Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Organelle Targeted Drug Delivery: Key Challenges, Recent Advancements and Therapeutic Implications

Author(s): Dilpreet Singh*

Volume 24, Issue 13, 2024

Published on: 31 January, 2024

Page: [1480 - 1487] Pages: 8

DOI: 10.2174/0118715303282573240112104035

Price: $65

Abstract

Organelle-specific targeted drug delivery has emerged as a promising approach in the field of drug delivery and therapeutics. This innovative strategy involves the precise delivery of therapeutic agents to specific organelles within cells, such as the nucleus, mitochondria, endoplasmic reticulum, or lysosomes, with the aim of enhancing drug efficacy while minimizing offtarget effects. Despite its tremendous potential, organelle-specific drug delivery faces several key challenges. One major challenge is the development of delivery systems that can accurately navigate the complex intracellular environment and deliver drugs exclusively to the desired organelles. Achieving this level of precision demands advanced nanotechnology and biomaterials engineering. Furthermore, ensuring the safety and biocompatibility of these delivery systems is paramount. Recent advancements in this field include the development of nanocarriers, such as liposomes, nanoparticles, and dendrimers, designed to target specific organelles through ligandreceptor interactions or pH-responsive mechanisms. Additionally, advancements in molecular biology and genetic engineering have enabled the design of genetically encoded organellespecific drug delivery systems. The therapeutic implications of organelle-specific drug delivery are vast. This approach has the potential to revolutionize the treatment of diseases with organelle- specific pathologies, such as neurodegenerative disorders, cancer, and mitochondrial diseases. By precisely targeting the organelles involved in disease progression, the efficacy of therapies can be significantly improved while minimizing collateral damage to healthy tissues.

Graphical Abstract

[1]
Biswas, S.; Torchilin, V.P. Nanopreparations for organelle-specific delivery in cancer. Adv. Drug Deliv. Rev., 2014, 66, 26-41.
[http://dx.doi.org/10.1016/j.addr.2013.11.004] [PMID: 24270008]
[2]
Yang, J.; Griffin, A.; Qiang, Z.; Ren, J. Organelle-targeted therapies: A comprehensive review on system design for enabling precision oncology. Signal Transduct. Target. Ther., 2022, 7(1), 379.
[http://dx.doi.org/10.1038/s41392-022-01243-0] [PMID: 36402753]
[3]
Yousif, L.F.; Stewart, K.M.; Kelley, S.O. Targeting mitochondria with organelle-specific compounds: Strategies and applications. ChemBioChem, 2009, 10(12), 1939-1950.
[http://dx.doi.org/10.1002/cbic.200900185] [PMID: 19637148]
[4]
Khan, A.A.; Allemailem, K.S.; Almatroudi, A.; Almatroodi, S.A.; Alsahli, M.A.; Rahmani, A.H. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J. Drug Deliv. Sci. Technol., 2021, 61, 102315.
[http://dx.doi.org/10.1016/j.jddst.2020.102315]
[5]
He, Z.; Zhang, Y.; Khan, A.R.; Ji, J.; Yu, A.; Zhai, G. A novel progress of drug delivery system for organelle targeting in tumour cells. J. Drug Target., 2021, 29(1), 12-28.
[http://dx.doi.org/10.1080/1061186X.2020.1797051] [PMID: 32698651]
[6]
Kashaw, S.K.; Tomar, S.; Rajoriya, V.; Sahu, P.; Agarwal, S.; Vyas, S.P. Multifunctional nanoparticles for organelle-specific targeted drug delivery in cancer therapy. Curr. Nanomed., 2022, 12(3), 191-203.
[http://dx.doi.org/10.2174/2468187313666221219150315]
[7]
Stepensky, D. Quantitative aspects of intracellularly-targeted drug delivery. Pharm. Res., 2010, 27(12), 2776-2780.
[http://dx.doi.org/10.1007/s11095-010-0253-0] [PMID: 20811932]
[8]
Chen, X.; Yin, X.; Zhan, L.; Zhang, J.; Zhang, Y.; Wu, Y.; Ju, J.; Li, Y.; Xue, Q.; Wang, X.; Li, C.; Reis, R.L.; Wang, Y. Organelle‐specific Anchored delivery system Stretching a reversal of tumor hypoxia microenvironment to a combinational chemo‐photothermal therapy. Adv. Funct. Mater., 2022, 32(15), 2108603.
[http://dx.doi.org/10.1002/adfm.202108603]
[9]
Sun, S.; Yang, Y.; Niu, H.; Luo, M.; Wu, Z.S. Design and application of DNA nanostructures for organelle-targeted delivery of anticancer drugs. Expert Opin. Drug Deliv., 2022, 19(6), 707-723.
[http://dx.doi.org/10.1080/17425247.2022.2083603] [PMID: 35618266]
[10]
Law, S.S.Y.; Miyamoto, T.; Numata, K. Organelle-targeted gene delivery in plants by nanomaterials. Chem. Commun., 2023, 59(47), 7166-7181.
[http://dx.doi.org/10.1039/D3CC00962A] [PMID: 37183975]
[11]
Son, H.; Shin, J.; Park, J. Recent progress in nanomedicine-mediated cytosolic delivery. RSC Advances, 2023, 13(15), 9788-9799.
[http://dx.doi.org/10.1039/D2RA07111H] [PMID: 36998521]
[12]
Zhang, M.; Xu, N.; Xu, W.; Ling, G.; Zhang, P. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Pharmacol. Res., 2022, 175, 105861.
[http://dx.doi.org/10.1016/j.phrs.2021.105861] [PMID: 34464677]
[13]
Ligthart, N.A.M.; de Geus, M.A.R.; van de Plassche, M.A.T.; Torres García, D.; Isendoorn, M.M.E.; Reinalda, L.; Ofman, D.; van Leeuwen, T.; van Kasteren, S.I. A lysosome-targeted tetrazine for organelle-specific click-to-release chemistry in antigen presenting cells. J. Am. Chem. Soc., 2023, 145(23), 12630-12640.
[http://dx.doi.org/10.1021/jacs.3c02139] [PMID: 37269296]
[14]
Gilbert, A.K.; Pluth, M.D. Subcellular delivery of hydrogen sulfide using small molecule donors impacts organelle stress. J. Am. Chem. Soc., 2022, 144(38), 17651-17660.
[http://dx.doi.org/10.1021/jacs.2c07225] [PMID: 36121306]
[15]
Ganji, C.; Muppala, V.; Khan, M.; Nagaraju, G.P.; Farran, B. Mitochondrial-targeted nanoparticles: Delivery and therapeutic agents in cancer. Drug Discov. Today, 2023, 28(3), 103469.
[http://dx.doi.org/10.1016/j.drudis.2022.103469] [PMID: 36529353]
[16]
Chen, L.; Wang, Y.; Zhang, L. Lysosome-targeted drug delivery of acid-sensitive prodrugs for cancer therapy. Biomaterials, 2022, 255, 120201.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120201] [PMID: 32592872]
[17]
Khan, T.; Waseem, R.; Zehra, Z.; Aiman, A.; Bhardwaj, P.; Ansari, J.; Hassan, M.I.; Islam, A. Mitochondrial dysfunction: Pathophysiology and mitochondria-targeted drug delivery approaches. Pharmaceutics, 2022, 14(12), 2657.
[http://dx.doi.org/10.3390/pharmaceutics14122657] [PMID: 36559149]
[18]
Maniganda, S.; Sankar, V.; Nair, J.B.; Raghu, K.G.; Maiti, K.K. A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy. Org. Biomol. Chem., 2014, 12(34), 6564-6569.
[http://dx.doi.org/10.1039/C4OB01153H] [PMID: 25062087]
[19]
Farokhi, M.; Mottaghitalab, F.; Saeb, M.R.; Thomas, S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J. Control. Release, 2019, 309, 203-219.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.036] [PMID: 31362077]
[20]
Kadkhoda, J.; Tarighatnia, A.; Nader, N.D.; Aghanejad, A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci., 2022, 307, 120898.
[http://dx.doi.org/10.1016/j.lfs.2022.120898] [PMID: 35987340]
[21]
Zeng, W.N.; Yu, Q.P.; Wang, D.; Liu, J.L.; Yang, Q.J.; Zhou, Z.K.; Zeng, Y.P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J. Nanobiotechnology, 2021, 19(1), 79.
[http://dx.doi.org/10.1186/s12951-021-00831-6] [PMID: 33740998]
[22]
Li, X.; Xiao, H.; Xiu, W.; Yang, K.; Zhang, Y.; Yuwen, L.; Yang, D.; Weng, L.; Wang, L. Mitochondria-targeting MoS2-based nanoagents for enhanced NIR-II photothermal-chemodynamic synergistic oncotherapy. ACS Appl. Mater. Interfaces, 2022, 13(47), 55928-55938.
[http://dx.doi.org/10.1021/acsami.1c18311]
[23]
Bae, Y.; Jung, M.K.; Lee, S.; Song, S.J.; Mun, J.Y.; Green, E.S.; Han, J.; Ko, K.S.; Choi, J.S. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur. J. Pharm. Biopharm., 2018, 124, 104-115.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.013] [PMID: 29305141]
[24]
Huang, Y.; Wang, T.; Tan, Q.; He, D.; Wu, M.; Fan, J.; Yang, J.; Zhong, C.; Li, K.; Zhang, J. Smart stimuli-responsive and mitochondria targeting delivery in cancer therapy. Int. J. Nanomedicine, 2021, 16, 4117-4146.
[http://dx.doi.org/10.2147/IJN.S315368] [PMID: 34163163]
[25]
Yoshinaga, N.; Numata, K. Rational designs at the forefront of mitochondria-targeted gene delivery: Recent progress and future perspectives. ACS Biomater. Sci. Eng., 2022, 8(2), 348-359.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01114] [PMID: 34979085]
[26]
Pathak, R.K.; Kolishetti, N.; Dhar, S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 315-329.
[http://dx.doi.org/10.1002/wnan.1305] [PMID: 25348382]
[27]
Kim, Y.K.; Zhang, M.; Lu, J.J.; Xu, F.; Chen, B.A.; Xing, L.; Jiang, H.L. PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier. J. Drug Target., 2016, 24(5), 457-467.
[http://dx.doi.org/10.3109/1061186X.2015.1087527] [PMID: 26390926]
[28]
Zhang, C.; Liu, Z.; Zheng, Y.; Geng, Y.; Han, C.; Shi, Y.; Sun, H.; Zhang, C.; Chen, Y.; Zhang, L.; Guo, Q.; Yang, L.; Zhou, X.; Kong, L. Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo. Small, 2018, 14(4), 1703306.
[http://dx.doi.org/10.1002/smll.201703306] [PMID: 29205852]
[29]
Liang, S.; Sun, C.; Yang, P.; Ma, P.; Huang, S.; Cheng, Z.; Yu, X.; Lin, J. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials, 2020, 240, 119850.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119850] [PMID: 32092593]
[30]
Han, J.; Lee, T.H.; Tung, C.H.; Lee, D.Y. Design and synthesis of a mitochondria-targeting carrier for small molecule drugs. Org. Biomol. Chem., 2014, 12(48), 9793-9796.
[http://dx.doi.org/10.1039/C4OB01981D] [PMID: 25378226]
[31]
Wang, H.; Fang, B.; Peng, B.; Wang, L.; Xue, Y.; Bai, H.; Lu, S.; Voelcker, N.H.; Li, L.; Fu, L.; Huang, W. Recent advances in chemical biology of mitochondria targeting. Front Chem., 2021, 9, 683220.
[http://dx.doi.org/10.3389/fchem.2021.683220] [PMID: 34012953]
[32]
Guo, X.; Yang, N.; Ji, W.; Zhang, H.; Dong, X.; Zhou, Z.; Li, L.; Shen, H.M.; Yao, S.Q.; Huang, W. Mito‐bomb: Targeting mitochondria for cancer therapy. Adv. Mater., 2021, 33(43), 2007778.
[http://dx.doi.org/10.1002/adma.202007778] [PMID: 34510563]
[33]
Battogtokh, G.; Cho, Y.Y.; Lee, J.Y.; Lee, H.S.; Kang, H.C. Mitochondrial-targeted anticancer agent conjugates and nanocarrier systems for cancer treatment. Front. Pharmacol., 2018, 9, 922.
[http://dx.doi.org/10.3389/fphar.2018.00922] [PMID: 30174604]
[34]
Heller, A.; Brockhoff, G.; Goepferich, A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm., 2012, 82(1), 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.014] [PMID: 22687572]
[35]
Satrialdi; Takano, Y.; Hirata, E.; Ushijima, N.; Harashima, H.; Yamada, Y. An effective in vivo mitochondria-targeting nanocarrier combined with a π-extended porphyrin-type photosensitizer. Nanoscale Adv., 2021, 3(20), 5919-5927.
[http://dx.doi.org/10.1039/D1NA00427A] [PMID: 36132667]
[36]
Bae, Y.; Joo, C.; Kim, G.Y.; Ko, K.S.; Huh, K.M.; Han, J.; Choi, J.S. Cationic oligopeptide-functionalized mitochondria targeting sequence show mitochondria targeting and anticancer activity. Macromol. Res., 2019, 27(11), 1071-1080.
[http://dx.doi.org/10.1007/s13233-019-7153-x]
[37]
Rajendran, K.; Karthikeyan, A.; Krishnan, U.M. Emerging trends in nano-bioactive-mediated mitochondria-targeted therapeutic stratagems using polysaccharides, proteins and lipidic carriers. Int. J. Biol. Macromol., 2022, 208, 627-641.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.121] [PMID: 35341885]
[38]
Chen, Y.; Tie, S.; Zhang, X.; Zhang, L.; Tan, M. Preparation and characterization of glycosylated protein nanoparticles for astaxanthin mitochondria targeting delivery. Food Funct., 2021, 12(17), 7718-7727.
[http://dx.doi.org/10.1039/D1FO01751A] [PMID: 34286807]
[39]
Khatun, Z.; Choi, Y.S.; Kim, Y.G.; Yoon, K.; Nurunnabi, M.; Li, L.; Lee, E.; Kang, H.C.; Huh, K.M. Bioreducible poly(ethylene glycol)–triphenylphosphonium conjugate as a bioactivable mitochondria-targeting nanocarrier. Biomacromolecules, 2017, 18(4), 1074-1085.
[http://dx.doi.org/10.1021/acs.biomac.6b01324] [PMID: 28257184]
[40]
Jeena, M.T.; Kim, S.; Jin, S.; Ryu, J.H. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers (Basel), 2019, 12(1), 4.
[http://dx.doi.org/10.3390/cancers12010004] [PMID: 31861339]
[41]
Jiang, T.; Zhou, L.; Liu, H.; Zhang, P.; Liu, G.; Gong, P.; Li, C.; Tan, W.; Chen, J.; Cai, L. Monitorable mitochondria-targeting DNA train for image-guided synergistic cancer therapy. Anal. Chem., 2019, 91(11), 6996-7000.
[http://dx.doi.org/10.1021/acs.analchem.9b01777] [PMID: 31088071]
[42]
Qin, J.; Gong, N.; Liao, Z.; Zhang, S.; Timashev, P.; Huo, S.; Liang, X.J. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale, 2021, 13(15), 7108-7118.
[http://dx.doi.org/10.1039/D1NR01068A] [PMID: 33889907]
[43]
Peng, H.; Yao, F.; Zhao, J.; Zhang, W.; Chen, L.; Wang, X.; Yang, P.; Tang, J.; Chi, Y. Unraveling mitochondria‐targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. Exploration, 2023, 3(2), 20220115.
[http://dx.doi.org/10.1002/EXP.20220115] [PMID: 37324035]
[44]
Zhang, C.; Long, L.; Shi, C. Mitochondria‐targeting IR‐780 dye and its derivatives: synthesis, mechanisms of action, and theranostic applications. Adv. Ther., 2018, 1(7), 1800069.
[http://dx.doi.org/10.1002/adtp.201800069]
[45]
Shao, X.; Meng, C.; Song, W.; Zhang, T.; Chen, Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv. Drug Deliv. Rev., 2023, 199, 114977.
[http://dx.doi.org/10.1016/j.addr.2023.114977] [PMID: 37391014]
[46]
Tian, M.; Zhu, Y.; Guan, W.; Lu, C. Quantitative measurement of drug release dynamics within targeted organelles using förster resonance energy transfer. Small, 2023, 19(28), 2206866.
[http://dx.doi.org/10.1002/smll.202206866] [PMID: 37026420]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy