Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Review Article

Remote Sensing Revolution: Mapping Land Productivity and Vegetation Trends with Unmanned Aerial Vehicles (UAVs)

Author(s): Shrikant Harle*, Amol Bhagat and Ashish Kumar Dash

Volume 3, 2024

Published on: 07 February, 2024

Article ID: e070224226752 Pages: 13

DOI: 10.2174/0126667312288014240129080801

Price: $65

Abstract

This review paper offers a comprehensive exploration of the multifaceted applications of Unmanned Aerial Vehicles (UAVs) in various domains, showcasing their transformative impact in addressing complex challenges. The evaluation of cloud-based UAV systems' stability reveals their robustness and reliability, underlining their significance in numerous industries. Additionally, their role in enhancing robot navigation in intricate environments signifies a substantial advancement in robotics and automation. The integration of blockchain technology for secure Internet of Things (IoT) data transfer emphasizes the critical importance of data integrity and confidentiality in the IoT era. Furthermore, the optimization of energy-efficient data collection in IoT networks through UAVs demonstrates their potential to revolutionize data-driven decision-making processes, particularly in fields reliant on data accuracy and timeliness. The paper also highlights the application of deep reinforcement learning to enhance UAV-assisted IoT data collection, showcasing the synergy between advanced machine learning techniques and UAV technology. Finally, the discussion underscores the pivotal role of UAVs in precision agriculture, where they facilitate ecological farming practices and monitor environmental conditions, contributing to the pursuit of sustainable and efficient agriculture. This review reaffirms UAVs' status as transformative tools, reshaping industries and unlocking new frontiers of innovation and problem-solving. With ongoing technological advancements, UAVs are poised to play an increasingly central role in a wide range of applications, promising a future marked by ground breaking possibilities. Key findings include the dominance of the United States and China in the field, exploration of characteristics such as crop production, and innovative UAV-based methods for grassland mapping, maize growth assessment, and Arctic plant species monitoring. The research underscores the potential of UAVs in bridging field data and satellite mapping, providing valuable insights into diverse applications, from soil analysis to yield predictions, highlighting their transformative role in environmental monitoring and precision agriculture.

[1]
Schnebele E, Tanyu BF, Cervone G, Waters N. Review of remote sensing methodologies for pavement management and assessment. Eur Trans Res Rev 2015; 7(2): 7.
[http://dx.doi.org/10.1007/s12544-015-0156-6]
[2]
Edokossi K, Calabia A, Jin S, Molina I. GNSS-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sens 2020; 12(4): 614.
[http://dx.doi.org/10.3390/rs12040614]
[3]
Yuan Q, Shen H, Li T, et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens Environ 2020; 241: 111716.
[http://dx.doi.org/10.1016/j.rse.2020.111716]
[4]
Stead D, Donati D, Wolter A, Sturzenegger M. Application of remote sensing to the investigation of rock slopes: Experience gained and lessons learned. ISPRS Int J Geoinf 2019; 8(7): 296.
[http://dx.doi.org/10.3390/ijgi8070296]
[5]
Cheng G, Li Z, Yao X, Guo L, Wei Z. Remote sensing image scene classification using bag of convolutional features. IEEE Geosci Remote Sens Lett 2017; 14(10): 1735-9.
[http://dx.doi.org/10.1109/LGRS.2017.2731997]
[6]
Aldabaa AAA, Weindorf DC, Chakraborty S, Sharma A, Li B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015; 239-240: 34-46.
[http://dx.doi.org/10.1016/j.geoderma.2014.09.011]
[7]
Lyons MB, Keith DA, Phinn SR, Mason TJ, Elith J. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sens Environ 2018; 208: 145-53.
[http://dx.doi.org/10.1016/j.rse.2018.02.026]
[8]
Lawley V, Lewis M, Clarke K, Ostendorf B. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecol Indic 2016; 60: 1273-83.
[http://dx.doi.org/10.1016/j.ecolind.2015.03.021]
[9]
Xu W, Chen P, Zhan Y, Chen S, Zhang L, Lan Y. Cotton yield estimation model based on machine learning using time series UAV remote sensing data. Int J Appl Earth Obs Geoinf 2021; 104: 102511.
[http://dx.doi.org/10.1016/j.jag.2021.102511]
[10]
Mueller-Warrant GW, Whittaker GW, Banowetz GM, Griffith SM, Barnhart BL. Methods for improving accuracy and extending results beyond periods covered by traditional ground-truth in remote sensing classification of a complex landscape. Int J Appl Earth Obs Geoinf 2015; 38: 115-28.
[http://dx.doi.org/10.1016/j.jag.2015.01.001]
[11]
Matese A, Toscano P, Di Gennaro S, et al. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens 2015; 7(3): 2971-90.
[http://dx.doi.org/10.3390/rs70302971]
[12]
Toth C, Jóźków G. Remote sensing platforms and sensors: A survey. ISPRS J Photogramm Remote Sens 2016; 115: 22-36.
[http://dx.doi.org/10.1016/j.isprsjprs.2015.10.004]
[13]
Liu C, Cao Y, Yang C, Zhou Y, Ai M. Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: Multifeatured geospatial data to support rural landscape investigation, documentation and management. J Cult Herit 2020; 44: 185-95.
[http://dx.doi.org/10.1016/j.culher.2019.12.013]
[14]
Gu W, Lv Z, Hao M. Change detection method for remote sensing images based on an improved Markov random field. Multimedia Tools Appl 2017; 76(17): 17719-34.
[http://dx.doi.org/10.1007/s11042-015-2960-3]
[15]
Lin L. A review of remote sensing in flood assessment. Fifth International Conference on Agro-Geoinformatics (Agro- Geoinformatics). Tianjin, China 2016; pp. 18-20. July; 1-4.
[16]
Chen G, Li S, Knibbs LD, et al. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci Total Environ 2018; 636: 52-60.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.251] [PMID: 29702402]
[17]
Meng X, Shen H, Li H, Zhang L, Fu R. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Inf Fusion 2019; 46: 102-13.
[http://dx.doi.org/10.1016/j.inffus.2018.05.006]
[18]
Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network. IEEE J Sel Top Appl Earth Obs Remote Sens 2018; 11(5): 1656-69.
[http://dx.doi.org/10.1109/JSTARS.2018.2805923]
[19]
Wang R, Gamon JA. Remote sensing of terrestrial plant biodiversity. Remote Sens Environ 2019; 231: 111218.
[http://dx.doi.org/10.1016/j.rse.2019.111218]
[20]
Li Z, Wang Y, Zhang N, et al. Deep learning-based object detection techniques for remote sensing images: A survey. Remote Sens 2022; 14(10): 2385.
[http://dx.doi.org/10.3390/rs14102385]
[21]
Aasen H, Honkavaara E, Lucieer A, Zarco-Tejada P. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens 2018; 10(7): 1091.
[http://dx.doi.org/10.3390/rs10071091]
[22]
Kaputa DS, Bauch T, Roberts C, McKeown D, Foote M, Salvaggio C. Mx-1: A new multi-modal remote sensing UAS payload with high accuracy GPS and IMU. IEEE Systems and Technologies for Remote Sensing Applications Through Unmanned Aerial Systems (STRATUS). Rochester, NY, USA. 2019; pp. 25-7. Feb; 1-4.
[23]
Maes WH, Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci 2019; 24(2): 152-64.
[http://dx.doi.org/10.1016/j.tplants.2018.11.007] [PMID: 30558964]
[24]
Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, et al. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019; 7: 48572-634.
[http://dx.doi.org/10.1109/ACCESS.2019.2909530]
[25]
Zhao T, Doll D, Wang D, Chen Y. A new framework for UAV-based remote sensing data processing and its application in almond water stress quantification. International Conference on Unmanned Aircraft Systems (ICUAS). Miami, FL, USA. 2017; pp. 13-6. June; 1794-9.
[26]
Zhang C, Valente J, Kooistra L, Guo L, Wang W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precis Agric 2021; 22(6): 2007-52.
[http://dx.doi.org/10.1007/s11119-021-09813-y]
[27]
Norzailawati MN, Alias A, Akma RS. Designing zoning of remote sensing drones for urban applications: A review. Int Arch Photogramm Remote Sens Spat Inf Sci 2016; XLI(B6): 131-8.
[http://dx.doi.org/10.5194/isprs-archives-XLI-B6-131-2016]
[28]
Asadzadeh S, Oliveira WJ, Souza Filho CR. UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. J Petrol Sci Eng 2022; 208: 109633.
[http://dx.doi.org/10.1016/j.petrol.2021.109633]
[29]
Liao X, Zhang Y, Su F, Yue H, Ding Z, Liu J. UAVs surpassing satellites and aircraft in remote sensing over China. Int J Remote Sens 2018; 39(21): 7138-53.
[http://dx.doi.org/10.1080/01431161.2018.1515511]
[30]
Yang Z, Yu X, Dedman S, et al. UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Sci Total Environ 2022; 838(Pt 1): 155939.
[http://dx.doi.org/10.1016/j.scitotenv.2022.155939] [PMID: 35577092]
[31]
West H, Quinn N, Horswell M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens Environ 2019; 232: 111291.
[http://dx.doi.org/10.1016/j.rse.2019.111291]
[32]
Zhang K, Kimball JS, Running SW. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016; 3(6): 834-53.
[http://dx.doi.org/10.1002/wat2.1168]
[33]
Xiao J, Chevallier F, Gomez C, et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens Environ 2019; 233: 111383.
[http://dx.doi.org/10.1016/j.rse.2019.111383]
[34]
Levin N, Kyba CCM, Zhang Q, et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens Environ 2020; 237: 111443.
[http://dx.doi.org/10.1016/j.rse.2019.111443]
[35]
Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: A review. Remote Sens 2020; 12(19): 3136.
[http://dx.doi.org/10.3390/rs12193136]
[36]
Smith WK, Dannenberg MP, Yan D, et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens Environ 2019; 233: 111401.
[http://dx.doi.org/10.1016/j.rse.2019.111401]
[37]
Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review. Remote Sens Environ 2020; 236: 111402.
[http://dx.doi.org/10.1016/j.rse.2019.111402]
[38]
Wang L, Jia M, Yin D, Tian J. A review of remote sensing for mangrove forests: 1956-2018. Remote Sens Environ 2019; 231: 111223.
[http://dx.doi.org/10.1016/j.rse.2019.111223]
[39]
Megahed Y, Cabral P, Silva J, Caetano M. Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region-Egypt. ISPRS Int J Geoinf 2015; 4(3): 1750-69.
[http://dx.doi.org/10.3390/ijgi4031750]
[40]
Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm Eng Remote Sensing 2015; 81(4): 281-330.
[http://dx.doi.org/10.14358/PERS.81.4.281]
[41]
Bhardwaj A, Sam L. Akanksha, Martín-Torres FJ, Kumar R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens Environ 2016; 175: 196-204.
[http://dx.doi.org/10.1016/j.rse.2015.12.029]
[42]
Mohd Noor N, Abdullah A, Hashim M. Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conf Ser Earth Environ Sci 2018; 169: 012003.
[http://dx.doi.org/10.1088/1755-1315/169/1/012003]
[43]
Yao H, Qin R, Chen X. Unmanned aerial vehicle for remote sensing applications-A review. Remote Sens 2019; 11(12): 1443.
[http://dx.doi.org/10.3390/rs11121443]
[44]
Tang L, Shao G. Drone remote sensing for forestry research and practices. J For Res 2015; 26(4): 791-7.
[http://dx.doi.org/10.1007/s11676-015-0088-y]
[45]
Feroz S, Abu Dabous S. Uav-based remote sensing applications for bridge condition assessment. Remote Sens 2021; 13(9): 1809.
[http://dx.doi.org/10.3390/rs13091809]
[46]
Klemas VV. Coastal and environmental remote sensing from unmanned aerial vehicles: An overview. J Coast Res 2015; 315(5): 1260-7.
[http://dx.doi.org/10.2112/JCOASTRES-D-15-00005.1]
[47]
Zhong Y, Wang X, Xu Y, et al. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci Remote Sens Mag 2018; 6(4): 46-62.
[http://dx.doi.org/10.1109/MGRS.2018.2867592]
[48]
Siewert MB, Olofsson J. UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation. Sci Rep 2021; 11(1): 19468.
[http://dx.doi.org/10.1038/s41598-021-98497-5] [PMID: 34593844]
[49]
Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol 2021; 70: 15-22.
[http://dx.doi.org/10.1016/j.copbio.2020.09.003] [PMID: 33038780]
[50]
Han X, Thomasson JA, Bagnall GC, et al. Measurement and calibration of plant-height from fixed-wing UAV images. Sensors 2018; 18(12): 4092.
[http://dx.doi.org/10.3390/s18124092] [PMID: 30469545]
[51]
Nduku L, Munghemezulu C, Mashaba-Munghemezulu Z, et al. Global research trends for unmanned aerial vehicle remote sensing application in wheat crop monitoring. Geomatics 2023; 3(1): 115-36.
[http://dx.doi.org/10.3390/geomatics3010006]
[52]
Boursianis AD, Papadopoulou MS, Diamantoulakis P, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things 2022; 18: 100187.
[http://dx.doi.org/10.1016/j.iot.2020.100187]
[53]
Singh P. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. In: Hyperspectral remote sensing. Elsevier 2020; pp. 121-46.
[http://dx.doi.org/10.1016/B978-0-08-102894-0.00009-7]
[54]
Xu Y, Yang Y, Chen X, Liu Y. Bibliometric analysis of global NDVI research trends from 1985 to 2021. Remote Sens 2022; 14(16): 3967.
[http://dx.doi.org/10.3390/rs14163967]
[55]
Lan Y, Chen S. Â Current status and trends of plant protection UAV and its spraying technology in China. Â Int J Precis Agric Aviat 2018; 1(1): 9.
[http://dx.doi.org/10.33440/j.ijpaa.20180101.0002]
[56]
Beamish A, Raynolds MK, Epstein H, et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens Environ 2020; 246: 111872.
[http://dx.doi.org/10.1016/j.rse.2020.111872]
[57]
Wang L, Zhang G, Wang Z, Liu J, Shang J, Liang L. Bibliometric analysis of remote sensing research trend in crop growth monitoring: A case study in China. Remote Sens 2019; 11(7): 809.
[http://dx.doi.org/10.3390/rs11070809]
[58]
Peña J, Torres-Sánchez J, Serrano-Pérez A, de Castro A, López-Granados F. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors 2015; 15(3): 5609-26.
[http://dx.doi.org/10.3390/s150305609] [PMID: 25756867]
[59]
Zhi Y, Fu Z, Sun X, Yu J. Security and privacy issues of UAV: A survey. Mob Netw Appl 2020; 25(1): 95-101.
[http://dx.doi.org/10.1007/s11036-018-1193-x]
[60]
Idries A, Mohamed N, Jawhar I, Mohamed F, Al-Jaroodi J. Challenges of developing UAV applications: A project management view. International Conference on Industrial Engineering and Operations Management (IEOM). Dubai, United Arab Emirates. 2015; pp. 03-05 Mar; 1-10.
[61]
Huang Y, Reddy KN, Fletcher RS, Pennington D. UAV low-altitude remote sensing for precision weed management. Weed Technol 2018; 32(1): 2-6.
[http://dx.doi.org/10.1017/wet.2017.89]
[62]
Adão T, Hruška J, Pádua L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 2017; 9(11): 1110.
[http://dx.doi.org/10.3390/rs9111110]
[63]
Jawhar I, Mohamed N, Al-Jaroodi J, Agrawal DP, Zhang S. Communication and networking of UAV-based systems: Classification and associated architectures. J Netw Comput Appl 2017; 84: 93-108.
[http://dx.doi.org/10.1016/j.jnca.2017.02.008]
[64]
Zhang H, Wang L, Tian T, Yin J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens 2021; 13(6): 1221.
[http://dx.doi.org/10.3390/rs13061221]
[65]
Hu Z, Bai Z, Yang Y, Zheng Z, Bian K, Song L. UAV aided aerial-ground IoT for air quality sensing in smart city: Architecture, technologies, and implementation. IEEE Netw 2019; 33(2): 14-22.
[http://dx.doi.org/10.1109/MNET.2019.1800214]
[66]
Gageik N, Benz P, Montenegro S. Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors. IEEE Access 2015; 3: 599-609.
[http://dx.doi.org/10.1109/ACCESS.2015.2432455]
[67]
Erdelj M, Król M, Natalizio E. Wireless sensor networks and multi-uav systems for natural disaster management. Comput Netw 2017; 124: 72-86.
[http://dx.doi.org/10.1016/j.comnet.2017.05.021]
[68]
Tamminga A, Hugenholtz C, Eaton B, Lapointe M. Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using an Unmanned Aerial Vehicle (UAV): A first assessment in the context of river research and management. River Res Appl 2015; 31(3): 379-91.
[http://dx.doi.org/10.1002/rra.2743]
[69]
Hernández-Vega J-I, Varela ER, Romero NH, Hernández-Santos C, Cuevas JLS, Gorham DGP. Internet of Things (IoT) for monitoring air pollutants with an Unmanned Aerial Vehicle (UAV) in a smart city.In: Smart Technologies. World Scientific Publishing Company 2018.
[http://dx.doi.org/10.1007/978-3-319-73323-4_11]
[70]
Gabrlik P. The use of direct georeferencing in aerial photogrammetry with micro UAV. IFAC-PapersOnLine 2015; 48(4): 380-5.
[http://dx.doi.org/10.1016/j.ifacol.2015.07.064]
[71]
Ren H, Zhao Y, Xiao W, Hu Z. A review of UAV monitoring in mining areas: current status and future perspectives. Int J Coal Sci Technol 2019; 6(3): 320-33.
[http://dx.doi.org/10.1007/s40789-019-00264-5]
[72]
Nevalainen O, Honkavaara E, Tuominen S, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens 2017; 9(3): 185.
[http://dx.doi.org/10.3390/rs9030185]
[73]
Li F, Du Y, Sun X, Zhao W. Sensing performance assessment of twisted CFRP with embedded fiber Bragg grating sensors subjected to monotonic and fatigue loading. Sens Actuators A Phys 2018; 271: 153-61.
[http://dx.doi.org/10.1016/j.sna.2018.01.027]
[74]
Yang G. UAV based multi-load remote sensing technologies for wheat breeding information acquirement. Nongye Gongcheng Xuebao 2015; 31(21): 184-90.
[75]
Achille C, Adami A, Chiarini S, et al. UAV-based photogrammetry and integrated technologies for architectural applications-methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015; 15(7): 15520-39.
[http://dx.doi.org/10.3390/s150715520] [PMID: 26134108]
[76]
Olson D, Anderson J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agron J 2021; 113(2): 971-92.
[http://dx.doi.org/10.1002/agj2.20595]
[77]
Larson MD, Simic Milas A, Vincent RK, Evans JE. Multi-depth suspended sediment estimation using high-resolution remote-sensing UAV in Maumee River, Ohio. Int J Remote Sens 2018; 39(15-16): 5472-89.
[http://dx.doi.org/10.1080/01431161.2018.1465616]
[78]
Luo F, Jiang C, Yu S, Wang J, Li Y, Ren Y. Stability of cloud-based UAV systems supporting big data acquisition and processing. IEEE Trans Cloud Comput 2019; 7(3): 866-77.
[http://dx.doi.org/10.1109/TCC.2017.2696529]
[79]
Kim P, Park J, Cho YK, Kang J. UAV-assisted autonomous mobile robot navigation for as-is 3D data collection and registration in cluttered environments. Autom Construct 2019; 106: 102918.
[http://dx.doi.org/10.1016/j.autcon.2019.102918]
[80]
Islam A, Shin SY. BUAV: A blockchain based secure UAV-assisted data acquisition scheme in Internet of Things. J Commun Netw 2019; 21(5): 491-502.
[http://dx.doi.org/10.1109/JCN.2019.000050]
[81]
Wang Z, Liu R, Liu Q, Thompson JS, Kadoch M. Energy-efficient data collection and device positioning in UAV-assisted IoT. IEEE Internet Things J 2020; 7(2): 1122-39.
[http://dx.doi.org/10.1109/JIOT.2019.2952364]
[82]
Hyyppä E, Yu X, Kaartinen H, et al. Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sens 2020; 12(20): 3327.
[http://dx.doi.org/10.3390/rs12203327]
[83]
Yi M, Wang X, Liu J, Zhang Y, Bai B. Deep reinforcement learning for fresh data collection in UAV-assisted IoT networks. IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Toronto, ON, Canada.. 2020; pp. July; 716-21.; 06-9.
[http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162896]
[84]
Zhang Y, Mou Z, Gao F, Xing L, Jiang J, Han Z. Hierarchical deep reinforcement learning for backscattering data collection with multiple UAVs. IEEE Internet Things J 2021; 8(5): 3786-800.
[http://dx.doi.org/10.1109/JIOT.2020.3024666]
[85]
Popescu D, Stoican F, Stamatescu G, Ichim L, Dragana C. Advanced UAV–WSN system for intelligent monitoring in precision agriculture. Sensors 2020; 20(3): 817.
[http://dx.doi.org/10.3390/s20030817] [PMID: 32028736]
[86]
Islam A, Shin SY. Bus: A blockchain-enabled data acquisition scheme with the assistance of uav swarm in internet of things. IEEE Access 2019; 7: 103231-49.
[http://dx.doi.org/10.1109/ACCESS.2019.2930774]
[87]
Ahmed OS, Shemrock A, Chabot D, et al. Hierarchical land cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle. Int J Remote Sens 2017; 38(8-10): 2037-52.
[http://dx.doi.org/10.1080/01431161.2017.1294781]
[88]
Saura JR, Reyes-Menendez A, Palos-Sanchez P. Mapping multispectral Digital Images using a Cloud Computing software: applications from UAV images. Heliyon 2019; 5(2): e01277.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01277]
[89]
Radoglou-Grammatikis P, Sarigiannidis P, Lagkas T, Moscholios I. A compilation of UAV applications for precision agriculture. Comput Netw 2020; 172: 107148.
[http://dx.doi.org/10.1016/j.comnet.2020.107148]
[90]
Abdullahi HS, Mahieddine F, Sheriff RE. Technology Impact on Agricultural Productivity: A Review of Precision Agriculture Using Unmanned Aerial Vehicles. International Conference on Wireless and Satellite Systems.
[http://dx.doi.org/10.1007/978-3-319-25479-1_29]
[91]
Christiansen M, Laursen M, Jørgensen R, Skovsen S, Gislum R. Designing and testing a UAV mapping system for agricultural field surveying. Sensors 2017; 17(12): 2703.
[http://dx.doi.org/10.3390/s17122703] [PMID: 29168783]
[92]
Sarron J, Malézieux É, Sané C, Faye É. Mango yield mapping at the orchard scale based on tree structure and land cover assessed by UAV. Remote Sens 2018; 10(12): 1900.
[http://dx.doi.org/10.3390/rs10121900]
[93]
Stöcker C, Bennett R, Koeva M, Nex F, Zevenbergen J. Scaling up UAVs for land administration: Towards the plateau of productivity. Land Use Policy 2022; 114: 105930.
[http://dx.doi.org/10.1016/j.landusepol.2021.105930]
[94]
Sona G, Passoni D, Pinto L, et al. UAV multispectral survey to map soil and crop for precision farming applications. Int Arch Photogramm Remote Sens Spat Inf Sci 2016; XLI(B1): 1023-9.
[http://dx.doi.org/10.5194/isprs-archives-XLI-B1-1023-2016]
[95]
Delavarpour N, Koparan C, Nowatzki J, Bajwa S, Sun X. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sens 2021; 13(6): 1204.
[http://dx.doi.org/10.3390/rs13061204]
[96]
Hafeez A. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf Process Agric 2022; 10(2): 192-203.
[97]
Amarasingam N, Ashan Salgadoe AS, Powell K, Gonzalez LF, Natarajan S. A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops. Remote Sens Appl Soc Environ 2022; 26: 100712.
[http://dx.doi.org/10.1016/j.rsase.2022.100712]
[98]
Nhamo L, Magidi J, Nyamugama A, et al. Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture 2020; 10(7): 256.
[http://dx.doi.org/10.3390/agriculture10070256]
[99]
Singh PK, Sharma A. An intelligent WSN-UAV-based IoT framework for precision agriculture application. Comput Electr Eng 2022; 100: 107912.
[http://dx.doi.org/10.1016/j.compeleceng.2022.107912]
[100]
Dutta PK, Mitra S. Application of agricultural drones and iot to understand food supply chain during post COVID‐19. In: Choudhury A, Biswas A, Prateek M, Chakrabarti A, Eds. Agricultural Informatics. (1st ed.). Wiley 2021; pp. 67-87.
[http://dx.doi.org/10.1002/9781119769231.ch4]
[101]
Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Information 2019; 10(11): 349.
[http://dx.doi.org/10.3390/info10110349]
[102]
Souza CHW, Lamparelli RAC, Rocha JV, Magalhães PSG. Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images. Comput Electron Agric 2017; 143: 49-56.
[http://dx.doi.org/10.1016/j.compag.2017.10.006]
[103]
Honrado JLE, Solpico DB, Favila CM, Tongson E, Tangonan GL, Libatique NJ. UAV imaging with low-cost multispectral imaging system for precision agriculture applications. IEEE Global Humanitarian Technology Conference (GHTC). San Jose, CA, USA. 2017; pp. Oct; 1-7; 19-22.
[104]
Aslan MF, Durdu A, Sabanci K, Ropelewska E, Gültekin SS. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Appl Sci 2022; 12(3): 1047.
[http://dx.doi.org/10.3390/app12031047]
[105]
Norasma CYN, Fadzilah MA, Roslin NA, Zanariah ZWN, Tarmidi Z, Candra FS. Unmanned aerial vehicle applications in agriculture. IOP Conf Series: Mater Sci Eng 2019; 012063.
[106]
Radjawali I, Pye O, Flitner M. Recognition through reconnaissance? Using drones for counter-mapping in Indonesia. In: Decentring Land Grabbing. Routledge 2019; pp. 120-36.
[http://dx.doi.org/10.4324/9781351134873-6]
[107]
Messina G, Peña JM, Vizzari M, Modica G. A comparison of UAV and satellites multispectral imagery in monitoring onion crop. An application in the ‘Cipolla Rossa di Tropea’(Italy). Remote Sens 2020; 12(20): 3424.
[http://dx.doi.org/10.3390/rs12203424]
[108]
Duan T, Chapman SC, Guo Y, Zheng B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res 2017; 210: 71-80.
[http://dx.doi.org/10.1016/j.fcr.2017.05.025]
[109]
Di Gennaro SF, Battiston E, Marco Di S, et al. Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathol Mediterr 2016; 55(2): 262-75.
[110]
Al-Ali ZM, Abdullah MM, Asadalla NB, Gholoum M. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environ Monit Assess 2020; 192(6): 389.
[http://dx.doi.org/10.1007/s10661-020-08330-1] [PMID: 32447581]
[111]
van Iersel W, Straatsma M, Addink E, Middelkoop H. Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS J Photogramm Remote Sens 2018; 141: 112-23.
[http://dx.doi.org/10.1016/j.isprsjprs.2018.04.011]
[112]
Mengmeng D, Noboru N, Atsushi I, Yukinori S. Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle. Int J Agric Biol Eng 2017; 10(5): 1-13.
[http://dx.doi.org/10.25165/j.ijabe.20171005.3180]
[113]
Chabot D. Trends in drone research and applications as the Journal of Unmanned Vehicle Systems turns five. J Unmanned Veh Syst 2018; 6(1): vi-xv.
[http://dx.doi.org/10.1139/juvs-2018-0005]
[114]
Rueda-Ayala V, Peña J, Höglind M, Bengochea-Guevara J, Andújar D. Comparing UAV-based technologies and RGB-D reconstruction methods for plant height and biomass monitoring on grass ley. Sensors 2019; 19(3): 535.
[http://dx.doi.org/10.3390/s19030535] [PMID: 30696014]
[115]
Jurado JM, Ortega L, Cubillas JJ, Feito FR. Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees. Remote Sens 2020; 12(7): 1106.
[http://dx.doi.org/10.3390/rs12071106]
[116]
López-Granados F, Torres-Sánchez J, De Castro AI, Serrano-Pérez A, Mesas-Carrascosa FJ, Peña JM. Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agron Sustain Dev 2016; 36(4): 67.
[http://dx.doi.org/10.1007/s13593-016-0405-7]
[117]
Salhaoui M, Guerrero-González A, Arioua M, Ortiz FJ, El Oualkadi A, Torregrosa CL. Smart industrial iot monitoring and control system based on UAV and cloud computing applied to a concrete plant. Sensors 2019; 19(15): 3316.
[http://dx.doi.org/10.3390/s19153316] [PMID: 31357720]
[118]
Zhang Y, Wu H, Yang W. Forests growth monitoring based on tree canopy 3D reconstruction using UAV aerial photogrammetry. Forests 2019; 10(12): 1052.
[http://dx.doi.org/10.3390/f10121052]
[119]
Fabbri S, Grottoli E, Armaroli C, Ciavola P. Using high-spatial resolution UAV-derived data to evaluate vegetation and geomorphological changes on a dune field involved in a restoration endeavour. Remote Sens 2021; 13(10): 1987.
[http://dx.doi.org/10.3390/rs13101987]
[120]
Zhang Y, Chen D, Wang S, Tian L. A promising trend for field information collection: An air-ground multi-sensor monitoring system. Inf Process Agric 2018; 5(2): 224-33.
[http://dx.doi.org/10.1016/j.inpa.2018.02.002]
[121]
Pádua L, Guimarães N, Adão T, Sousa A, Peres E, Sousa JJ. Effectiveness of sentinel-2 in multi-temporal post-fire monitoring when compared with UAV imagery. ISPRS Int J Geoinf 2020; 9(4): 225.
[http://dx.doi.org/10.3390/ijgi9040225]
[122]
Tomsett C, Leyland J. Remote sensing of river corridors: A review of current trends and future directions. River Res Appl 2019; 35(7): 779-803.
[http://dx.doi.org/10.1002/rra.3479]
[123]
Das S, Chapman S, Christopher J, et al. UAV-thermal imaging: A technological breakthrough for monitoring and quantifying crop abiotic stress to help sustain productivity on sodic soils - A case review on wheat. Remote Sens Appl Soc Environ 2021; 23: 100583.
[http://dx.doi.org/10.1016/j.rsase.2021.100583]
[124]
Shah SA, Lakho GM, Keerio HA, et al. Application of drone surveillance for advance agriculture monitoring by android application using convolution neural network. Agronomy 2023; 13(7): 1764.
[http://dx.doi.org/10.3390/agronomy13071764]
[125]
Dainelli R, Toscano P, Di Gennaro SF, Matese A. Recent advances in unmanned aerial vehicle forest remote sensing-A systematic review. part I: A general framework. Forests 2021; 12(3): 327.
[http://dx.doi.org/10.3390/f12030327]
[126]
Zhou X, Yang L, Wang W, Chen B. Uav data as an alternative to field sampling to monitor vineyards using machine learning based on uav/sentinel-2 data fusion. Remote Sens 2021; 13(3): 457.
[http://dx.doi.org/10.3390/rs13030457]
[127]
Sagan V, Maimaitijiang M, Sidike P, et al. UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras. Remote Sens 2019; 11(3): 330.
[http://dx.doi.org/10.3390/rs11030330]
[128]
Tholl D, Hossain O, Weinhold A, Röse USR, Wei Q. Trends and applications in plant volatile sampling and analysis. Plant J 2021; 106(2): 314-25.
[http://dx.doi.org/10.1111/tpj.15176] [PMID: 33506558]
[129]
Zhu W, Sun Z, Huang Y, et al. Optimization of multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping. Precis Agric 2021; 22(6): 1768-802.
[http://dx.doi.org/10.1007/s11119-021-09811-0]
[130]
Berie HT, Burud I. Application of unmanned aerial vehicles in earth resources monitoring: Focus on evaluating potentials for forest monitoring in Ethiopia. Eur J Remote Sens 2018; 51(1): 326-35.
[http://dx.doi.org/10.1080/22797254.2018.1432993]
[131]
Neupane K, Baysal-Gurel F. Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. Remote Sens 2021; 13(19): 3841.
[http://dx.doi.org/10.3390/rs13193841]
[132]
Monteiro A, Santos S. Sustainable approach to weed management: The role of precision weed management. Agronomy 2022; 12(1): 118.
[http://dx.doi.org/10.3390/agronomy12010118]
[133]
Mattivi P, Pappalardo SE, Nikolić N, et al. Can commercial low-cost drones and open-source GIS technologies be suitable for semi-automatic weed mapping for smart farming? A case study in NE Italy. Remote Sens 2021; 13(10): 1869.
[http://dx.doi.org/10.3390/rs13101869]
[134]
Pedersen SM, Lind KM. Precision agriculture - from mapping to site-specific application. In: Precision Agriculture: Technology and Economic Perspectives. Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-68715-5_1]
[135]
Said Mohamed E, Belal A, Kotb Abd-Elmabod S, El-Shirbeny MA, Gad A, Zahran MB. Smart farming for improving agricultural management. Egypt J Remote Sens Space Sci 2021; 24(3): 971-81.
[http://dx.doi.org/10.1016/j.ejrs.2021.08.007]
[136]
Tian H, Wang T, Liu Y, Qiao X, Li Y. Computer vision technology in agricultural automation -A review. Inf Process Agric 2020; 7(1): 1-19.
[http://dx.doi.org/10.1016/j.inpa.2019.09.006]
[137]
Abrahams M, Sibanda M, Dube T, Chimonyo VGP, Mabhaudhi T. A systematic review of UAV applications for mapping neglected and underutilised crop species’ spatial distribution and health. Remote Sens 2023; 15(19): 4672.
[http://dx.doi.org/10.3390/rs15194672]
[138]
Lyu X, Li X, Dang D, Dou H, Wang K, Lou A. Unmanned aerial vehicle (UAV) remote sensing in grassland ecosystem monitoring: A systematic review. Remote Sens 2022; 14(5): 1096.
[http://dx.doi.org/10.3390/rs14051096]
[139]
Hall EC, Lara MJ. Multisensor UAS mapping of Plant Species and Plant Functional Types in Midwestern Grasslands. Remote Sens 2022; 14(14): 3453.
[http://dx.doi.org/10.3390/rs14143453]
[140]
Macedo FL, Nóbrega H, de Freitas JGR, et al. Estimation of productivity and above-ground biomass for corn (Zea mays) via vegetation indices in madeira island. Agriculture 2023; 13(6): 1115.
[http://dx.doi.org/10.3390/agriculture13061115]
[141]
Peng M, Han W, Li C, Yao X, Shao G. Modeling the daytime net primary productivity of maize at the canopy scale based on UAV multispectral imagery and machine learning. J Clean Prod 2022; 367: 133041.
[http://dx.doi.org/10.1016/j.jclepro.2022.133041]
[142]
Qiao L, Gao D, Zhao R, et al. Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery. Comput Electron Agric 2022; 192: 106603.
[http://dx.doi.org/10.1016/j.compag.2021.106603]
[143]
Orndahl KM, Ehlers LPW, Herriges JD, Pernick RE, Hebblewhite M, Goetz SJ. Mapping tundra ecosystem plant functional type cover, height and aboveground biomass in Alaska and northwest Canada using unmanned aerial vehicles. Arct Sci 2022; 8(4): AS-2021-0044.
[http://dx.doi.org/10.1139/AS-2021-0044]
[144]
Beniaich A, Silva MLN, Guimarães DV, et al. UAV-based vegetation monitoring for assessing the impact of soil loss in olive orchards in Brazil. Geoderma Reg 2022; 30: e00543.
[http://dx.doi.org/10.1016/j.geodrs.2022.e00543]
[145]
Sangjan W, Carpenter-Boggs LA, Hudson TD, Sankaran S. Pasture productivity assessment under mob grazing and fertility management using satellite and uas imagery. Drones 2022; 6(9): 232.
[http://dx.doi.org/10.3390/drones6090232]
[146]
Lukas V, Huňady I, Kintl A, et al. Using UAV to identify the optimal vegetation index for yield prediction of oil seed rape (Brassica napus L.) at the flowering stage. Remote Sens 2022; 14(19): 4953.
[http://dx.doi.org/10.3390/rs14194953]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy