Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Nanoencapsulation of Zataria multiflora Essential Oil Containing Linalool Reduced Antibiofilm Resistance against Multidrug-resistant Clinical Strains

In Press, (this is not the final "Version of Record"). Available online 06 February, 2024
Author(s): Neda Mohamadi, Mahboubeh Adeli-Sardou, Mehdi Ansari, Atousa Pakdel, Muberra Kosar and Fariba Sharififar*
Published on: 06 February, 2024

DOI: 10.2174/0115734137281383240116052904

open access plus

Abstract

Background: The rise in antimicrobial resistance, caused by the production of biofilms by bacteria, is a significant concern in the field of healthcare. Nanoemulsion technology presents itself as a viable alternative in the quest to circumvent antibiotic resistance in pathogenic bacteria.

Objective: The aim of this research was to form a sustainable nanoemulsion from Z. multiflora, and evaluate its antibacterial and anti-biofilm activities against the clinical isolates of Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus.

Materials and Methods: Bioactive compounds of the oil were identified using GC-MS. Zataria multiflora essential oil (ZMEO) nanoemulsion was formulated as a water-dispersible nanoemulsion with a diameter of 184.88 ± 1.18 nm. The antibacterial and antibiofilm activities of the essential oil in both pure and nanoemulsion forms were assessed against pathogenic bacteria causing hospital-acquired infections using minimal inhibitory concentrations (MICs) and the microtiter method, respectively.

Results: The main constituents were found to be linalool (78.66 %), carvacrol (14.25 %), and α- pinene (4.53%). Neither ZMEO nor the emulsified ZMEO showed any antimicrobial activity. However, ZMEO exhibited a low inhibition of biofilm formation by P. mirabilis, S. aureus, and P. aeruginosa. The most promising finding was that when the emulsified ZMEO was present at a concentration of 750 μg/mL, it significantly reduced biofilm formation by the aforementioned bacteria to 39.68% ± 2.62, 56.54% ± 3.35, and 59.60% ± 2.88, respectively. This result suggests that ZMEO nanoemulsion has the potential to effectively disrupt persistent biofilms and enhance the penetration of antimicrobial agents into the biofilm matrix.

Conclusion: In conclusion, the study provides evidence supporting the use of ZMEO nanoemulsion as a potential treatment option for combating biofilm-related infections caused by Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Further research is warranted to explore the practical application of the proposed essential oil in clinical settings.

[1]
Miquel, S.; Lagrafeuille, R.; Souweine, B.; Forestier, C. Anti-biofilm activity as a health issue. Front. Microbiol., 2016, 7, 592.
[http://dx.doi.org/10.3389/fmicb.2016.00592] [PMID: 27199924]
[2]
Panlilio, H.; Rice, C.V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol. Bioeng., 2021, 118(6), 2129-2141.
[http://dx.doi.org/10.1002/bit.27760] [PMID: 33748946]
[3]
Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front. Microbiol., 2020, 11, 566325.
[http://dx.doi.org/10.3389/fmicb.2020.566325] [PMID: 33193155]
[4]
Sharififar, F.; Mirtajadini, M.; Azampour, M.J.; Zamani, E. Essential oil and methanolic extract of Zataria multiflora Boiss with anticholinesterase effect. Pak. J. Biol. Sci., 2011, 15(1), 49-53.
[http://dx.doi.org/10.1016/j.jep.2012.12.018] [PMID: 23266333]
[5]
Barati, M.; Sharifi, I.; Sharififar, F. In vitro evaluation of anti-Leishmanial activities of Zataria multiflora Boiss, Peganum harmala and Myrtus communis by colorimetric assay. J. Kerman Univ. Med. Sci., 2010, 17(1), 32-42.
[6]
Saei-Dehkordi, S.S.; Tajik, H.; Moradi, M.; Khalighi-Sigaroodi, F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem. Toxicol., 2010, 48(6), 1562-1567.
[http://dx.doi.org/10.1016/j.fct.2010.03.025] [PMID: 20332011]
[7]
Shafiee, A.; Javidnia, K. Composition of essential oil of Zataria multiflora. Planta Med., 1997, 63(4), 371-372.
[http://dx.doi.org/10.1055/s-2006-957707] [PMID: 17252397]
[8]
Sharififar, F.; Derakhshanfar, A.; Dehghan-Nudeh, G.; Abbasi, N.; Abbasi, R.; Gharaei, R.R.; Koohpayeh, A.; Daneshpajouh, M. In vivo antioxidant activity of Zataria multiflora Boiss essential oil. Pak. J. Pharm. Sci., 2011, 24(2), 221-225.
[PMID: 21454174]
[9]
Moosavy, M.H.; Basti, A.A.; Misaghi, A.; Salehi, T.Z.; Abbasifar, R.; Mousavi, H.A.E.; Alipour, M.; Razavi, N.E.; Gandomi, H.; Noori, N. Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Res. Int., 2008, 41(10), 1050-1057.
[http://dx.doi.org/10.1016/j.foodres.2008.07.018]
[10]
Mahdavi Ourtakand, M.; Khodayi, M.; Honarmand Jahromi, S. Antibacterial effect of Zataria multiflora Essential oil against biofilms of Staphylococcus aureus Clinical Isolates. J. Iranian J. Biol. Sci., 2018, 13(1), 1-8.
[11]
Mehdizadeh, T.; Narimani, R.; Mojaddar Langroodi, A.; Moghaddas Kia, E.; Neyriz-Naghadehi, M. Antimicrobial effects of Zataria multiflora essential oil and Lactobacillus acidophilus on Escherichia coli O157 stability in the Iranian probiotic white‐brined cheese. J. Food Saf., 2018, 38(4), e12476.
[http://dx.doi.org/10.1111/jfs.12476]
[12]
Eftekhar, F.; Zamani, S.; Yousefzadi, M.; Hadian, J.; Nezhadebrahimi, S. Antibacterial activity of Zataria multiflora Boiss essential oil against extended spectrum β lactamase produced by urinary isolates of Klebsiella pneumonia. Jundishapur J. Microbiol., 2011, 4(1), S43-S9.
[13]
Basti, A.A.; Misaghi, A.; Khaschabi, D. Growth response and modelling of the effects of Zataria multiflora Boiss. essential oil, pH and temperature on Salmonella Typhimurium and Staphylococcus aureus. Lebensm. Wiss. Technol., 2007, 40(6), 973-981.
[http://dx.doi.org/10.1016/j.lwt.2006.07.007]
[14]
Fazeli, M.R.; Amin, G.; Attari, M.M.A.; Ashtiani, H.; Jamalifar, H.; Samadi, N. Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control, 2007, 18(6), 646-649.
[http://dx.doi.org/10.1016/j.foodcont.2006.03.002]
[15]
Rahnama, M.; Najimi, M.; Ali, S. Antibacterial effects of Myristica fragrans, Zataria multiflora Boiss, Syzygium aromaticum, and Zingiber officinale Rosci essential oils, alone and in combination with nisin on Listeria monocytogenes. Comp. Clin. Pathol., 2012, 21(6), 1313-1316.
[http://dx.doi.org/10.1007/s00580-011-1287-3]
[16]
Saeidi, S.; Mohsenbeygi, M.; Roustakhiz, J.; Javadian, F.; Hassanshahian, M. Antimicrobial and anti-biofilm effects of Mentha piperita and Zataria multiflora on pathogenic bacteria. J. Med. Bacteriol., 2019, 8(1-2), 37-44.
[17]
Mahboubi, M.; Heidarytabar, R.; Mahdizadeh, E. Antibacterial activity of Zataria multiflora essential oil and its main components against Pseudomonas aeruginosa. Herba Pol., 2017, 63(3), 18-24.
[http://dx.doi.org/10.1515/hepo-2017-0015]
[18]
Khaledi, A.; Meskini, M. A systematic review of the effects of Satureja khuzestanica Jamzad and Zataria multiflora Boiss against Pseudomonas aeruginosa. Iran. J. Med. Sci., 2020, 45(2), 83-90.
[PMID: 32210484]
[19]
Yazdanian, A.; Bagheri, A.; Tebyanian, H. Evaluation of antimicrobial and cytotoxic effects of herb-al extracts (Zataria multiflora, echinacea purpurea, arctium lappa) On pathogenic bacteria in dog’s mouth. The 2nd Regional Conference on Cow Comfort & Lameness,, 18-20 July,2022, Iran.
[20]
Sharififar, F.; Moshafi, M.H.; Mansouri, S.H.; Khodashenas, M.; Khoshnoodi, M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control, 2007, 18(7), 800-805.
[http://dx.doi.org/10.1016/j.foodcont.2006.04.002]
[21]
Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem., 2016, 194, 410-415.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.139] [PMID: 26471573]
[22]
Sugumar, S.; Nirmala, J.; Ghosh, V.; Anjali, H.; Mukherjee, A.; Chandrasekaran, N. Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J. Basic Microbiol., 2013, 53(8), 677-685.
[http://dx.doi.org/10.1002/jobm.201200060] [PMID: 22961665]
[23]
Yazgan, H. Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. Lebensm. Wiss. Technol., 2020, 130, 109669.
[http://dx.doi.org/10.1016/j.lwt.2020.109669]
[24]
Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol., 2016, 233, 106-120.
[http://dx.doi.org/10.1016/j.jbiotec.2016.07.005] [PMID: 27416793]
[25]
Ashaolu, T.J. Nanoemulsions for health, food, and cosmetics: A review. J. Environmen. Chem. Lett., 2021, 1-15.
[26]
Saharkhiz, M.J.; Rahimi, M.J.; Bandegi, A.; Zomorodian, K.; Bazargani, A.; Shekarkhar, G.; Bandegani, A.; Pakshir, K. Chemical composition and antimicrobial activities of the essential oils from three ecotypes of Zataria multiflora. Pharmacogn. Mag., 2011, 7(25), 53-59.
[http://dx.doi.org/10.4103/0973-1296.75902] [PMID: 21472080]
[27]
Mohamadi, N.; Rajaei, P. Effects of different ecological condition on the quality and quantity of essential oils of Artemisia persica Boiss. Populations from Kerman, Iran. J. Essent. Oil-Bear. Plants, 2016, 19(1), 200-207.
[http://dx.doi.org/10.1080/0972060X.2014.983994]
[28]
Aljelehawy, Q.H.A.; Mohammadi, S.; Mohamadian, E.; Raji Mal Allah, O.; Mirzaei, A.; Ghahremanlou, M. Antimicrobial, anticancer, antidiabetic, antineurodegenerative, and antirheumatic activities of thymol: Clarification of mechanisms. Micro. Nano. Bio. Aspects., 2023, 2(1), 1-7.
[29]
Lahiri, D.; Nag, M.; Dutta, B.; Dey, S.; Mukherjee, D.; Joshi, S.J.; Ray, R.R. Antibiofilm and anti‐quorum sensing activities of eugenol and linalool from Ocimum tenuiflorum against Pseudomonas aeruginosa biofilm. J. Appl. Microbiol., 2021, 131(6), 2821-2837.
[http://dx.doi.org/10.1111/jam.15171] [PMID: 34077580]
[30]
Praseetha, S.; Sukumaran, S.T.; Dan, M.; Augustus, A.R.; Pandian, S.K.; Sugathan, S. The anti-biofilm potential of linalool, a major compound from hedychium larsenii, against Streptococcus pyogenes and its toxicity assessment in danio rerio. Antibiotics, 2023, 12(3), 545.
[http://dx.doi.org/10.3390/antibiotics12030545] [PMID: 36978412]
[31]
Prakash, A.; Vadivel, V.; Rubini, D.; Nithyanand, P. Antibacterial and antibiofilm activities of linalool nanoemulsions against Salmonella Typhimurium. Food Biosci., 2019, 28, 57-65.
[http://dx.doi.org/10.1016/j.fbio.2019.01.018]
[32]
Mastoor, S.; Nazim, F.; Rizwan-ul-Hasan, S.; Ahmed, K.; Khan, S.; Ali, S.N.; Abidi, S.H. Analysis of the antimicrobial and anti-biofilm activity of natural compounds and their analogues against staphylococcus aureus isolates. Molecules, 2022, 27(20), 6874.
[http://dx.doi.org/10.3390/molecules27206874] [PMID: 36296467]
[33]
Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J. Biosci., 2019, 44(2), 52.
[http://dx.doi.org/10.1007/s12038-019-9868-4] [PMID: 31180065]
[34]
Shahabi, N.; Tajik, H.; Moradi, M.; Forough, M.; Ezati, P. Physical, antimicrobial and antibiofilm properties of Zataria multiflora Boiss essential oil nanoemulsion. Int. J. Food Sci. Technol., 2017, 52(7), 1645-1652.
[http://dx.doi.org/10.1111/ijfs.13438]
[35]
Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. Lebensm. Wiss. Technol., 2017, 80, 371-377.
[http://dx.doi.org/10.1016/j.lwt.2017.02.037]
[36]
Jina, Y.; Chihib, N-E.; Gharsallaoui, A.; Dumas, E.; Ismail, A.; Karam, L. Essential oils and their active components applied as: Free, encapsulated and in hurdle technology to fight microbial contaminations. Heliyon, 2022, 8(12), e12472.
[37]
Letsididi, K.S.; Lou, Z.; Letsididi, R.; Mohammed, K.; Maguy, B.L.J.L. Antimicrobial and antibiofilm effects of trans-cinnamic acid nanoemulsion and its potential application on lettuce. In: LWT; Elsevier, 2018; 94, pp. 25-32.
[http://dx.doi.org/10.1016/j.lwt.2018.04.018]
[38]
da Silva Gündel, S.; de Souza, M.E.; Quatrin, P.M.; Klein, B.; Wagner, R.; Gündel, A.; Vaucher, R.A.; Santos, R.C.V.; Ourique, A.F. Nanoemulsions containing cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb. Pathog., 2018, 118, 268-276.
[http://dx.doi.org/10.1016/j.micpath.2018.03.043] [PMID: 29581028]

© 2025 Bentham Science Publishers | Privacy Policy