Abstract
Background: As a developed technology, microfluidics now offers a great toolkit for handling and manipulating suspended samples, fluid samples, and particles. A regular chip is different from a microfluidic chip. A microfluidic chip is made of a series of grooves or microchannels carved on various materials. This arrangement of microchannels contained within the microfluidic chip is connected to the outside by inputs and outputs passing through the chip.
Objectives: This review includes the current progress in the field of microfluidic chips, their advantages and their biomedical applications in diagnosis.
Methods: The various manuscripts were collected in the field of microfluidic chip that have biomedical applications from the different sources like Pubmed,Science direct and Google Scholar, out of which some were relevant and considered for the present manuscript.
Results: Microfluidic channels inside the chip allow for the processing of the fluid, such as blending and physicochemical reactions. Aside from its practical, technological, and physical benefits, microscale fluidic circuits also improve researchers' capacity to do more accurate quantitative measurements while researching biological systems. Microfluidic chips, a developing type of biochip, were primarily focused on miniaturising analytical procedures, especially to enhance analyte separation. Since then, the procedures for device construction and operation have gotten much simpler.
Conclusion: For bioanalytical operations, microfluidic technology has many advantages. As originally intended, a micro total analysis system might be built using microfluidic devices to integrate various functional modules (or operational units) onto a single platform. More researchers were able to design, produce, and use microfluidic devices because of increased accessibility, which quickly demonstrated the probability of wide-ranging applicability in all branches of biology.
Graphical Abstract
[http://dx.doi.org/10.1021/ac403688g] [PMID: 24274655]
[http://dx.doi.org/10.1021/acs.analchem.5b04310] [PMID: 26599485]
[http://dx.doi.org/10.3390/ijms22042011] [PMID: 33670545]
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[http://dx.doi.org/10.1021/ar300314s] [PMID: 24245999]
[http://dx.doi.org/10.1016/j.cherd.2019.11.031]
[http://dx.doi.org/10.1016/j.ijpharm.2020.119408] [PMID: 32407942]
[http://dx.doi.org/10.1007/s12541-019-00103-2]
[http://dx.doi.org/10.1002/smll.200701029] [PMID: 18535993]
[http://dx.doi.org/10.1039/C7LC00800G] [PMID: 29098217]
[http://dx.doi.org/10.1021/acs.chemrev.8b00172] [PMID: 30247026]
[http://dx.doi.org/10.1016/B978-0-08-102420-1.00004-2]
[http://dx.doi.org/10.1016/j.cej.2018.12.104]
[http://dx.doi.org/10.1002/adhm.201801363]
[http://dx.doi.org/10.1016/j.actbio.2020.08.041] [PMID: 32890749]
[http://dx.doi.org/10.1021/acs.analchem.9b04986] [PMID: 31721565]
[http://dx.doi.org/10.1039/C5LC00234F] [PMID: 25906246]
[http://dx.doi.org/10.1039/c1ay05253e]
[http://dx.doi.org/10.2144/05383RV02] [PMID: 15786809]
[http://dx.doi.org/10.1016/j.drudis.2019.03.025] [PMID: 30940562]
[http://dx.doi.org/10.1038/s41568-018-0104-6] [PMID: 30647431]
[http://dx.doi.org/10.1016/j.tcb.2011.09.005] [PMID: 22033488]
[http://dx.doi.org/10.1038/nbt.2989] [PMID: 25093883]
[http://dx.doi.org/10.1038/nrd4539] [PMID: 25792263]
[http://dx.doi.org/10.1073/pnas.1207754110] [PMID: 23223527]
[http://dx.doi.org/10.1126/scitranslmed.3005616] [PMID: 23552373]
[http://dx.doi.org/10.1038/nprot.2014.044] [PMID: 24577360]
[http://dx.doi.org/10.1073/pnas.1314651111] [PMID: 24567404]
[http://dx.doi.org/10.1016/j.jpha.2018.12.001] [PMID: 31452961]
[http://dx.doi.org/10.1093/oso/9780198568643.001.0001]
[http://dx.doi.org/10.1016/j.aca.2009.08.037] [PMID: 19800473]
[http://dx.doi.org/10.1002/elps.201000051] [PMID: 20603823]
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[http://dx.doi.org/10.1039/C8LC00458G] [PMID: 30010168]
[http://dx.doi.org/10.1021/acsami.9b22050] [PMID: 32048822]
[http://dx.doi.org/10.1002/admi.201900940]
[http://dx.doi.org/10.1142/S0219581X10006557]
[http://dx.doi.org/10.1039/C8LC00796A] [PMID: 30720811]
[http://dx.doi.org/10.1002/smll.201901547] [PMID: 31237758]
[http://dx.doi.org/10.1080/17425247.2018.1446936] [PMID: 29508630]
[PMID: 34275293];
(b) Wlodarczyk K, Hand DP, Maratovaler M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci Rep 2019.
[http://dx.doi.org/10.1038/s41598-019-56711-5]
[http://dx.doi.org/10.1039/C8LC01109E] [PMID: 30457137]
[http://dx.doi.org/10.1038/s41467-019-09497-z] [PMID: 30602773]
[http://dx.doi.org/10.5772/64347]
[http://dx.doi.org/10.3390/nano10112113] [PMID: 33114204]
[http://dx.doi.org/10.1002/macp.201600472]
[http://dx.doi.org/10.1039/C9LC00564A] [PMID: 31656966]
[http://dx.doi.org/10.1038/s41596-018-0015-8] [PMID: 30072724]
[http://dx.doi.org/10.1021/acs.analchem.9b01232] [PMID: 31361950]
[http://dx.doi.org/10.1016/j.ces.2010.08.015]
[http://dx.doi.org/10.1039/C9TA03661J]
[http://dx.doi.org/10.3390/mi11090873] [PMID: 32961823]
[http://dx.doi.org/10.1038/s41598-018-37029-0] [PMID: 30626903]
[http://dx.doi.org/10.1021/acs.analchem.8b04609] [PMID: 30688069]
[http://dx.doi.org/10.1039/C9RA00610A] [PMID: 35520212]
[http://dx.doi.org/10.1002/admi.201900940]
[http://dx.doi.org/10.1002/aic.16756]
[http://dx.doi.org/10.3390/mi10080516] [PMID: 31382502]
[http://dx.doi.org/10.1007/s10404-019-2265-3]
(b) Lu YT, Pendharkar G, Lu CH, Chang CM. A microfluidic approach towards hybridoma generation for cancer immunotherapy. Oncotarget 2015; 6(36)
[http://dx.doi.org/10.18632/oncotarget.5550]
[http://dx.doi.org/10.1002/adfm.201604824];
(b) Bhattacharjee N, Parra-cabrera C, Kim YT, Kuo A, Folch A. Desktop-steriolithography 3d printing of a poly(dimethylsiloxane)-based material with sylgard-184 properties. Adv Mater 2018; 30(22)
[http://dx.doi.org/10.3390/inventions3030060]
[http://dx.doi.org/10.1063/1.3689939] [PMID: 22662101]
[http://dx.doi.org/10.3390/mi9080409] [PMID: 30424342]
[http://dx.doi.org/10.1007/s00216-010-4144-3] [PMID: 20827468]
[http://dx.doi.org/10.1016/j.jbiomech.2015.11.031] [PMID: 26671220]
[http://dx.doi.org/10.1007/s00170-009-2326-y]
[http://dx.doi.org/10.1007/s10404-015-1626-9]
[http://dx.doi.org/10.1007/s10404-020-02372-0]
[http://dx.doi.org/10.1007/s10404-009-0421-x]
[http://dx.doi.org/10.1016/S0039-9140(01)00594-X] [PMID: 18968500]
[http://dx.doi.org/10.1007/s11483-007-9043-6]
[http://dx.doi.org/10.1038/srep35111] [PMID: 27713545];
(b) Reyes DR, Heeren HV, Guha S, et al. Accelerating innovation and commercialisation through standardization of microfluidicbased medical devices. lab on a chip 2021; (1):
[http://dx.doi.org/10.1039/dolc00963f.]
[http://dx.doi.org/10.1039/C3LC51360B] [PMID: 24510161]
[http://dx.doi.org/10.1021/acsbiomaterials.9b00953] [PMID: 33423473]
[http://dx.doi.org/10.1115/1.4031231] [PMID: 27512530]
[http://dx.doi.org/10.3390/mi9080374] [PMID: 30424307]
[http://dx.doi.org/10.1039/C5LC00515A] [PMID: 26095586]
[http://dx.doi.org/10.1016/B978-0-08-102420-1.00004-2]
[http://dx.doi.org/10.5772/intechopen.89302]
[PMID: 28930605]
[http://dx.doi.org/10.1016/j.ces.2010.08.039];
(b) Pattanayak P, Singh SK, Gulati M, Vishwas S. Microfluidics and nanofluidics. 2021; 25(12)
[http://dx.doi.org/10.1007/s10404-021-02502-2]
[http://dx.doi.org/10.1021/bk-2015-1215.ch013]
[http://dx.doi.org/10.1021/acs.analchem.8b00399] [PMID: 29595252]
[http://dx.doi.org/10.1039/D0LC00276C] [PMID: 32255136]
[http://dx.doi.org/10.1093/clinchem/47.12.2131] [PMID: 11719477]
[http://dx.doi.org/10.1016/B978-0-12-820050-6.00010-2]
[http://dx.doi.org/10.1055/s-0034-1368589] [PMID: 25100881]
[http://dx.doi.org/10.3390/mi10060360] [PMID: 31151206]
[http://dx.doi.org/10.3390/mi11040370] [PMID: 32244684]
[http://dx.doi.org/10.3390/bioengineering6040109] [PMID: 31816954]
[http://dx.doi.org/10.3390/genes9020103]
[http://dx.doi.org/10.1002/hep.31106] [PMID: 31909504]
[http://dx.doi.org/10.1038/s41598-020-63096-3] [PMID: 32300186]
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[http://dx.doi.org/10.1016/j.addr.2014.01.003] [PMID: 24462454]
[http://dx.doi.org/10.1016/j.copbio.2015.05.002] [PMID: 26094109];
Wang T, Yu C, Xie X. Microfluidics for Environmental Applications. Microfluidics in Biotechnology. ABE 2020; Volume 179: pp. 267-90.
[http://dx.doi.org/10.1371/journal.pone.0159013] [PMID: 27391808];
(b) Xu Z, Gao Y, Hao Y, et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013; 34(16): 4109-17.