
J. Min, Q. Lu, D. Ge, H. Zou, and Y. Xiao, "Identification method of nonlinear physical parameters of docking mechanism", Gongcheng Lixue, vol. 23, pp. 58-62, 2006.
[31]
X. Wang, Y. Zhao, X. Cao, and Y. Chen, "Docking dynamics simulation of spacecraft with peripheral docking mechanism (Part 1) -- kinematic constraint equations", Xitong Fangzhen Xuebao, vol. 13, pp. 284-287, 2001.
[32]
Y. Sheng, and H. Li, "Determination of non-design contact mode of peripheral docking mechanism", Jisuanji Fangzhen, vol. 23, pp. 27-30, 2006.
[33]
C. Wang, and J. Yu, "Necessity and urgency of building rendezvous and docking simulation equipment in China as soon as possible", Jisuanji Fangzhen, pp. 87-91, 2003.
[34]
D.R. Riley, and W.T. Suit, A Simulator Study of Pilot Control of Remote Orbital Docking of Large Attitude-stabilized Components., National Aeronautics and Space Administration, 1967.
[35]
E. Endo, H. Mitsuma, Y. Taniguchi, R. Sakata, and T. Itoko, Berthing and docking mechanisms for future Japanese space structures28th Aerospace Sciences Meeting, p. 516, 1990.
[http://dx.doi.org/10.2514/6.1990-516]
[36]
E. Illi, "Space station freedom common berthing mechanism", NASA. Goddard Space Flight Center, The 26th Aerospace Mechanisms Symposium, 1992.
[37]
C.L. You, and J. Hong, "Dynamic model and simulation of space rendezvous and docking process", J Dyn Control Syst, vol. 2, pp. 23-28, 2004.
[38]
C. Preyssl, "Safety risk assessment and management—the ESA approach", Reliab. Eng. Syst. Saf., vol. 49, no. 3, pp. 303-309, 1995.
[http://dx.doi.org/10.1016/0951-8320(95)00047-6]
[39]
R. Zhu, H. Wang, Y. Xu, and Y. Wei, "Research on docking/docking technology from ETS - VII to HTV - Japan rendezvous", Hangtianqi Gongcheng, vol. 20, pp. 6-31, 2011.
[40]
D-M. Cho, D. Jung, and P. Tsiotras, A 5-dof experimental platform for spacecraft rendezvous and dockingUnlimited Conference, 2009, p. 1869.
[http://dx.doi.org/10.2514/6.2009-1869]
[41]
H. An, Z. Qu, and C. Wang, "Full digital simulation system of rendezvous and docking based on Matlab", Xitong Fangzhen Xuebao, vol. 27, p. 1227, 2015.
[42]
S.H. Kim, H.S. Seo, J.H. You, E.S. Han, T.K. Kim, H.D. Kim, and H.I. Huh, "Development and verification of thermal analysis model for thermal vacuum test of satellite components", J. Korean Soc. Aeronaut. Space Sci., vol. 38, no. 8, pp. 842-847, 2010.
[http://dx.doi.org/10.5139/JKSAS.2010.38.8.842]
[43]
E.C. Ezell, "The partnership: A history of the Apollo-Soyuz test project", In: NASA, Nat. Aeronautics and Space Administration, 1978.
[44]
R. Zappulla II, J. Virgili-Llop, C. Zagaris, H. Park, and M. Romano, "Dynamic air-bearing hardware-in-the-loop testbed to experimentally evaluate autonomous spacecraft proximity maneuvers", J. Spacecr. Rockets, vol. 54, no. 4, pp. 825-839, 2017.
[http://dx.doi.org/10.2514/1.A33769]
[45]
M. Zebenay, T. Boge, R. Krenn, and D. Choukroun, "Analytical and experimental stability investigation of a hardware-in-the-loop satellite docking simulator", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 229, no. 4, pp. 666-681, 2015.
[http://dx.doi.org/10.1177/0954410014539290]
[46]
I.A. Bonev, and J. Ryu, "A new method for solving the direct kinematics of general 6-6 Stewart platforms using three linear extra sensors", Mechanism Mach. Theory, vol. 35, no. 3, pp. 423-436, 2000.
[http://dx.doi.org/10.1016/S0094-114X(99)00009-9]
[47]
T. Chang, "Dynamic characteristics rebuilding of hil simulation system and its validation", 2010 International Conference on Digital Manufacturing & Automation, vol. vol. 1, pp. 581-584, 2010.
[http://dx.doi.org/10.1109/ICDMA.2010.109]
[48]
G.K. Lim, R.A. Freeman, and D. Tesar, "Modeling and simulation of a Stewart platform type parallel structure robot", NTRS, 1989.
[49]
P.O. Ogbobe, C.N. Okoye, and N.S. Akonyi, "Cross coupling effects of modal space decoupling control for six degree of freedom 6-DOF parallel mechanism (6 DOF PM)", Niger. J. Technol., vol. 41, no. 2, pp. 229-235, 2022.
[http://dx.doi.org/10.4314/njt.v41i2.4]
[50]
D. Stewart, "A platform with six degrees of freedom", Proc.- Inst. Mech. Eng., vol. 180, no. 1, pp. 371-386, 1965.
[http://dx.doi.org/10.1243/PIME_PROC_1965_180_029_02]
[51]
A. Holmes-Siedle, and L. Adams, Handbook of radiation effects., 2nd edition 1993.
[52]
R. Koga, and W.A. Kolasinski, "Heavy ion induced snapback in CMOS devices", IEEE Trans. Nucl. Sci., vol. 36, no. 6, pp. 2367-2374, 1989.
[http://dx.doi.org/10.1109/23.45450]
[53]
M. Mandell, V. Davis, B. Gardner, F. Wong, R. Adamo, D. Cooke, and A. Wheelock, "Charge control of geosynchronous spacecraft using field effect emitters", 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p. 284.
[http://dx.doi.org/10.2514/6.2007-284]
[54]
T.R. Oldham, K.W. Bennett, J. Beaucour, T. Carriere, C. Polvey, and P. Garnier, "Total dose failures in advanced electronics from single ions", IEEE Trans. Nucl. Sci., vol. 40, no. 6, pp. 1820-1830, 1993.
[http://dx.doi.org/10.1109/23.273474]
[55]
C.T. Russell, "The solar wind interaction with the Earth’s magnetosphere: A tutorial", IEEE Trans. Plasma Sci., vol. 28, no. 6, pp. 1818-1830, 2000.
[http://dx.doi.org/10.1109/27.902211]
[56]
B. Vayner, J. Galofaro, and D. Ferguson, "Solar array in dense plume plasma", 37th AIAA Plasmadynamics and Lasers Conference, 2006, p. 2905.
[57]
J.W. Wilson, L.W. Townsend, W. Schimmerling, G.S. Khandelwal, F. Khan, J.E. Nealy, F.A. Cucinotta, L.C. Simonsen, J.L. Shinn, and J.W. Norbury, "Transport methods and interactions for space radiations", In: Biological Effects and Physics of Solar and Galactic Cosmic Radiation., Springer, 1993, pp. 187-786.
[http://dx.doi.org/10.1007/978-1-4615-2916-3_12]
[58]
A. Chen, L. Zhang, J. Zang, K. Ma, Z. Ren, and F. Li, "Design of Mars environment simulation test system with stabilized CO 2 gas atmosphere", Environmental Engineering, vol. 36, pp. 398-402, 2019.
[59]
M. Bonnici, P. Mollicone, M. Fenech, and M.A. Azzopardi, "Analytical and numerical models for thermal related design of a new pico-satellite", Appl. Therm. Eng., vol. 159, p. 113908, 2019.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.113908]
[60]
R. Dunwoody, J. Reilly, D. Murphy, M. Doyle, J. Thompson, G. Finneran, L. Salmon, C. O’Toole, S.K. Reddy Akarapu, J. Erkal, J. Mangan, F. Marshall, E. Somers, S. Walsh, D. de Faoite, M. Hibbett, D. Palma, L. Franchi, L. Ha, L. Hanlon, D. McKeown, W. O’Connor, A. Uliyanov, R. Wall, B. Shortt, and S. McBreen, "Thermal vacuum test campaign of the EIRSAT-1 engineering qualification model", Aerospace, vol. 9, no. 2, p. 99, 2022.
[http://dx.doi.org/10.3390/aerospace9020099]
[61]
J. Zhu, C. Liu, and T. Liu, "Satellite vacuum baking test scheme and verification", Spacecraft Environ. Eng., vol. 35, pp. 76-81, 2018.
[62]
M.T. Kudlac, H.F. Weaver, and M.D. Cmar, "Thermal vacuum integrated system test at B-2", Cryogenics, vol. 52, no. 4-6, pp. 296-300, 2012.
[http://dx.doi.org/10.1016/j.cryogenics.2012.01.027]
[63]
L. Shifeng, L. Kai, J. Guizhong, W. Jian, and M. Errui, "Method of temperature control and its validation for atomic clock cabin on navigation satellite", J. Space Sci., vol. 39, pp. 381-387, 2019.
[64]
J.R. Tsai, "Overview of satellite thermal analytical model", J. Spacecr. Rockets, vol. 41, no. 1, pp. 120-125, 2004.
[http://dx.doi.org/10.2514/1.9273]
[65]
A. Gilmore, B. Evernden, L. Estes, J. Logan, J. Eilers, K. Carney, W. Decker, R. Davis, J. Hagen, and J. Broughton, Space shuttle orbiter structures & mechanismsAIAA SPACE 2011 Conference & Exposition, 2011, p. 7158.
[http://dx.doi.org/10.2514/6.2011-7158]
[66]
G. Hirzinger, K. Landzettel, B. Brunner, M. Fischer, C. Preusche, D. Reintsema, A. Albu-Schäffer, G. Schreiber, and B.M. Steinmetz, "DLR’s robotics technologies for on-orbit servicing", Adv. Robot., vol. 18, no. 2, pp. 139-174, 2004.
[http://dx.doi.org/10.1163/156855304322758006]
[67]
A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, "A review of space robotics technologies for on-orbit servicing", Prog. Aerosp. Sci., vol. 68, pp. 1-26, 2014.
[http://dx.doi.org/10.1016/j.paerosci.2014.03.002]
[68]
V. Gass, and J. Grosse, "Cleaning up earth’s orbit: A Swiss satellite tackles space debris", In: EPFL, 2012.
[69]
A. Baroutaji, M. Sajjia, and A.G. Olabi, "On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments", Thin-walled Struct., vol. 118, pp. 137-163, 2017.
[http://dx.doi.org/10.1016/j.tws.2017.05.018]
[70]
L.P. Rodgers, Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems., Massachusetts Institute of Technology, 2006.
[71]
C. Tanner, and C. Moening, "MIL-PRF-1540, A performance specification for design and product verification of space hardware", J. IEST, vol. 41, no. 2, pp. 19-22, 1998.
[http://dx.doi.org/10.17764/jiet.41.2.y448857752727765]
[72]
"ECSS-E-10-03A", In: Space Engineering—Testing., Requirements & Standard Division Noordwijk: Netherlands, 2002.
[73]
D. Petrillo, M. Buonomo, A. Cavinato, F. Chiariotti, M. Gaino, F. Branz, R. Mantellato, L. Olivieri, F. Sansone, and A. Francesconi, "Flexible Electromagnetic Leash Docking system (FELDs) experiment from design to microgravity testing", 66Th International Astronautical Congress, IAC-15 E, vol. 2, p. 64, 2015.
[74]
Y. Zhang, Z. Xu, Z. Hu, Y. Zheng, X. Zhu, and Z. Wang, "A 12-DOF docking performance test device for space simulator", "Patent CN 107867414 B", , 2017.
[75]
C. Ma, R. Liu, W. Jiang, Y. Zhang, S. Jiang, Z. Deng, and H. Yue, "A ground simulation and test device for on-orbit separation of air-floated aircraft", "Patent CN 109335029 A", , 2019.
[76]
J.W. KWON, Y.S. CHUN, I.Y. KIM, D.Y. REW, and G.H CHO, "Docking simulator", "Patent US 2018/ 0162562 A1", , 2018.
[77]
Y. Jia, J. Jia, H. Shi, and J. Du, "A suspended 6-DOF microgravity environment simulation system", "Patent CN 106005497 A", , 2016.
[78]
M. Li, G. Li, X. Kou, Y. Wang, X. Zhou, and J. Zhang, "Lifting buffer system for spacecraft module separation test", "Patent CN 110844127 B", , 2020.
[79]
"F.m.i. grad, t.a.d. phys, n.j.d. ing, and s.j.d. phys, Apparatus for carrying out experiments under conditions of weightlessness", "Patent DE3101368 (A1)", , 1982.
[80]
S. Geng, "A scientific test platform for simulating space station docking", "Patent CN 113148247 B", , 2022.
[81]
B. Bian, "Spacecraft space docking ground control experiment system and method", "Patent CN 111599243 A", , 2020.
[82]
K. kazuhide, "Spacecraft movement simulator ", "Patent JP4459142 (B2)", , 2010.
[83]
X. Chen, and L. Wang, "A large multi-degree of freedom posture adjustment device in vacuum cryogenic environment", "Patent CN 112113781 B", , 2022.
[84]
Y. Fu, L. Li, X. Sun, S. Zheng, and P. Zhang, "A kind of motion that can work in ultra-low temperature and high vacuum environment simulator", "Patent CN 108773504 A", , 2018.
[85]
K. Sergey, K. Nikolay, and P. Natalia, "Movable space test facility ", "Patent EP3988456 (A1)", , 2020.
[86]
H. Gao, Q. Kang, L. Duan, and L. Hu, "A composite device for space environment simulation vacuum equipment", Patent CN 103287590 A.
[87]
L. Gao, T. Li, L. Jiang, X. Liu, W. Qin, and W. Feng, "Integrated space atomic oxygen, ultraviolet and electron environment ground simulation system in low earth orbit.", Patent CN 102085920 A.
[88]
W. Yao, and Y. Zhu, "A small low earth orbit space environment simulator.", Patent CN 102706791 A.
[89]
T. Chen, M. Ma, J. Lei, Z. Wang, Q. Gao, and B. Zhang, "A low earth orbit plasma environment simulation experimental system.", Patent CN 104340381 A, 2015.
[90]
K.l. George, "Irradiation apparatus", Patent DE1497272 (A1), 2006.
[91]
W. Min, J.G. Rlee, S.W. Kang, S.J. Kim, D.H. Ko, and J.H. Soen, "Irradiation apparatus of an artificial space radiation.", Patent KR100579886 (B1), 2006.
[92]
Y. Yang, S. Huang, J. Guo, X. Yang, S. Liu, and F. Li, "Multi-component thermal vacuum batch test device and test method for micro-nano satellite.", Patent CN 110104211 A, 2019.
[93]
K. Akihide, "Thermo-vacuum test device for specimen for space", "Patent JP3031281 (B2)", , 2000.
[94]
N. Showa, K. Hisao, and T. Wataru, "Space environment test equipment", "Patent JP2007137301A", , 2007.
[95]
Y. tadayuki, "Test device of artificial satellite ", Patent JP2021130396 (A), 2021.
[96]
C.h. jin, P.s. wook, S.h. jun, and M.g. won, "Thermal vacuum chamber apparatus of automatic opening and closing type and installation method of satellite using the same.", Patent KR101680490 (B1)..
[97]
S.j. seok, "Thermal vacuum chamber.", Patent KR102349849 (B1), 2021.
[98]
D.D. valerevich, Z. Arkadevich, P.V. Viktorovich, and P.M Viktorovich, "Method for cooling the system of a space object operating in a vacuum when modeling the conditions of regular operation.", Patent RU2771263 (C1), 2022.
[99]
L. Rodgers, N. Hoff, E. Jordan, M. Heiman, and D. Miller, "A universal interface for modular spacecraft", Small Satellite Conference, 2005.
[100]
M. Barbetta, A. Boesso, F. Branz, A. Carron, L. Olivieri, J. Prendin, G. Rodeghiero, F. Sansone, L. Savioli, and F. Spinello, "Autonomous rendezvous, control and docking experiment-reflight 2", ESA/CNES Small Satellites Systems and Services Symposium, Porto Petro, 2014.
[101]
J. Black, and A.T. Wolosik, "Development of a low-flying cubesat mission for f-region characterization", 55th AIAA Aerospace Sciences Meeting, 2017.
[http://dx.doi.org/10.2514/6.2017-0161]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy