Abstract
This review paper offers a comprehensive exploration of the multifaceted applications of Unmanned Aerial Vehicles (UAVs) in various domains, showcasing their transformative impact in addressing complex challenges. The evaluation of cloud-based UAV systems' stability reveals their robustness and reliability, underlining their significance in numerous industries. Additionally, their role in enhancing robot navigation in intricate environments signifies a substantial advancement in robotics and automation. The integration of blockchain technology for secure Internet of Things (IoT) data transfer emphasizes the critical importance of data integrity and confidentiality in the IoT era. Furthermore, the optimization of energy-efficient data collection in IoT networks through UAVs demonstrates their potential to revolutionize data-driven decision-making processes, particularly in fields reliant on data accuracy and timeliness. The paper also highlights the application of deep reinforcement learning to enhance UAV-assisted IoT data collection, showcasing the synergy between advanced machine learning techniques and UAV technology. Finally, the discussion underscores the pivotal role of UAVs in precision agriculture, where they facilitate ecological farming practices and monitor environmental conditions, contributing to the pursuit of sustainable and efficient agriculture. This review reaffirms UAVs' status as transformative tools, reshaping industries and unlocking new frontiers of innovation and problem-solving. With ongoing technological advancements, UAVs are poised to play an increasingly central role in a wide range of applications, promising a future marked by ground breaking possibilities. Key findings include the dominance of the United States and China in the field, exploration of characteristics such as crop production, and innovative UAV-based methods for grassland mapping, maize growth assessment, and Arctic plant species monitoring. The research underscores the potential of UAVs in bridging field data and satellite mapping, providing valuable insights into diverse applications, from soil analysis to yield predictions, highlighting their transformative role in environmental monitoring and precision agriculture.
[http://dx.doi.org/10.1007/s12544-015-0156-6]
[http://dx.doi.org/10.3390/rs12040614]
[http://dx.doi.org/10.1016/j.rse.2020.111716]
[http://dx.doi.org/10.3390/ijgi8070296]
[http://dx.doi.org/10.1109/LGRS.2017.2731997]
[http://dx.doi.org/10.1016/j.geoderma.2014.09.011]
[http://dx.doi.org/10.1016/j.rse.2018.02.026]
[http://dx.doi.org/10.1016/j.ecolind.2015.03.021]
[http://dx.doi.org/10.1016/j.jag.2021.102511]
[http://dx.doi.org/10.1016/j.jag.2015.01.001]
[http://dx.doi.org/10.3390/rs70302971]
[http://dx.doi.org/10.1016/j.isprsjprs.2015.10.004]
[http://dx.doi.org/10.1016/j.culher.2019.12.013]
[http://dx.doi.org/10.1007/s11042-015-2960-3]
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.251] [PMID: 29702402]
[http://dx.doi.org/10.1016/j.inffus.2018.05.006]
[http://dx.doi.org/10.1109/JSTARS.2018.2805923]
[http://dx.doi.org/10.1016/j.rse.2019.111218]
[http://dx.doi.org/10.3390/rs14102385]
[http://dx.doi.org/10.3390/rs10071091]
[http://dx.doi.org/10.1016/j.tplants.2018.11.007] [PMID: 30558964]
[http://dx.doi.org/10.1109/ACCESS.2019.2909530]
[http://dx.doi.org/10.1007/s11119-021-09813-y]
[http://dx.doi.org/10.5194/isprs-archives-XLI-B6-131-2016]
[http://dx.doi.org/10.1016/j.petrol.2021.109633]
[http://dx.doi.org/10.1080/01431161.2018.1515511]
[http://dx.doi.org/10.1016/j.scitotenv.2022.155939] [PMID: 35577092]
[http://dx.doi.org/10.1016/j.rse.2019.111291]
[http://dx.doi.org/10.1002/wat2.1168]
[http://dx.doi.org/10.1016/j.rse.2019.111383]
[http://dx.doi.org/10.1016/j.rse.2019.111443]
[http://dx.doi.org/10.3390/rs12193136]
[http://dx.doi.org/10.1016/j.rse.2019.111401]
[http://dx.doi.org/10.1016/j.rse.2019.111402]
[http://dx.doi.org/10.1016/j.rse.2019.111223]
[http://dx.doi.org/10.3390/ijgi4031750]
[http://dx.doi.org/10.14358/PERS.81.4.281]
[http://dx.doi.org/10.1016/j.rse.2015.12.029]
[http://dx.doi.org/10.1088/1755-1315/169/1/012003]
[http://dx.doi.org/10.3390/rs11121443]
[http://dx.doi.org/10.1007/s11676-015-0088-y]
[http://dx.doi.org/10.3390/rs13091809]
[http://dx.doi.org/10.2112/JCOASTRES-D-15-00005.1]
[http://dx.doi.org/10.1109/MGRS.2018.2867592]
[http://dx.doi.org/10.1038/s41598-021-98497-5] [PMID: 34593844]
[http://dx.doi.org/10.1016/j.copbio.2020.09.003] [PMID: 33038780]
[http://dx.doi.org/10.3390/s18124092] [PMID: 30469545]
[http://dx.doi.org/10.3390/geomatics3010006]
[http://dx.doi.org/10.1016/j.iot.2020.100187]
[http://dx.doi.org/10.1016/B978-0-08-102894-0.00009-7]
[http://dx.doi.org/10.3390/rs14163967]
[http://dx.doi.org/10.33440/j.ijpaa.20180101.0002]
[http://dx.doi.org/10.1016/j.rse.2020.111872]
[http://dx.doi.org/10.3390/rs11070809]
[http://dx.doi.org/10.3390/s150305609] [PMID: 25756867]
[http://dx.doi.org/10.1007/s11036-018-1193-x]
[http://dx.doi.org/10.1017/wet.2017.89]
[http://dx.doi.org/10.3390/rs9111110]
[http://dx.doi.org/10.1016/j.jnca.2017.02.008]
[http://dx.doi.org/10.3390/rs13061221]
[http://dx.doi.org/10.1109/MNET.2019.1800214]
[http://dx.doi.org/10.1109/ACCESS.2015.2432455]
[http://dx.doi.org/10.1016/j.comnet.2017.05.021]
[http://dx.doi.org/10.1002/rra.2743]
[http://dx.doi.org/10.1007/978-3-319-73323-4_11]
[http://dx.doi.org/10.1016/j.ifacol.2015.07.064]
[http://dx.doi.org/10.1007/s40789-019-00264-5]
[http://dx.doi.org/10.3390/rs9030185]
[http://dx.doi.org/10.1016/j.sna.2018.01.027]
[http://dx.doi.org/10.3390/s150715520] [PMID: 26134108]
[http://dx.doi.org/10.1002/agj2.20595]
[http://dx.doi.org/10.1080/01431161.2018.1465616]
[http://dx.doi.org/10.1109/TCC.2017.2696529]
[http://dx.doi.org/10.1016/j.autcon.2019.102918]
[http://dx.doi.org/10.1109/JCN.2019.000050]
[http://dx.doi.org/10.1109/JIOT.2019.2952364]
[http://dx.doi.org/10.3390/rs12203327]
[http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162896]
[http://dx.doi.org/10.1109/JIOT.2020.3024666]
[http://dx.doi.org/10.3390/s20030817] [PMID: 32028736]
[http://dx.doi.org/10.1109/ACCESS.2019.2930774]
[http://dx.doi.org/10.1080/01431161.2017.1294781]
[http://dx.doi.org/10.1016/j.heliyon.2019.e01277]
[http://dx.doi.org/10.1016/j.comnet.2020.107148]
[http://dx.doi.org/10.1007/978-3-319-25479-1_29]
[http://dx.doi.org/10.3390/s17122703] [PMID: 29168783]
[http://dx.doi.org/10.3390/rs10121900]
[http://dx.doi.org/10.1016/j.landusepol.2021.105930]
[http://dx.doi.org/10.5194/isprs-archives-XLI-B1-1023-2016]
[http://dx.doi.org/10.3390/rs13061204]
[http://dx.doi.org/10.1016/j.rsase.2022.100712]
[http://dx.doi.org/10.3390/agriculture10070256]
[http://dx.doi.org/10.1016/j.compeleceng.2022.107912]
[http://dx.doi.org/10.1002/9781119769231.ch4]
[http://dx.doi.org/10.3390/info10110349]
[http://dx.doi.org/10.1016/j.compag.2017.10.006]
[http://dx.doi.org/10.3390/app12031047]
[http://dx.doi.org/10.4324/9781351134873-6]
[http://dx.doi.org/10.3390/rs12203424]
[http://dx.doi.org/10.1016/j.fcr.2017.05.025]
[http://dx.doi.org/10.1007/s10661-020-08330-1] [PMID: 32447581]
[http://dx.doi.org/10.1016/j.isprsjprs.2018.04.011]
[http://dx.doi.org/10.25165/j.ijabe.20171005.3180]
[http://dx.doi.org/10.1139/juvs-2018-0005]
[http://dx.doi.org/10.3390/s19030535] [PMID: 30696014]
[http://dx.doi.org/10.3390/rs12071106]
[http://dx.doi.org/10.1007/s13593-016-0405-7]
[http://dx.doi.org/10.3390/s19153316] [PMID: 31357720]
[http://dx.doi.org/10.3390/f10121052]
[http://dx.doi.org/10.3390/rs13101987]
[http://dx.doi.org/10.1016/j.inpa.2018.02.002]
[http://dx.doi.org/10.3390/ijgi9040225]
[http://dx.doi.org/10.1002/rra.3479]
[http://dx.doi.org/10.1016/j.rsase.2021.100583]
[http://dx.doi.org/10.3390/agronomy13071764]
[http://dx.doi.org/10.3390/f12030327]
[http://dx.doi.org/10.3390/rs13030457]
[http://dx.doi.org/10.3390/rs11030330]
[http://dx.doi.org/10.1111/tpj.15176] [PMID: 33506558]
[http://dx.doi.org/10.1007/s11119-021-09811-0]
[http://dx.doi.org/10.1080/22797254.2018.1432993]
[http://dx.doi.org/10.3390/rs13193841]
[http://dx.doi.org/10.3390/agronomy12010118]
[http://dx.doi.org/10.3390/rs13101869]
[http://dx.doi.org/10.1007/978-3-319-68715-5_1]
[http://dx.doi.org/10.1016/j.ejrs.2021.08.007]
[http://dx.doi.org/10.1016/j.inpa.2019.09.006]
[http://dx.doi.org/10.3390/rs15194672]
[http://dx.doi.org/10.3390/rs14051096]
[http://dx.doi.org/10.3390/rs14143453]
[http://dx.doi.org/10.3390/agriculture13061115]
[http://dx.doi.org/10.1016/j.jclepro.2022.133041]
[http://dx.doi.org/10.1016/j.compag.2021.106603]
[http://dx.doi.org/10.1139/AS-2021-0044]
[http://dx.doi.org/10.1016/j.geodrs.2022.e00543]
[http://dx.doi.org/10.3390/drones6090232]
[http://dx.doi.org/10.3390/rs14194953]