Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Evaluation of Phytochemicals, Antioxidants, and Antidiabetic Activity of Nitophyllum marginale by Using Analytical Approaches

Author(s): Rohit Malhotra and Louis Cojandaraj*

Volume 19, Issue 6, 2024

Published on: 03 January, 2024

Page: [711 - 718] Pages: 8

DOI: 10.2174/0115748855270408230925073813

Price: $65

Abstract

Background: Nitophyllum marginale holds potential for medical applications due to its bioactive compounds, making it promising for developing new therapeutic interventions. Our study aims to evaluate the bioactivity of Nitophyllum marginale extracts obtained using methanol and chloroform solvents. We focus on analyzing the phytochemical profile, antioxidant activity, and antidiabetic potential of seaweed extract in this study. By examining the medicinal properties of Nitophyllum marginale, we aim to explore the therapeutic bioactivity potentiality and its prime role in improvising and searching for potential alternatives for seizing Diabetes mellitus.

Materials and Methods: The antioxidant activity of Nitophyllum marginale was evaluated using ABTS, DPPH, nitric oxide, lipid peroxidation, and hydrogen peroxide assays. Additionally, alphaglucosidase inhibition tests were conducted to evaluate the potential as an antidiabetic agent.

Results: The study revealed that extracts from Nitophyllum marginale contain antioxidants that protect cells from oxidative stress. These extracts also contain bioactive compounds like alkaloids, flavonoids, phenols, saponins, and carbohydrates. These compounds work together to provide antioxidant benefits. Additionally, the extracts showed activity against alpha-glucosidase, which is vital for managing blood sugar levels.

Conclusion: These results emphasize the existence of bioactive metabolites exhibiting phytochemicals, antioxidants, and antidiabetic activities obtained from the extract using chloroform and methanol solvents. These findings suggest the potential of Nitophyllum marginale extracts as a natural reservoir of antioxidants and antidiabetic agents.

Graphical Abstract

[1]
Lozano Muñoz I, Díaz NF. Minerals in edible seaweed: health benefits and food safety issues. Crit Rev Food Sci Nutr 2022; 62(6): 1592-607.
[http://dx.doi.org/10.1080/10408398.2020.1844637] [PMID: 33203217]
[2]
Kolanjinathan K, Ganesh P, Saranraj P. Pharmacological importance of seaweeds: a review. World J Fish Mar Sci 2014; 6(1): 1-15.
[http://dx.doi.org/10.5829/idosi.wjfms.2014.06.01.76195]
[3]
Samar J, Butt GY, Shah AA, et al. Phycochemical and biological activities from different extracts of Padina antillarum (Kützing) Piccone. Front Plant Sci 2022; 13: 929368.
[http://dx.doi.org/10.3389/fpls.2022.929368] [PMID: 35937357]
[4]
Ścieszka S, Klewicka E. Algae in food: a general review. Crit Rev Food Sci Nutr 2019; 59(21): 3538-47.
[http://dx.doi.org/10.1080/10408398.2018.1496319] [PMID: 29999416]
[5]
Habitat U, & Species, S. Taenioma perpusillum ( J Agardh ) J Agardh Classification Features Division: Rhodophyta; Family: Delesseriaceae; Tribe: Delesserioideae Group: Caloglossa 2014; 2-3.
[6]
Hasan MR, Chakrabarti R. Use of algae and aquatic macrophytes as feed small-scale aquatic culture. In: FAO Fisheries and Aquaculture Technical Paper No 531. Rome: FAO 2009; pp. 3-8.
[7]
Jeeva S, Antonisamy JM, Domettila C, Anantham B, Mahesh M. Preliminary phytochemical studies on some selected seaweeds from Gulf of Mannar, India. Asian Pac J Trop Biomed 2012; 2(1) (Suppl.): S30-3.
[http://dx.doi.org/10.1016/S2221-1691(12)60125-7]
[8]
Ganesan M, Trivedi N, Gupta V, Madhav SV, Radhakrishna Reddy C, Levine IA. Seaweed resources in India – current status of diversity and cultivation: prospects and challenges. Bot Mar 2019; 62(5): 463-82.
[http://dx.doi.org/10.1515/bot-2018-0056]
[9]
Bhuyar P, Rahim MH, Sundararaju S, Maniam GP, Govindan N. Antioxidant and antibacterial activity of red seaweed; Kappaphycus alvarezii against pathogenic bacteria. Glob J Environ Sci Manag 2020; 6(1): 47-58.
[http://dx.doi.org/10.22034/gjesm.2020.01.04]
[10]
Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, et al. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 2021; 117: 163-81.
[http://dx.doi.org/10.1016/j.tifs.2021.03.012]
[11]
Vinoth Kumar R, Murugesan S, Bhuvaneswari S. Phytochemical analysis of red alga Champia parvula (C. Agardh) collected from Mandapam coast of Tamil Nadu, India. Int J Adv Pharm 2015; 4(3): 15-20.
[12]
Janarthanan M, Kumar MS. Qualitative and quantitative analysis of phytochemical studies on selected seaweeds Acanthopora Spicifera and Sargassum Wightii. Int J Engine Res 2013; 7(3): 11-5.
[13]
Phytochemical, S. O. F., & Antioxidant, I. N. V. Efficacy on Selected Red Seaweed (Acanthophora) 2015; 4(6): 1505-18.
[14]
Kolanjinathan K, Ganesh P, Saranraj P. Pharmacological Importance of Seaweeds: A Review. World J Fish Marine Sci 2014; 6(1): 1-15.
[http://dx.doi.org/10.20959/wjpr201910-15790]
[15]
Nandakumaran T, Anbalahan N, Karpagam V, Indhumathi K, Manivannan M, Subramanian G. Qualitative analysis of phytochemicals of four marine algal species of a Genus Caulerpa from Mandapam coastal regions of Tamil Nadu, India. World J Pharm Res 2019; 8(10): 1708-17.
[http://dx.doi.org/10.20959/wjpr201910-15790]
[16]
Brighente IMC, Dias M, Verdi LG, Pizzolatti MG. Antioxidant activity and total phenolic content of some Brazilian species. Pharm Biol 2007; 45(2): 156-61.
[http://dx.doi.org/10.1080/13880200601113131]
[17]
Molyneux P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 2004; 26: 211-9.
[http://dx.doi.org/10.1287/isre.6.2.144]
[18]
von Gadow A, Joubert E, Hansmann CF. Comparison of the antioxidant activity of Aspalathin with that of other plant phenols of Rooibos tea (Aspalathus linearise), α-Tocopherol, BHT, and BHA. J Agric Food Chem 1997; 45(3): 632-8.
[http://dx.doi.org/10.1021/jf960281n]
[19]
a) Re, R, Pellegrini, N, Proteggente, A, Pannala, A, Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10): 1231-37.;
b) Miller NJ, Rice-Evans CA. Spectrophotometric determination of antioxidant activity. Redox Rep 1996; 2(3): 161-71.
[http://dx.doi.org/10.1080/13510002.1996.11747044] [PMID: 27406072]
[20]
Saravanakumar K, Park S, Sathiyaseelan A, et al. Isolation of polysaccharides from trichoderma harzianum with antioxidant, anticancer, and enzyme inhibition properties. Antioxidants 2021; 10(9): 1372.
[http://dx.doi.org/10.3390/antiox10091372] [PMID: 34573005]
[21]
a) Marcocci, L,, Maguire, J. J, Droylefaix, M. T., & Packer, L. (1994). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochemical and biophysical research communications, 201(2): 748-55.;
b) Francis MA,. rew WV. Antioxidant activity, nitric oxide scavenging activity and phenolic contents of Ocimum gratissimum leaf extract. J Med Plants Res 2010; 4(23): 2479-87.
[http://dx.doi.org/10.5897/JMPR10.262]
[22]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[23]
Ruch RJ, Cheng S, Klaunig JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989; 10(6): 1003-8.
[http://dx.doi.org/10.1093/carcin/10.6.1003] [PMID: 2470525]
[24]
Mahendran S, Maheswari P, Sasikala V, Rubika J, Pandiarajan J. In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria Gracilaria edulis and robust sea moss Hypnea valentiae. Toxicol Rep 2021; 8: 1404-11.
[http://dx.doi.org/10.1016/j.toxrep.2021.07.006] [PMID: 34295651]
[25]
Watanabe J, Kawabata J, Kurihara H, Niki R. Isolation and identification of α-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 1997; 61(1): 177-8.
[http://dx.doi.org/10.1271/bbb.61.177] [PMID: 9028049]
[26]
Heo SJ, Cha SH, Lee KW, Jeon YJ. Antioxidant activities of Red algae from Jeju island. Algae 2006; 21(1): 149-56.
[http://dx.doi.org/10.4490/ALGAE.2006.21.1.149]
[27]
a) Kim JK, Noh J, Lee S, et al. The first total synthesis of 2, 3, 6- tribromo-4, 5-dihydroxybenzyl methyl ether (TDB) and its antioxidant activity. Bulletin-Korean Chemical Society 2002; 23(5): 661-2.;
b) Alencar DBD, Silva SRD, Pires-Cavalcante KMS, et al. Antioxidant potential and cytotoxic activity of two red seaweed species, Amansia multifida and Meristiella echinocarpa, from the coast of Northeastern Brazil. An Acad Bras Cienc 2014; 86(1): 251-63.
[http://dx.doi.org/10.1590/0001-37652014116312] [PMID: 24676166]
[28]
a) Liu, D, Shi, J, Ibarra, A. C. , Kakuda, Y. & Xue, S. J. (2008). The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β -carotene mixtures on the DPPH free radical. LWT-Food Science and Technology, 41(7): 1344-49.;
b) Chakraborty K, Joseph D, Praveen NK. Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. J Food Sci Technol 2015; 52(4): 1924-35.
[http://dx.doi.org/10.1007/s13197-013-1189-2] [PMID: 25829573]
[29]
Hossain H, Ahmed T, Howlader SI, et al. In-vitro antioxidant potential from the leaves of Punica granatum Linn. grown in Bangladesh. Int J Pharm Phytopharmac Res 2012; 2(3): 160-6.
[30]
Bhuyar P, Sundararaju S, Rahim MHA, Unpaprom Y, Maniam GP, Govindan N. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Applied Sciences 2021; 3(4): 485.
[http://dx.doi.org/10.1007/s42452-021-04477-9]
[31]
Maeda H, Akaike T, Yoshida M, Suga M. Multiple functions of nitric oxide in pathophysiology and microbiology: analysis by a new nitric oxide scavenger. J Leukoc Biol 1994; 56(5): 588-92.
[http://dx.doi.org/10.1002/jlb.56.5.588] [PMID: 7964166]
[32]
Donadee C, Raat NJH, Kanias T, et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 2011; 124(4): 465-76.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.008698] [PMID: 21747051]
[33]
Michalak I, Tiwari R, Dhawan M, et al. Antioxidant effects of seaweeds and their active compounds on animal health and production – a review. Vet Q 2022; 42(1): 48-67.
[http://dx.doi.org/10.1080/01652176.2022.2061744] [PMID: 35363108]
[34]
Indu H, Seenivasan R. In vitro antioxidant activity of selected seaweeds from southeast coast of India. Int J Pharm Pharm Sci 2013; 5 (Suppl. 2): 474-84.
[35]
Karawita R, Siriwardhana N, Lee KW, et al. Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur Food Res Technol 2005; 220(3-4): 363-71.
[http://dx.doi.org/10.1007/s00217-004-1044-9]
[36]
Sobuj MKA, Islam MA, Islam MS, Islam MM, Mahmud Y, Rafiquzzaman SM. Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Sci Rep 2021; 11(1): 19082.
[http://dx.doi.org/10.1038/s41598-021-98461-3] [PMID: 34580350]
[37]
Remya RR, Julius A, Ramadoss R, et al. Pharmacological activities of natural products from marine seaweed Turbinaria ornata: A review. J Nanomater 2022; (1): 1-12.
[http://dx.doi.org/10.1155/2022/4784608]
[38]
Kushveer JS, Mishra R, Devadatha B, Khan IK, Sarma VV. Assessment of antioxidant, anti-lipid peroxidation, Dna damage protection and anticancer activities of marine mangrove fungi. Online). Int J Pharm Biol Sci 2018; 8(4): 291-310.www. ijpbs.comorwww.ijpbsonline.com
[39]
a) López-Hortas, L, Flórez-Fernández, N, Torres, M D, Ferreira-Anta, T, Casas, M P,, Balboa, E M,. ... & Domínguez, H. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals and nutricosmetics. Marine drugs 19(10): 552.;
b) Halliwell B. Chirico. S. Lipid peroxidation: significance and its mechanism. Am J Clin Nutr 1993; 57(5): 715-25.
[http://dx.doi.org/10.1093/ajcn/57.5.715S]
[40]
Brabakaran A, Thangaraju N. In vitro evaluation of methanolic extract of red seaweeds against α-amylase and α-glucosidase enzyme inhibitory activity. Asian J Pharm Pharmacol 2018; 4(3): 339-42.
[http://dx.doi.org/10.31024/ajpp.2018.4.3.16]
[41]
Rioux LE, Turgeon SL. Seaweed Carbohydrates. Elsevier Inc. 2015.
[http://dx.doi.org/10.1016/B978-0-12-418697-2.00007-6]
[42]
Deepak P, Sowmiya R, Kamaraj C, et al. Gc-Ms profiling, chemical characterization, antioxidant, A-amylase and A-glucosidase inhibition of selected seaweeds From southeast coast of India: an in vitro approach. J Drug Deliv Ther 2018; 8(2): 60-72.
[http://dx.doi.org/10.22270/jddt.v8i2.1665]
[43]
Yan J, Zhao J, Yang R, Zhao W. Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 2019; 54(6): 1909-19.
[http://dx.doi.org/10.1111/ijfs.14090]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy