Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Antiphytopathogenic Diphenyl Ethers from the Marine-derived Fungus Aspergillus sydowii

Author(s): Ying Shi, Xiao Yang, Jinwei Ren and Ling Liu*

Volume 14, Issue 9, 2024

Published on: 07 February, 2024

Article ID: e070224226779 Pages: 5

DOI: 10.2174/0122103155287990240117100232

Price: $65

Abstract

Background: Natural products from the marine-derived Aspergillus sp. have great potential in agricultural usage due to their broad biological activities.

Objective: This study was designed to investigate the antiphytopathogenic compounds from marinederived fungus Aspergillus sydowii LW09.

Methods: The compounds were isolated and purified by chromatography methods, and their structures were elucidated by analysis of the NMR and MS spectroscopic data as well as comparison with those of literature. All compounds were evaluated for antibacterial activities against phytopathogenic bacteria Pseudomonas syringae and Ralstonia solanacarum, along with spore germination inhibition of phytopathogenic fungi Fusarium oxysporum and Alternaria alternata.

Results: Two diphenyl ethers violaceols I (1) and II (2), along with two alkaloids acremolin (3) and WIN 64821 (4) were isolated from the fermentation extracts of A. sydowii LW09. Compound 1 showed significant antibacterial activity against P. syringae and R. solanacarum with the same MIC values of 4 μg/mL, while compound 2 showed obvious antibacterial activity against P. syringae and R. solanacarum with MIC values of 2 and 1 μg/mL, respectively. Moreover, both 1 and 2 could inhibit the spore germination of F. oxysporum in the concentration range of 64–128 μg/mL. In addition, violaceol I (1) also inhibited the spore germination of A. alternata at 128 μg/mL.

Conclusion: This study provided the potential antiphytopathogenic drug candidate for further studies.

Graphical Abstract

[1]
Nguyen, M.V.; Han, J.W.; Kim, H.; Choi, G.J. Phenyl ethers from the marine-derived fungus Aspergillus tabacinus and their antimicrobial activity against plant pathogenic fungi and bacteria. ACS Omega, 2022, 7(37), 33273-33279.
[http://dx.doi.org/10.1021/acsomega.2c03859] [PMID: 36157764]
[2]
Li, X.B.; Zhou, Y.H.; Zhu, R.X.; Chang, W.Q.; Yuan, H.Q.; Gao, W.; Zhang, L.L.; Zhao, Z.T.; Lou, H.X. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem. Biodivers., 2015, 12(4), 575-592.
[http://dx.doi.org/10.1002/cbdv.201400146] [PMID: 25879502]
[3]
Ebrahim, W.; El-Neketi, M.; Lewald, L.I.; Orfali, R.S.; Lin, W.; Rehberg, N.; Kalscheuer, R.; Daletos, G.; Proksch, P. Metabolites from the fungal endophyte Aspergillus austroafricanus in Axenic culture and in fungal-bacterial mixed cultures. J. Nat. Prod., 2016, 79(4), 914-922.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00975] [PMID: 27070198]
[4]
Steglińska, A.; Sulyok, M.; Janas, R.; Grzesik, M.; Liszkowska, W.; Kręgiel, D.; Gutarowska, B. Metabolite formation by fungal pathogens of potatoes (Solanum tuberosum L.) in the presence of bioprotective agents. Int. J. Environ. Res. Public Health, 2023, 20(6), 5221.
[http://dx.doi.org/10.3390/ijerph20065221] [PMID: 36982130]
[5]
Zhang, Y.; Li, X.M.; Shang, Z.; Li, C.S.; Ji, N.Y.; Wang, B.G. Meroterpenoid and diphenyl ether derivatives from Penicillium sp. MA-37, a fungus isolated from marine mangrove rhizospheric soil. J. Nat. Prod., 2012, 75(11), 1888-1895.
[http://dx.doi.org/10.1021/np300377b] [PMID: 23148724]
[6]
Wang, Y.N.; Mou, Y.H.; Dong, Y.; Wu, Y.; Liu, B.Y.; Bai, J.; Yan, D.J.; Zhang, L.; Feng, D.Q.; Pei, Y.H.; Hu, Y.C. Diphenyl ethers from a marine-derived Aspergillus sydowii. Mar. Drugs, 2018, 16(11), 451.
[http://dx.doi.org/10.3390/md16110451] [PMID: 30453472]
[7]
Li, H.; Fu, Y.; Song, F. Marine Aspergillus: A treasure trove of antimicrobial compounds. Mar. Drugs, 2023, 21(5), 277.
[http://dx.doi.org/10.3390/md21050277] [PMID: 37233471]
[8]
Yang, L.J.; Peng, X.Y.; Zhang, Y.H.; Liu, Z.Q.; Li, X.; Gu, Y.C.; Shao, C.L.; Han, Z.; Wang, C.Y. Antimicrobial and antioxidant polyketides from a seep-sea-derived fungus Aspergillus versicolor SH0105. Mar. Drugs, 2020, 18(12), 636.
[http://dx.doi.org/10.3390/md18120636] [PMID: 33322355]
[9]
Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar. Drugs, 2019, 17(10), 559.
[http://dx.doi.org/10.3390/md17100559] [PMID: 31569458]
[10]
Qi, J.; Chen, C.; He, Y.; Wang, Y. Genomic analysis and antimicrobial components of M7, an Aspergillus terreus strain derived from the south China sea. J. Fungi, 2022, 8(10), 1051.
[http://dx.doi.org/10.3390/jof8101051] [PMID: 36294615]
[11]
Song, F.; Lin, R.; Yang, N.; Jia, J.; Wei, S.; Han, J.; Li, J.; Bi, H.; Xu, X. Antibacterial secondary metabolites from marine-derived fungus Aspergillus sp. IMCASMF180035. Antibiotics, 2021, 10(4), 377.
[http://dx.doi.org/10.3390/antibiotics10040377] [PMID: 33916658]
[12]
Fan, M.; Nath, A.; Tang, Y.; Choi, Y.J.; Debnath, T.; Choi, E.J.; Kim, E.K. Investigation of the anti-prostate cancer properties of marine-derived compounds. Mar. Drugs, 2018, 16(5), 160.
[http://dx.doi.org/10.3390/md16050160] [PMID: 29757237]
[13]
Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A review of terpenes from marine-derived fungi: 2015–2019. Mar. Drugs, 2020, 18(6), 321.
[http://dx.doi.org/10.3390/md18060321] [PMID: 32570903]
[14]
Zhao, H.; Wang, G.Q.; Tong, X.P.; Chen, G.D.; Huang, Y.F.; Cui, J.Y.; Kong, M.Z.; Guo, L.D.; Zheng, Y.Z.; Yao, X.S.; Gao, H. Diphenyl ethers from Aspergillus sp. and their anti-Aβ42 aggregation activities. Fitoterapia, 2014, 98(98), 77-83.
[http://dx.doi.org/10.1016/j.fitote.2014.07.007] [PMID: 25038471]
[15]
Yao, F.H.; Liang, X.; Cheng, X.; Ling, J.; Dong, J.D.; Qi, S.H. Antifungal peptides from the marine gorgonian-associated fungus Aspergillus sp. SCSIO41501. Phytochemistry, 2021, 192(192), 112967.
[http://dx.doi.org/10.1016/j.phytochem.2021.112967] [PMID: 34598042]
[16]
Saetang, P.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J.; Hadsadee, S.; Jungsuttiwong, S. Antibacterial and antifungal polyketides from the fungus Aspergillus unguis PSU-MF16. J. Nat. Prod., 2021, 84(5), 1498-1506.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01308] [PMID: 33861594]
[17]
Neuhaus, G.F.; Loesgen, S. Antibacterial drimane sesquiterpenes from Aspergillus ustus. J. Nat. Prod., 2021, 84(1), 37-45.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00910] [PMID: 33346651]
[18]
Wei, M.; Huang, L.; Li, Q.; Qiao, X.; Zhao, Z.; Yin, J.; Fu, A.; Guo, J.; Hao, X.; Gu, L.; Wang, J.; Chen, C.; Zhu, H.; Zhang, Y. Spectasterols, aromatic ergosterols with 6/6/6/5/5, 6/6/6/6, and 6/6/6/5 ring systems from Aspergillus spectabilis. J. Nat. Prod., 2023, 86(6), 1385-1391.
[http://dx.doi.org/10.1021/acs.jnatprod.2c01034] [PMID: 37294628]
[19]
Liu, G.; Huo, R.; Niu, S.; Song, F.; Liu, L. Two new cytotoxic decalin derivatives from marine‐derived fungus Talaromyces sp. Chem. Biodivers., 2022, 19(3), e202100990.
[http://dx.doi.org/10.1002/cbdv.202100990] [PMID: 35083850]
[20]
Huo, R.Y.; Zhang, J.X.; Jia, J.; Bi, H.K.; Liu, L. Alternarialone A, a new curvularin-type metabolite from the mangrove-derived fungus Alternaria longipes. J. Asian Nat. Prod. Res., 2023, 25(6), 610-616.
[http://dx.doi.org/10.1080/10286020.2022.2117168] [PMID: 36048769]
[21]
Ren, J.; Huo, R.; Liu, G.; Liu, L. New andrastin-type meroterpenoids from the marine-derived fungus penicillium sp. Mar. Drugs, 2021, 19(4), 189.
[http://dx.doi.org/10.3390/md19040189] [PMID: 33801640]
[22]
Yang, X.; Yu, H.; Ren, J.; Cai, L.; Xu, L.; Liu, L. Sulfoxide-containing bisabolane sesquiterpenoids with antimicrobial and nematicidal activities from the marine-derived fungus Aspergillus sydowii LW09. J. Fungi , 2023, 9(3), 347-362.
[http://dx.doi.org/10.3390/jof9030347] [PMID: 36983515]
[23]
Fremlin, L.J.; Piggott, A.M.; Lacey, E.; Capon, R.J. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J. Nat. Prod., 2009, 72(4), 666-670.
[http://dx.doi.org/10.1021/np800777f] [PMID: 19245260]
[24]
Januar, L.A.; Molinski, T.F. Acremolin from Acremonium strictum is N2, 3-Etheno-2′-isopropyl-1-methylguanine, not a 1 H -Azirine. Synthesis and Structural Revision. Org. Lett., 2013, 15(10), 2370-2373.
[http://dx.doi.org/10.1021/ol400752s] [PMID: 23635003]
[25]
Barrow, C.J.; Cai, P.; Snyder, J.K.; Sedlock, D.M.; Sun, H.H.; Cooper, R. WIN 64821, a new competitive antagonist to substance P, isolated from an Aspergillus species: Structure determination and solution conformation. J. Org. Chem., 1993, 58(22), 6016-6021.
[http://dx.doi.org/10.1021/jo00074a031]
[26]
Nuankeaw, K.; Chaiyosang, B.; Suebrasri, T.; Kanokmedhakul, S.; Lumyong, S.; Boonlue, S. First report of secondary metabolites, Violaceol I and Violaceol II produced by endophytic fungus, Trichoderma polyalthiae and their antimicrobial activity. Mycoscience, 2020, 61(1), 16-21.
[http://dx.doi.org/10.1016/j.myc.2019.10.001]
[27]
Yamazaki, M.; Maebayashi, Y. Structure determination of violaceol-I and -II, new fungal metabolites from a strain of Emericella violacea. Chem. Pharm. Bull., 1982, 30(2), 514-518.
[http://dx.doi.org/10.1248/cpb.30.514]
[28]
Julianti, E.; Oh, H.; Lee, H.S.; Oh, D.C.; Oh, K.B.; Shin, J. Acremolin, a new 1H-azirine metabolite from the marine-derived fungus Acremonium strictum. Tetrahedron Lett., 2012, 53(23), 2885-2886.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.133]
[29]
Xu, J.; Hu, Q.; Ding, W.; Wang, P.; Di, Y. New asymmetrical bispyrrolidinoindoline diketopiperazines from the marine fungus Aspergillus sp. DX4H. Nat. Prod. Res., 2018, 32(7), 815-820.
[http://dx.doi.org/10.1080/14786419.2017.1363752] [PMID: 28786310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy