Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Systematic Review Article

A Thorough Review of Deep Learning in Autism Spectrum Disorder Detection: From Data to Diagnosis

Author(s): Manjunath Ramanna Lamani* and Julian Benadit Pernabas

Volume 17, Issue 8, 2024

Published on: 07 February, 2024

Article ID: e070224226781 Pages: 19

DOI: 10.2174/0126662558284886240130154414

Price: $65

Abstract

Background: Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition with significant heterogeneity in its clinical presentation. Timely and precise identification of ASD is crucial for effective intervention and assistance. Recent advances in deep learning techniques have shown promise in enhancing the accuracy of ASD detection.

Objective: This comprehensive review aims to provide an overview of various deep learning methods employed in detecting ASD, utilizing diverse neuroimaging modalities. We analyze a range of studies that use resting-state functional Magnetic Resonance Imaging (rsfMRI), structural MRI (sMRI), task-based fMRI (tfMRI), and electroencephalography (EEG). This paper aims to assess the effectiveness of these techniques based on criteria such as accuracy, sensitivity, specificity, and computational efficiency.

Methods: We systematically review studies investigating ASD detection using deep learning across different neuroimaging modalities. These studies utilize various preprocessing tools, atlases, feature extraction techniques, and classification algorithms. The performance metrics of interest include accuracy, sensitivity, specificity, precision, F1-score, recall, and area under the curve (AUC).

Results: The review covers a wide range of studies, each with its own dataset and methodology. Notable findings include a study employing rsfMRI data from ABIDE that achieved an accuracy of 80% using LeNet. Another study using rsfMRI data from ABIDE-II achieved an impressive accuracy of 95.4% with the ASGCN deep learning model. Studies utilizing different modalities, such as EEG and sMRI, also reported high accuracies ranging from 74% to 95%.

Conclusion: Deep learning-based approaches for ASD detection have demonstrated significant potential across multiple neuroimaging modalities. These methods offer a more objective and data-driven approach to diagnosis, potentially reducing the subjectivity associated with clinical evaluations. However, challenges remain, including the need for larger and more diverse datasets, model interpretability, and clinical validation. The field of deep learning in ASD diagnosis continues to evolve, holding promise for early and accurate identification of individuals with ASD, which is crucial for timely intervention and support.

Graphical Abstract

[1]
A. Yousefian, F. Shayegh, and Z. Maleki, "Detection of ASDusing graph representation learning algorithms and deep neural network, based on fMRI signals", Front. Syst. Neurosci., vol. 16, p. 904770, 2023.
[http://dx.doi.org/10.3389/fnsys.2022.904770] [PMID: 36817947]
[2]
J. Elder, C. Kreider, S. Brasher, and M. Ansell, "Clinical impact of early diagnosis of autism on the prognosis and parent-child relationships", Psychol. Res. Behav. Manag., vol. 10, pp. 283-292, 2017.
[http://dx.doi.org/10.2147/PRBM.S117499] [PMID: 28883746]
[3]
A.S. Heinsfeld, A.R. Franco, R.C. Craddock, A. Buchweitz, and F. Meneguzzi, "Identification of ASDusing deep learning and the ABIDE dataset", Neuroimage Clin., vol. 17, pp. 16-23, 2018.
[http://dx.doi.org/10.1016/j.nicl.2017.08.017] [PMID: 29034163]
[4]
A. El Gazzar, L. Cerliani, G. van Wingen, and R.M. Thomas, "Simple 1-D convolutional networks for resting-state fMRI based classification in autism", In 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14-19 July, 2019, pp. 1-6.
[http://dx.doi.org/10.1109/IJCNN.2019.8852002]
[5]
Z. Sherkatghanad, M. Akhondzadeh, S. Salari, M. Zomorodi-Moghadam, M. Abdar, U.R. Acharya, R. Khosrowabadi, and V. Salari, "Automated detection of ASDusing a convolutional neural network", Front. Neurosci., vol. 13, p. 1325, 2020.
[http://dx.doi.org/10.3389/fnins.2019.01325] [PMID: 32009868]
[6]
L. Xu, Z. Sun, J. Xie, J. Yu, J. Li, and J. Wang, "Identification of ASDbased on short-term spontaneous hemodynamic fluctuations using deep learning in a multi-layer neural network", Clin. Neurophysiol., vol. 132, no. 2, pp. 457-468, 2021.
[http://dx.doi.org/10.1016/j.clinph.2020.11.037] [PMID: 33450566]
[7]
H. Zhang, L. Xu, J. Yu, J. Li, and J. Wang, "Identification of ASDbased on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network", Front. Neurosci., vol. 17, p. 1132231, 2023.
[http://dx.doi.org/10.3389/fnins.2023.1132231] [PMID: 36968494]
[8]
C. Yang, P. Wang, J. Tan, Q. Liu, and X. Li, "ASDdiagnosis using graph attention network based on spatial-constrained sparse functional brain networks", Comput. Biol. Med., vol. 139, p. 104963, 2021.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104963] [PMID: 34700253]
[9]
A.R. Aslam, N. Hafeez, H. Heidari, and M.A.B. Altaf, "Channels and features identification: A review and a machine-learning based model with large scale feature extraction for emotions and ASD classification", Front. Neurosci., vol. 16, p. 844851, 2022.
[http://dx.doi.org/10.3389/fnins.2022.844851] [PMID: 35937896]
[10]
L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, "Adaptive graph convolutional recurrent network for traffic forecasting", Adv. Neural Inf. Process. Syst., vol. 33, pp. 17804-17815, 2020.
[11]
L. Kanner, "Autistic disturbances of affective contact", Acta Paedopsychiatr., vol. 35, no. 4, pp. 100-136, 1968.
[PMID: 4880460]
[12]
F. Volkmar, M. Siegel, M. Woodbury-Smith, B. King, J. McCracken, and M. State, "Practice parameter for the assessment and treatment of children and adolescents with autism spectrum disorder", J. Am. Acad. Child Adolesc. Psychiatry, vol. 53, no. 2, pp. 237-257, 2014.
[http://dx.doi.org/10.1016/j.jaac.2013.10.013] [PMID: 24472258]
[13]
X. Wang, R. Tang, Z. Wei, Y. Zhan, J. Lu, and Z. Li, "The enteric nervous system deficits in autism spectrum disorder", Front. Neurosci., vol. 17, p. 1101071, 2023.
[http://dx.doi.org/10.3389/fnins.2023.1101071] [PMID: 37694110]
[14]
H. Wei, Y. Li, Y. Zhang, J. Luo, S. Wang, Q. Dong, Y. Tao, L. Gong, Y. Feng, M. Shi, and Z. Cao, "Awareness and knowledge of ASDin Western China: Promoting early identification and intervention", Front. Psychiatry, vol. 13, p. 970611, 2022.
[http://dx.doi.org/10.3389/fpsyt.2022.970611] [PMID: 36440386]
[15]
American Psychiatric Association, Diagnostic and statistical manual of mental disorders: DSM-5., Washington, DC, 2013.
[16]
A.J. Baxter, T.S. Brugha, H.E. Erskine, R.W. Scheurer, T. Vos, and J.G. Scott, "The epidemiology and global burden of autism spectrum disorders", Psychol. Med., vol. 45, no. 3, pp. 601-613, 2015.
[http://dx.doi.org/10.1017/S003329171400172X] [PMID: 25108395]
[17]
M.J. Maenner, K.A. Shaw, J. Baio, A. Washington, M. Patrick, M. DiRienzo, D.L. Christensen, L.D. Wiggins, S. Pettygrove, J.G. Andrews, and M. Lopez, "Prevalence of ASDamong children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016", MMWR Surveill. Summ., vol. 69, no. 4, p. 1, 2020.
[http://dx.doi.org/10.15585/mmwr.ss6904a1] [PMID: 32214087]
[18]
S.L. Hyman, S.E. Levy, S.M. Myers, D.Z. Kuo, S. Apkon, L.F. Davidson, K.A. Ellerbeck, J.E.A. Foster, G.H. Noritz, M.O.C. Leppert, B.S. Saunders, C. Stille, L. Yin, C.C. Weitzman, D.O. Childers Jr, J.M. Levine, A.M. Peralta-Carcelen, J.K. Poon, P.J. Smith, N.J. Blum, J.I. Takayama, R. Baum, R.G. Voigt, and C. Bridgemohan, "Identification, evaluation, and management of children with autism spectrum disorder", Pediatrics, vol. 145, no. 1, p. e20193447, 2020.
[http://dx.doi.org/10.1542/peds.2019-3447]
[19]
J.N. Constantino, and N. Marrus, "The early origins of autism", Child Adolesc. Psychiatr. Clin. N. Am., vol. 26, no. 3, pp. 555-570, 2017.
[http://dx.doi.org/10.1016/j.chc.2017.02.008] [PMID: 28577609]
[20]
S. Mitroulaki, A. Serdari, G. Tripsianis, R. Gundelfinger, A. Arvaniti, T. Vorvolakos, and M. Samakouri, "First alarm and time of diagnosis in autism spectrum disorders", Compr. Child Adolesc. Nurs., vol. 45, no. 1, pp. 1-17, 2020.
[PMID: 33090020]
[21]
H.K. Lim, J.H. Yoon, and M. Song, "ASDgenes: Disease-related networks and compensatory strategies", Front. Mol. Neurosci., vol. 15, p. 922840, 2022.
[http://dx.doi.org/10.3389/fnmol.2022.922840] [PMID: 35726297]
[22]
O.J. Bienvenu, D.M. Needham, and R.O. Hopkins, "Response", Chest, vol. 144, no. 6, pp. 1974-1975, 2013.
[http://dx.doi.org/10.1378/chest.13-1940] [PMID: 24297139]
[23]
M.J. Maenner, K.A. Shaw, A.V. Bakian, D.A. Bilder, M.S. Durkin, A. Esler, S.M. Furnier, L. Hallas, J. Hall-Lande, A. Hudson, and M.M. Hughes, "Prevalence and characteristics of ASDamong children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2018", MMWR Surveill. Summ., vol. 70, no. 11, p. 1, 2021.
[http://dx.doi.org/10.15585/mmwr.ss7011a1] [PMID: 34855725]
[24]
X. Hao, Q. An, J. Li, H. Min, Y. Guo, M. Yu, and J. Qin, "Exploring high-order correlations with deep-broad learning for ASDdiagnosis", Front. Neurosci., vol. 16, p. 1046268, 2022.
[http://dx.doi.org/10.3389/fnins.2022.1046268] [PMID: 36483179]
[25]
E.A. Perkins, and K.A. Berkman, "Into the unknown: Aging with autism spectrum disorders", Am. J. Intellect. Dev. Disabil., vol. 117, no. 6, pp. 478-496, 2012.
[http://dx.doi.org/10.1352/1944-7558-117.6.478] [PMID: 23167487]
[26]
R.E. Nickel, and L. Huang-Storms, "Early identification of young children with autism spectrum disorder", Indian J. Pediatr., vol. 84, no. 1, pp. 53-60, 2017.
[http://dx.doi.org/10.1007/s12098-015-1894-0] [PMID: 26411730]
[27]
Y. Chen, A. Liu, X. Fu, J. Wen, and X. Chen, "An invertible dynamic graph convolutional network for multi-Center ASD classification", Front. Neurosci., vol. 15, p. 828512, 2022.
[http://dx.doi.org/10.3389/fnins.2021.828512] [PMID: 35185454]
[28]
C. Lord, M. Elsabbagh, G. Baird, and J. Veenstra-Vanderweele, "Autism spectrum disorder", Lancet, vol. 392, no. 10146, pp. 508-520, 2018.
[http://dx.doi.org/10.1016/S0140-6736(18)31129-2] [PMID: 30078460]
[29]
D.J. Norton, R.K. McBain, G.E. Murray, J. Khang, Z. Zong, H.R. Bollacke, S. Maher, D.L. Levy, D. Ongur, and Y. Chen, "Normal face detection over a range of luminance contrasts in adolescents with autism spectrum disorder", Front. Psychol., vol. 12, p. 667359, 2021.
[http://dx.doi.org/10.3389/fpsyg.2021.667359] [PMID: 34335378]
[30]
B. Jemel, L. Mottron, and M. Dawson, "Impaired face processing in autism: Fact or artifact?", J. Autism Dev. Disord., vol. 36, no. 1, pp. 91-106, 2006.
[http://dx.doi.org/10.1007/s10803-005-0050-5] [PMID: 16477517]
[31]
M. Uljarevic, and A. Hamilton, "Recognition of emotions in autism: A formal meta-analysis", J. Autism Dev. Disord., vol. 43, no. 7, pp. 1517-1526, 2013.
[http://dx.doi.org/10.1007/s10803-012-1695-5] [PMID: 23114566]
[32]
L.M. Lozier, J.W. Vanmeter, and A.A. Marsh, "Impairments in facial affect recognition associated with autism spectrum disorders: A meta-analysis", Dev. Psychopathol., vol. 26, no. 4pt1, pp. 933-945, 2014.
[http://dx.doi.org/10.1017/S0954579414000479] [PMID: 24915526]
[33]
D.A. Trevisan, and E. Birmingham, "Are emotion recognition abilities related to everyday social functioning in ASD? A meta-analysis", Res. Autism Spectr. Disord., vol. 32, pp. 24-42, 2016.
[http://dx.doi.org/10.1016/j.rasd.2016.08.004]
[34]
S. Weigelt, K. Koldewyn, and N. Kanwisher, "Face identity recognition in autism spectrum disorders: A review of behavioral studies", Neurosci. Biobehav. Rev., vol. 36, no. 3, pp. 1060-1084, 2012.
[http://dx.doi.org/10.1016/j.neubiorev.2011.12.008] [PMID: 22212588]
[35]
B.S. Hadad, S. Schwartz, and N. Binur, "Reduced perceptual specialization in autism: Evidence from the other-race face effect", J. Exp. Psychol. Gen., vol. 148, no. 3, pp. 588-594, 2019.
[http://dx.doi.org/10.1037/xge0000550] [PMID: 30652891]
[36]
J.W. Griffin, R. Bauer, and K.S. Scherf, "A quantitative meta-analysis of face recognition deficits in autism: 40 years of research", Psychol. Bull., vol. 147, no. 3, pp. 268-292, 2021.
[http://dx.doi.org/10.1037/bul0000310] [PMID: 33104376]
[37]
A. Mohd Nordin, J. Ismail, and N. Kamal Nor, "Motor development in children with autism spectrum disorder", Front Pediatr., vol. 9, p. 598276, 2021.
[http://dx.doi.org/10.3389/fped.2021.598276] [PMID: 34604128]
[38]
D. Green, T. Charman, A. Pickles, S. Chandler, Loucas, E. Simonoff, and G. Baird, "Impairment in movement skills of children with autistic spectrum disorders", Dev. Med. Child Neurol., vol. 51, no. 4, pp. 311-316, 2009.
[http://dx.doi.org/10.1111/j.1469-8749.2008.03242.x] [PMID: 19207298]
[39]
T. Liu, and C.M. Breslin, "Fine and gross motor performance of the MABC-2 by children with ASDand typically developing children", Res. Autism Spectr. Disord., vol. 7, no. 10, pp. 1244-1249, 2013.
[http://dx.doi.org/10.1016/j.rasd.2013.07.002]
[40]
T. Liu, M. Hamilton, L. Davis, and S. ElGarhy, "Gross motor performance by children with ASDand typically developing children on TGMD-2", J. Child Adolesc. Behav., vol. 2, no. 123, p. 2, 2014.
[41]
M.K. Licari, G.A. Alvares, K. Varcin, K.L. Evans, D. Cleary, S.L. Reid, E.J. Glasson, K. Bebbington, J.E. Reynolds, J. Wray, and A.J.O. Whitehouse, "Prevalence of motor difficulties in autism spectrum disorder: Analysis of a population‐based cohort", Autism Res., vol. 13, no. 2, pp. 298-306, 2020.
[http://dx.doi.org/10.1002/aur.2230] [PMID: 31625694]
[42]
R. Landa, and E. Garrett-Mayer, "Development in infants with autism spectrum disorders: A prospective study", J. Child Psychol. Psychiatry, vol. 47, no. 6, pp. 629-638, 2006.
[http://dx.doi.org/10.1111/j.1469-7610.2006.01531.x] [PMID: 16712640]
[43]
M. Lloyd, M. MacDonald, and C. Lord, "Motor skills of toddlers with autism spectrum disorders", Autism, vol. 17, no. 2, pp. 133-146, 2013.
[http://dx.doi.org/10.1177/1362361311402230] [PMID: 21610184]
[44]
Z. Wang, D. Peng, Y. Shang, and J. Gao, "Autistic spectrum disorder detection and structural biomarker identification using self-attention model and individual-level morphological covariance brain networks", Front. Neurosci., vol. 15, p. 756868, 2021.
[http://dx.doi.org/10.3389/fnins.2021.756868] [PMID: 34712116]
[45]
S.B. Guze, "Diagnostic and statistical manual of mental disorders, (DSM-IV)", Am. J. Psychiatry, vol. 152, no. 8, p. 1228, 1995.
[http://dx.doi.org/10.1176/ajp.152.8.1228]
[46]
M.S. Ahammed, S. Niu, M.R. Ahmed, J. Dong, X. Gao, and Y. Chen, "Darkasdnet: Classification of asd on functional mri using deep neural network", Front. Neuroinform., vol. 15, p. 635657, 2021.
[http://dx.doi.org/10.3389/fninf.2021.635657] [PMID: 34248531]
[47]
M. Senn, "CDC estimate on autism prevalence increases by nearly 10 Percent, to 1 in 54 Children in the U.S", Available from: https://www.autismspeaks.org/press-release/cdc-estimate-autism-prevalence-increases-nearly-10-percent-1-54-children-us (Accessed April 26, 2020).
[48]
J. Höfer, F. Hoffmann, and C. Bachmann, "Use of complementary and alternative medicine in children and adolescents with autism spectrum disorder: A systematic review", Autism, vol. 21, no. 4, pp. 387-402, 2017.
[http://dx.doi.org/10.1177/1362361316646559] [PMID: 27231337]
[49]
N. Yahata, J. Morimoto, R. Hashimoto, G. Lisi, K. Shibata, Y. Kawakubo, H. Kuwabara, M. Kuroda, T. Yamada, F. Megumi, H. Imamizu, J.E. Náñez Sr, H. Takahashi, Y. Okamoto, K. Kasai, N. Kato, Y. Sasaki, T. Watanabe, and M. Kawato, "A small number of abnormal brain connections predicts adult autism spectrum disorder", Nat. Commun., vol. 7, no. 1, p. 11254, 2016.
[http://dx.doi.org/10.1038/ncomms11254] [PMID: 27075704]
[50]
M.R. Ahmed, Y. Zhang, Z. Feng, B. Lo, O.T. Inan, and H. Liao, "Neuroimaging and machine learning for dementia diagnosis: Recent advancements and future prospects", IEEE Rev. Biomed. Eng., vol. 12, pp. 19-33, 2019.
[http://dx.doi.org/10.1109/RBME.2018.2886237] [PMID: 30561351]
[51]
D.S. Mandell, R.F. Ittenbach, S.E. Levy, and J.A. Pinto-Martin, "Disparities in diagnoses received prior to a diagnosis of autism spectrum disorder", J. Autism Dev. Disord., vol. 37, no. 9, pp. 1795-1802, 2007.
[http://dx.doi.org/10.1007/s10803-006-0314-8] [PMID: 17160456]
[52]
L. Nylander, M. Holmqvist, L. Gustafson, and C. Gillberg, "Attention-deficit/hyperactivity disorder (ADHD) and ASD(ASD) in adult psychiatry. A 20-year register study", Nord. J. Psychiatry, vol. 67, no. 5, pp. 344-350, 2013.
[http://dx.doi.org/10.3109/08039488.2012.748824] [PMID: 23234539]
[53]
F. Almuqhim, and F. Saeed, "ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting ASD(ASD) using fMRI data", Front. Comput. Neurosci., vol. 15, p. 654315, 2021.
[http://dx.doi.org/10.3389/fncom.2021.654315] [PMID: 33897398]
[54]
R. Botvinik-Nezer, F. Holzmeister, C.F. Camerer, A. Dreber, J. Huber, M. Johannesson, M. Kirchler, R. Iwanir, J.A. Mumford, R.A. Adcock, P. Avesani, B.M. Baczkowski, A. Bajracharya, L. Bakst, S. Ball, M. Barilari, N. Bault, D. Beaton, J. Beitner, R.G. Benoit, R.M.W.J. Berkers, J.P. Bhanji, B.B. Biswal, S. Bobadilla-Suarez, T. Bortolini, K.L. Bottenhorn, A. Bowring, S. Braem, H.R. Brooks, E.G. Brudner, C.B. Calderon, J.A. Camilleri, J.J. Castrellon, L. Cecchetti, E.C. Cieslik, Z.J. Cole, O. Collignon, R.W. Cox, W.A. Cunningham, S. Czoschke, K. Dadi, C.P. Davis, A.D. Luca, M.R. Delgado, L. Demetriou, J.B. Dennison, X. Di, E.W. Dickie, E. Dobryakova, C.L. Donnat, J. Dukart, N.W. Duncan, J. Durnez, A. Eed, S.B. Eickhoff, A. Erhart, L. Fontanesi, G.M. Fricke, S. Fu, A. Galván, R. Gau, S. Genon, T. Glatard, E. Glerean, J.J. Goeman, S.A.E. Golowin, C. González-García, K.J. Gorgolewski, C.L. Grady, M.A. Green, J.F. Guassi Moreira, O. Guest, S. Hakimi, J.P. Hamilton, R. Hancock, G. Handjaras, B.B. Harry, C. Hawco, P. Herholz, G. Herman, S. Heunis, F. Hoffstaedter, J. Hogeveen, S. Holmes, C.P. Hu, S.A. Huettel, M.E. Hughes, V. Iacovella, A.D. Iordan, P.M. Isager, A.I. Isik, A. Jahn, M.R. Johnson, T. Johnstone, M.J.E. Joseph, A.C. Juliano, J.W. Kable, M. Kassinopoulos, C. Koba, X.Z. Kong, T.R. Koscik, N.E. Kucukboyaci, B.A. Kuhl, S. Kupek, A.R. Laird, C. Lamm, R. Langner, N. Lauharatanahirun, H. Lee, S. Lee, A. Leemans, A. Leo, E. Lesage, F. Li, M.Y.C. Li, P.C. Lim, E.N. Lintz, S.W. Liphardt, A.B. Losecaat Vermeer, B.C. Love, M.L. Mack, N. Malpica, T. Marins, C. Maumet, K. McDonald, J.T. McGuire, H. Melero, A.S. Méndez Leal, B. Meyer, K.N. Meyer, G. Mihai, G.D. Mitsis, J. Moll, D.M. Nielson, G. Nilsonne, M.P. Notter, E. Olivetti, A.I. Onicas, P. Papale, K.R. Patil, J.E. Peelle, A. Pérez, D. Pischedda, J.B. Poline, Y. Prystauka, S. Ray, P.A. Reuter-Lorenz, R.C. Reynolds, E. Ricciardi, J.R. Rieck, A.M. Rodriguez-Thompson, A. Romyn, T. Salo, G.R. Samanez-Larkin, E. Sanz-Morales, M.L. Schlichting, D.H. Schultz, Q. Shen, M.A. Sheridan, J.A. Silvers, K. Skagerlund, A. Smith, D.V. Smith, P. Sokol-Hessner, S.R. Steinkamp, S.M. Tashjian, B. Thirion, J.N. Thorp, G. Tinghög, L. Tisdall, S.H. Tompson, C. Toro-Serey, J.J. Torre Tresols, L. Tozzi, V. Truong, L. Turella, A.E. van ’t Veer, T. Verguts, J.M. Vettel, S. Vijayarajah, K. Vo, M.B. Wall, W.D. Weeda, S. Weis, D.J. White, D. Wisniewski, A. Xifra-Porxas, E.A. Yearling, S. Yoon, R. Yuan, K.S.L. Yuen, L. Zhang, X. Zhang, J.E. Zosky, T.E. Nichols, R.A. Poldrack, and T. Schonberg, "Variability in the analysis of a single neuroimaging dataset by many teams", Nature, vol. 582, no. 7810, pp. 84-88, 2020.
[http://dx.doi.org/10.1038/s41586-020-2314-9] [PMID: 32483374]
[55]
T. Iidaka, "Resting state functional magnetic resonance imaging and neural network classified autism and control", Cortex, vol. 63, pp. 55-67, 2015.
[http://dx.doi.org/10.1016/j.cortex.2014.08.011] [PMID: 25243989]
[56]
M. Plitt, K.A. Barnes, and A. Martin, "Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards", Neuroimage Clin., vol. 7, pp. 359-366, 2015.
[http://dx.doi.org/10.1016/j.nicl.2014.12.013] [PMID: 25685703]
[57]
H. Li, N.A. Parikh, and L. He, "A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes", Front. Neurosci., vol. 12, p. 491, 2018.
[http://dx.doi.org/10.3389/fnins.2018.00491] [PMID: 30087587]
[58]
Z. Xiao, C. Wang, N. Jia, and J. Wu, "SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging", Multimedia Tools Appl., vol. 77, no. 17, pp. 22809-22820, 2018.
[http://dx.doi.org/10.1007/s11042-018-5625-1]
[59]
C. Wang, Z. Xiao, B. Wang, and J. Wu, "Identification of autism based on SVM-RFE and stacked sparse auto-encoder", IEEE Access, vol. 7, pp. 118030-118036, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2936639]
[60]
W.K.W. Lau, M.K. Leung, and B.W.M. Lau, "Resting-state abnormalities in autism spectrum disorders: A meta-analysis", Sci. Rep., vol. 9, no. 1, p. 3892, 2019.
[http://dx.doi.org/10.1038/s41598-019-40427-7] [PMID: 30846796]
[61]
M.A. Just, V.L. Cherkassky, T.A. Keller, R.K. Kana, and N.J. Minshew, "Functional and anatomical cortical underconnectivity in autism: Evidence from an FMRI study of an executive function task and corpus callosum morphometry", Cereb. Cortex, vol. 17, no. 4, pp. 951-961, 2007.
[http://dx.doi.org/10.1093/cercor/bhl006] [PMID: 16772313]
[62]
T. Eslami, and F. Saeed, "Auto-ASD-network: A technique based on deep learning and support vector machines for diagnosing ASDusing fMRI data", In The 10th ACM International Conference, 2019.
[63]
R. Haweel, A. Shalaby, A. Mahmoud, N. Seada, S. Ghoniemy, M. Ghazal, M.F. Casanova, G.N. Barnes, and A. El-Baz, "A robust DWT-CNN‐based CAD system for early diagnosis of autism using task‐based fMRI", Med. Phys., vol. 48, no. 5, pp. 2315-2326, 2021.
[http://dx.doi.org/10.1002/mp.14692] [PMID: 33378589]
[64]
H.S. Nogay, and H. Adeli, "Machine learning (ML) for the diagnosis of ASD(ASD) using brain imaging", Rev. Neurosci., vol. 31, no. 8, pp. 825-841, 2020.
[http://dx.doi.org/10.1515/revneuro-2020-0043] [PMID: 32866134]
[65]
G. Deshpande, P. Wang, D. Rangaprakash, and B. Wilamowski, "Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data", IEEE Trans. Cybern., vol. 45, no. 12, pp. 2668-2679, 2015.
[http://dx.doi.org/10.1109/TCYB.2014.2379621] [PMID: 25576588]
[66]
S. Sarraf, and G. Tofighi, "Classification of alzheimer’s disease using fmri data and deep learning convolutional neural networks", arXiv, vol. 2016, p. 08631, 2016.
[67]
N.C. Dvornek, P. Ventola, K.A. Pelphrey, and J.S. Duncan, "Identifying autism from resting-state fMRI using long short-term memory networks", In Machine Learning in Medical Imaging: 8th International Workshop, Quebec City, QC, Canada, 10 Sep, 2017, pp. 362-370.
[68]
Q. Yao, and H. Lu, "Brain functional connectivity augmentation method for mental disease classification with generative adversarial network", In Pattern Recognition and Computer Vision: Second Chinese Conference, Xi’an, China, 8-11 Nov, 2019, pp. 444-455.
[69]
M.R. Lamani, P.J. Benadit, and K. Vaithinathan, "Multi-atlas graph convolutional networks and convolutional recurrent neural networks-based ensemble learning for classification of autism spectrum disorders. SN", Comput. Sci., vol. 4, p. 213, 2023.
[70]
Z.A. Huang, Z. Zhu, C.H. Yau, and K.C. Tan, "Identifying ASDfrom resting-state fMRI using deep belief network", IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2847-2861, 2020.
[http://dx.doi.org/10.1109/TNNLS.2020.3007943] [PMID: 32692687]
[71]
Y. Chen, J. Yan, M. Jiang, T. Zhang, Z. Zhao, W. Zhao, J. Zheng, D. Yao, R. Zhang, K.M. Kendrick, and X. Jiang, "Adversarial learning based node-edge graph attention networks for ASDidentification", IEEE Trans. Neural Netw. Learn. Syst., 2022.
[72]
X. Xing, J. Ji, and Y. Yao, "Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks", In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 03-06 Dec, 2018, pp. 780-783.
[http://dx.doi.org/10.1109/BIBM.2018.8621472]
[73]
M.R. Lamani, P. Julian Benadit, and K. Vaithinathan, "Autism spectrum disorder: Automated Detection based on rs-fMRI images using CNN", In IEEE International Conference on Contemporary Computing and Communications (InC4), Bangalore, India, 2023.
[http://dx.doi.org/10.1109/InC457730.2023.10262873]
[74]
H. Lu, S. Liu, H. Wei, and J. Tu, "Multi-kernel fuzzy clustering based on auto-encoder for fMRI functional network", Expert Syst. Appl., vol. 159, p. 113513, 2020.
[http://dx.doi.org/10.1016/j.eswa.2020.113513]
[75]
K. Niu, J. Guo, Y. Pan, X. Gao, X. Peng, N. Li, and H. Li, "Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data", Complexity, vol. 2020, pp. 1-9, 2020.
[http://dx.doi.org/10.1155/2020/1357853]
[76]
M.R. Ahmed, Y. Zhang, Y. Liu, and H. Liao, "Single volume image generator and deep learning-based ASD classification", IEEE J. Biomed. Health Inform., vol. 24, no. 11, pp. 3044-3054, 2020.
[http://dx.doi.org/10.1109/JBHI.2020.2998603] [PMID: 32750917]
[77]
M. Rakić, M. Cabezas, K. Kushibar, A. Oliver, and X. Lladó, "Improving the detection of autism spectrum disorder by combining structural and functional MRI information", Neuroimage Clin., vol. 25, p. 102181, 2020.
[http://dx.doi.org/10.1016/j.nicl.2020.102181] [PMID: 31982680]
[78]
L. Henschel, S. Conjeti, S. Estrada, K. Diers, B. Fischl, and M. Reuter, "FastSurfer - A fast and accurate deep learning based neuroimaging pipeline", Neuroimage, vol. 219, p. 117012, 2020.
[http://dx.doi.org/10.1016/j.neuroimage.2020.117012] [PMID: 32526386]
[79]
H. Shahamat, and M. Saniee Abadeh, "Brain MRI analysis using a deep learning based evolutionary approach", Neural Netw., vol. 126, pp. 218-234, 2020.
[http://dx.doi.org/10.1016/j.neunet.2020.03.017] [PMID: 32259762]
[80]
L. Xu, Y. Liu, J. Yu, X. Li, X. Yu, H. Cheng, and J. Li, "Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy", J. Neurosci. Methods, vol. 331, p. 108538, 2020.
[http://dx.doi.org/10.1016/j.jneumeth.2019.108538] [PMID: 31794776]
[81]
R.M. Thomas, S. Gallo, L. Cerliani, P. Zhutovsky, A. El-Gazzar, and G. van Wingen, "Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D convolutional neural networks", Front. Psychiatry, vol. 11, p. 440, 2020.
[http://dx.doi.org/10.3389/fpsyt.2020.00440] [PMID: 32477198]
[82]
Y. Kwak, W.J. Yun, J.P. Kim, H. Cho, J. Park, M. Choi, S. Jung, and J. Kim, "Quantum distributed deep learning architectures: Models, discussions, and applications", ICT Express, vol. 9, no. 3, pp. 486-491, 2023.
[http://dx.doi.org/10.1016/j.icte.2022.08.004]
[83]
Q. Zheng, P. Zhao, Y. Li, H. Wang, and Y. Yang, "Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification", Neural Comput. Appl., vol. 33, no. 13, pp. 7723-7745, 2021.
[http://dx.doi.org/10.1007/s00521-020-05514-1]
[84]
Q. Zheng, P. Zhao, D. Zhang, and H. Wang, "MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification", Int. J. Intell. Syst., vol. 36, no. 12, pp. 7204-7238, 2021.
[http://dx.doi.org/10.1002/int.22586]
[85]
Q. Zheng, M. Yang, X. Tian, X. Wang, and D. Wang, "Rethinking the role of activation functions in deep convolutional neural networks for image classification", Eng. Lett., vol. 28, no. 1, 2020.
[86]
M.R. Lamani, and P.J. Benadit, "Automatic diagnosis of autism spectrum disorder detection using a hybrid feature selection model with graph convolution network", SN Comput. Sci., vol. 5, no. 1, p. 126, 2023.
[http://dx.doi.org/10.1007/s42979-023-02439-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy