Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Deleterious Biological Effects of Endocrine Disruptors: An Insight into Human Health Risks

Author(s): Abdullah Al Lawati, Lubna Al Hashmi, Husain Al Aswami, Abdulrahman Al Hadhrami, Kok-Yong Chin, Srinivasa Rao Sirasanagandla and Srijit Das*

Volume 24, Issue 13, 2024

Published on: 30 January, 2024

Page: [1471 - 1479] Pages: 9

DOI: 10.2174/0118715303279298231228074222

Price: $65

Abstract

Endocrine-disrupting chemicals (EDCs) are environmental pollutants. Since EDCs are present in various consumer products, contamination of human beings is very common. EDCs have deleterious effects on various systems of the body, especially the endocrine and reproductive systems. EDCs interfere with the synthesis, metabolism, binding, or cellular responses of natural estrogens and alter various pathways. Biological samples such as blood, saliva, milk, placental tissue, and hair are frequently used for biomonitoring and the detection of EDCs. Early detection and intervention may help in preventing congenital anomalies and birth defects. The common methods for determining the presence of EDCs in body fluids include gas chromatography, high-performance liquid chromatography, and mass spectrometry. Understanding the health effects and dangers of EDC is important, given their widespread use. This mini-review aims to summarize the adverse biological effects of several important classes of EDCs and highlights future perspectives for appropriate control.

Next »
Graphical Abstract

[1]
Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord., 2020, 21(1), 127-147.
[http://dx.doi.org/10.1007/s11154-019-09521-z] [PMID: 31792807]
[2]
Beszterda, M.; Frański, R. Endocrine disruptor compounds in environment: As a danger for children health. Pediatr. Endocrinol. Diabetes Metab., 2018, 24(2), 88-95.
[http://dx.doi.org/10.18544/PEDM-24.02.0107] [PMID: 30300430]
[3]
Roncaglioni, A.; Novič, M.; Vračko, M.; Benfenati, E. Classification of potential endocrine disrupters on the basis of molecular structure using a nonlinear modeling method. J. Chem. Inf. Comput. Sci., 2004, 44(2), 300-309.
[http://dx.doi.org/10.1021/ci030421a] [PMID: 15032504]
[4]
Gu, M.B.; Min, J.; Kim, E.J. Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere, 2002, 46(2), 289-294.
[http://dx.doi.org/10.1016/S0045-6535(01)00081-9] [PMID: 11827287]
[5]
Substances identified as endocrine disruptors at EU level | Endocrine Disruptor List n.d. Available from: https://edlists.org/the-ed-lists/list-i-substances-identified-as-endocrine-disruptors-by-the-eu(Accessed May 14, 2023).
[6]
Stieger G. EDCs in urine of pregnant women. Food packaging forum. 2016. Available from: https://www.foodpackagingforum.org/news/edcs-in-urine-of-pregnant-women (Accessed April 27, 2023).
[7]
Locatelli, M.; Sciascia, F.; Cifelli, R.; Malatesta, L.; Bruni, P.; Croce, F. Analytical methods for the endocrine disruptor compounds determination in environmental water samples. J. Chromatogr. A, 2016, 1434, 1-18.
[http://dx.doi.org/10.1016/j.chroma.2016.01.034] [PMID: 26805600]
[8]
Li, L.; Wang, Q.; Zhang, Y.; Niu, Y.; Yao, X.; Liu, H. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: Insights from molecular dynamics (MD) simulations. PLoS One, 2015, 10(3), e0120330.
[http://dx.doi.org/10.1371/journal.pone.0120330] [PMID: 25799048]
[9]
Jurek, A.; Leitner, E. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by GC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2017, 34(7), 1225-1238.
[http://dx.doi.org/10.1080/19440049.2017.1319076] [PMID: 28402180]
[10]
Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential mechanisms of bisphenol A (BPA) contributing to human disease. Int. J. Mol. Sci., 2020, 21(16), 5761.
[http://dx.doi.org/10.3390/ijms21165761] [PMID: 32796699]
[11]
Emnet, P.; Gaw, S.; Northcott, G.; Storey, B.; Graham, L. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base. Environ. Res., 2015, 136, 331-342.
[http://dx.doi.org/10.1016/j.envres.2014.10.019] [PMID: 25460654]
[12]
Lee, C.; Kim, C.H.; Kim, S.; Cho, S.H. Simultaneous determination of bisphenol A and estrogens in hair samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1058, 8-13.
[http://dx.doi.org/10.1016/j.jchromb.2017.05.007] [PMID: 28521190]
[13]
Lathi, R.B.; Liebert, C.A.; Brookfield, K.F.; Taylor, J.A.; vom Saal, F.S.; Fujimoto, V.Y.; Baker, V.L. Conjugated bisphenol A in maternal serum in relation to miscarriage risk. Fertil. Steril., 2014, 102(1), 123-128.
[http://dx.doi.org/10.1016/j.fertnstert.2014.03.024] [PMID: 24746738]
[14]
Sirasanagandla, S.R.; Al-Huseini, I.; Sakr, H.; Moqadass, M.; Das, S.; Juliana, N.; Abu, I.F. Natural products in mitigation of bisphenol a toxicity: Future therapeutic use. Molecules, 2022, 27(17), 5384.
[http://dx.doi.org/10.3390/molecules27175384] [PMID: 36080155]
[15]
Maksymowicz, M.; Machowiec, P.; Ręka, G.; Korzeniowska, A.; Leszczyk, P.; Piecewicz-Szczęsna, H. Mechanism of action of triclosan as an endocrine-disrupting chemical with its impact on human health – literature review. J. Pre-Clin. Res., 2021, 15(4), 169-175.
[http://dx.doi.org/10.26444/jpccr/142065]
[16]
Dhillon, G.; Kaur, S.; Pulicharla, R.; Brar, S.; Cledón, M.; Verma, M.; Surampalli, R. Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int. J. Environ. Res. Public Health, 2015, 12(5), 5657-5684.
[http://dx.doi.org/10.3390/ijerph120505657] [PMID: 26006133]
[17]
Alfhili, M.A.; Lee, M.H. Triclosan: An update on biochemical and molecular mechanisms. Oxid. Med. Cell. Longev., 2019, 2019, 1-28.
[http://dx.doi.org/10.1155/2019/1607304] [PMID: 31191794]
[18]
Ahmed, I.; Boulton, A.J.; Rizvi, S.; Carlos, W.; Dickenson, E.; Smith, N.A.; Reed, M. The use of triclosan-coated sutures to prevent surgical site infections: A systematic review and meta-analysis of the literature. BMJ Open, 2019, 9(9), e029727.
[http://dx.doi.org/10.1136/bmjopen-2019-029727] [PMID: 31481559]
[19]
Mihaich, E.; Capdevielle, M.; Urbach-Ross, D.; Slezak, B. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: A case study with triclosan. Crit. Rev. Toxicol., 2017, 47(4), 263-285.
[http://dx.doi.org/10.1080/10408444.2016.1269722] [PMID: 28128023]
[20]
Karwacka, A.; Zamkowska, D.; Radwan, M.; Jurewicz, J. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: An overview of current epidemiological evidence. Hum. Fertil., 2019, 22(1), 2-25.
[http://dx.doi.org/10.1080/14647273.2017.1358828] [PMID: 28758506]
[21]
Bertelsen, R.J.; Longnecker, M.P.; Løvik, M.; Calafat, A.M.; Carlsen, K-H.; London, S.J.; Carlsen, K.C. Triclosan exposure and allergic sensitization in N orwegian children. Allergy, 2013, 68(1), 84-91.
[http://dx.doi.org/10.1111/all.12058] [PMID: 23146048]
[22]
Rodricks, J.V.; Swenberg, J.A.; Borzelleca, J.F.; Maronpot, R.R.; Shipp, A.M. Triclosan: A critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol., 2010, 40(5), 422-484.
[http://dx.doi.org/10.3109/10408441003667514] [PMID: 20377306]
[23]
Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health B Crit. Rev., 2017, 20(8), 447-469.
[http://dx.doi.org/10.1080/10937404.2017.1399306] [PMID: 29182464]
[24]
Allmyr, M.; Adolfsson-Erici, M.; McLachlan, M.S.; Sandborgh-Englund, G. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ., 2006, 372(1), 87-93.
[http://dx.doi.org/10.1016/j.scitotenv.2006.08.007] [PMID: 17007908]
[25]
Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ. Health Perspect., 2008, 116(3), 303-307.
[http://dx.doi.org/10.1289/ehp.10768] [PMID: 18335095]
[26]
Järup, L. Hazards of heavy metal contamination. Br. Med. Bull., 2003, 68(1), 167-182.
[http://dx.doi.org/10.1093/bmb/ldg032] [PMID: 14757716]
[27]
Fisher, R.M.; Gupta, V. Heavy metals; StatPearls Publishing: In: StatPearls [Internet]. Treasure Island, 2023.
[28]
Bradl, H.B. Heavy Metals in the Environment: Origin, Interaction and Remediation; Elsevier, 2002, Vol. 6, .
[http://dx.doi.org/10.1016/S1573-4285(05)80019-5]
[29]
Morais, S.; Costa, F.G.; de Lourdes Pereir, M. Heavy Metals and Human Health; IntechOpen, 2012.
[http://dx.doi.org/10.5772/29869]
[30]
Li, X.T.; Yu, P.F.; Gao, Y.; Guo, W.H.; Wang, J.; Liu, X.; Gu, A.H.; Ji, G.X.; Dong, Q.; Wang, B.S.; Cao, Y.; Zhu, B.L.; Xiao, H. Association between plasma metal levels and diabetes risk: A case-control study in china. Biomed. Environ. Sci., 2017, 30(7), 482-491.
[http://dx.doi.org/10.3967/BES2017.064] [PMID: 28756807]
[31]
Wang, X.; Mukherjee, B.; Park, S.K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003–2014. Environ. Int., 2018, 121(Pt 1), 683-694.
[http://dx.doi.org/10.1016/j.envint.2018.09.035] [PMID: 30316184]
[32]
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. EXS, 2012, 101, 133-164.
[http://dx.doi.org/10.1007/978-3-7643-8340-4_6] [PMID: 22945569]
[33]
Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol., 2021, 12, 643972.
[http://dx.doi.org/10.3389/fphar.2021.643972] [PMID: 33927623]
[34]
Ratnaike, R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J., 2003, 79(933), 391-396.
[http://dx.doi.org/10.1136/pmj.79.933.391] [PMID: 12897217]
[35]
Kaltreider, R.C.; Davis, A.M.; Lariviere, J.P.; Hamilton, J.W. Arsenic alters the function of the glucocorticoid receptor as a transcription factor. Environ. Health Perspect., 2001, 109(3), 245-251.
[http://dx.doi.org/10.1289/ehp.01109245] [PMID: 11333185]
[36]
Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vahter, M. Health effects of cadmium exposure-a review of the literature and a risk estimate. Scand. J. Work Environ. Health, 1998, 24(Suppl. 1), 1-51.
[PMID: 9569444]
[37]
Zadorozhnaja, T.D.; Little, R.E.; Miller, R.K.; Mendel, N.A.; Taylor, R.J.; Presley, B.J.; Gladen, B.C. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc in human placentas from two cities in Ukraine. J. Toxicol. Environ. Health A, 2000, 61(4), 255-263.
[http://dx.doi.org/10.1080/00984100050136571] [PMID: 11071319]
[38]
Lafuente, A.; Cano, P.; Esquifino, A.I. Are cadmium effects on plasma gonadotropins, prolactin, ACTH, GH and TSH levels, dose-dependent? Biometals, 2003, 16(2), 243-250.
[http://dx.doi.org/10.1023/A:1020658128413] [PMID: 12572682]
[39]
United Nations Environment Programme. International Labour Organisation., World Health Organization., International Program on Chemical Safety. Inorganic Lead - Environmental Health Criteria 165; World Health Organization, 1995.
[40]
Ronis, M.J.J.; Badger, T.M.; Shema, S.J.; Roberson, P.K.; Shaikh, F. Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol. Appl. Pharmacol., 1996, 136(2), 361-371.
[http://dx.doi.org/10.1006/taap.1996.0044] [PMID: 8619245]
[41]
Wiebe, J.P.; Barr, K.J. Effect of prenatal and neonatal exposure to lead on the affinity and number of estradiol receptors in the uterus. J. Toxicol. Environ. Health, 1988, 24(4), 451-460.
[http://dx.doi.org/10.1080/15287398809531176] [PMID: 3411631]
[42]
Gochfeld, M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Saf., 2003, 56(1), 174-179.
[http://dx.doi.org/10.1016/S0147-6513(03)00060-5] [PMID: 12915150]
[43]
Bayen, S.; Koroleva, E.; Lee, H.K.; Obbard, J.P. Persistent organic pollutants and heavy metals in typical seafoods consumed in Singapore. J. Toxicol. Environ. Health A, 2005, 68(3), 151-166.
[http://dx.doi.org/10.1080/15287390590890437] [PMID: 15762177]
[44]
Mondal, S.; Mukhopadhyay, B.; Bhattacharya, S. Inorganic mercury binding to fish oocyte plasma membrane induces steroidogenesis and translatable messenger RNA synthesis. Biometals, 1997, 10(4), 285-290.
[http://dx.doi.org/10.1023/A:1018372332624] [PMID: 9353876]
[45]
Drevnick, P.E.; Sandheinrich, M.B. Effects of dietary methylmercury on reproductive endocrinology of fathead minnows. Environ. Sci. Technol., 2003, 37(19), 4390-4396.
[http://dx.doi.org/10.1021/es034252m] [PMID: 14572090]
[46]
Roychowdhury, A.; Makhija, S.; Vachhrajani, K.; Gautam, A. Methylmercury- and mercuric-chloride-induced alterations in rat epididymal sperm. Toxicol. Lett., 1989, 47(2), 125-134.
[http://dx.doi.org/10.1016/0378-4274(89)90067-2] [PMID: 2741176]
[47]
Das, A.P.; Singh, S. Occupational health assessment of chromite toxicity among Indian miners. Indian J. Occup. Environ. Med., 2011, 15(1), 6-13.
[http://dx.doi.org/10.4103/0019-5278.82998]
[48]
Wuri, L.; Arosh, J.A.; Wu, J.Z.; Banu, S.K. Exposure to hexavalent chromium causes infertility by disrupting cytoskeletal machinery and mitochondrial function of the metaphase II oocytes in superovulated rats. Toxicol. Rep., 2022, 9, 219-229.
[http://dx.doi.org/10.1016/j.toxrep.2022.02.002] [PMID: 36518455]
[49]
Santamaria, A.B. Manganese exposure, essentiality & toxicity. Indian J. Med. Res., 2008, 128(4), 484-500.
[PMID: 19106442]
[50]
Nordberg, G.; Costa, M. Handbook on the Toxicology of Metals, 5th ed; Specific Metals, 2021, Vol. II, .
[51]
Anderson, I. Should potassium permanganate be used in wound care? Nurs. Times, 2003, 99(31), 61.
[PMID: 13677127]
[52]
Lee, B.; Pine, M.; Johnson, L.; Rettori, V.; Hiney, J.K.; Dees, W.L. Manganese acts centrally to activate reproductive hormone secretion and pubertal development in male rats. Reprod. Toxicol., 2006, 22(4), 580-585.
[http://dx.doi.org/10.1016/j.reprotox.2006.03.011] [PMID: 16697554]
[53]
Prestifilippo, J.P.; Fernández-Solari, J.; Mohn, C.; De Laurentiis, A.; McCann, S.M.; Dees, W.; Rettori, V. Effect of manganese on luteinizing hormone-releasing hormone secretion in adult male rats. Toxicol. Sci., 2007, 97(1), 75-80.
[http://dx.doi.org/10.1093/toxsci/kfm015] [PMID: 17290048]
[54]
Lee, B.; Hiney, J.K.; Pine, M.D.; Srivastava, V.K.; Dees, W.L. Manganese stimulates luteinizing hormone releasing hormone secretion in prepubertal female rats: Hypothalamic site and mechanism of action. J. Physiol., 2007, 578(3), 765-772.
[http://dx.doi.org/10.1113/jphysiol.2006.123083] [PMID: 17110411]
[55]
Pine, M.; Lee, B.; Dearth, R.; Hiney, J.K.; Dees, W.L. Manganese acts centrally to stimulate luteinizing hormone secretion: A potential influence on female pubertal development. Toxicol. Sci., 2005, 85(2), 880-885.
[http://dx.doi.org/10.1093/toxsci/kfi134] [PMID: 15746010]
[56]
Arita, A.; Niu, J.; Qu, Q.; Zhao, N.; Ruan, Y.; Nadas, A.; Chervona, Y.; Wu, F.; Sun, H.; Hayes, R.B.; Costa, M. Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ. Health Perspect., 2012, 120(2), 198-203.
[http://dx.doi.org/10.1289/ehp.1104140] [PMID: 22024396]
[57]
IARC working group on the evaluation of carcinogenic risks to humans. Chromium, nickel and welding. Lyon (FR): International agency for research on cancer; 1990. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 49.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK519250/.
[58]
Stinson, T.J.; Jaw, S.; Jeffery, E.H.; Plewa, M.J. The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. Toxicol. Appl. Pharmacol., 1992, 117(1), 98-103.
[http://dx.doi.org/10.1016/0041-008X(92)90222-E] [PMID: 1440619]
[59]
Chen, C.Y.; Huang, Y.L.; Lin, T.H. Association between oxidative stress and cytokine production in nickel-treated rats. Arch. Biochem. Biophys., 1998, 356(2), 127-132.
[http://dx.doi.org/10.1006/abbi.1998.0761] [PMID: 9705202]
[60]
Roy, J.R.; Chakraborty, S.; Chakraborty, T.R. Estrogen-like endocrine disrupting chemicals affecting puberty in humans-a review. Med. Sci. Monit., 2009, 15(6), RA137-RA145.
[PMID: 19478717]
[61]
Cui, J.; Shen, Y.; Li, R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med., 2013, 19(3), 197-209.
[http://dx.doi.org/10.1016/j.molmed.2012.12.007] [PMID: 23348042]
[62]
Scientific opinion on brominated flame retardants (BFRs) in Food: Brominated phenols and their derivatives. EFSA J., 2012, 10(4), 2634.
[http://dx.doi.org/10.2903/j.efsa.2012.2634]
[63]
Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol., 2015, 40(1), 241-258.
[http://dx.doi.org/10.1016/j.etap.2015.06.009] [PMID: 26164742]
[64]
Koch, C.; Schmidt-Kötters, T.; Rupp, R.; Sures, B. Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics. Environ. Pollut., 2015, 199, 26-34.
[http://dx.doi.org/10.1016/j.envpol.2015.01.011] [PMID: 25618363]
[65]
Kim, Y.R.; Harden, F.A.; Toms, L.M.L.; Norman, R.E. Health consequences of exposure to brominated flame retardants: A systematic review. Chemosphere, 2014, 106, 1-19.
[http://dx.doi.org/10.1016/j.chemosphere.2013.12.064] [PMID: 24529398]
[66]
Pesticides Database, E.U. n.d. Available from: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en(Accessed April 28, 2023).
[67]
Exposure of the general population to pesticides: Summary and recommendations of the scientific orientation and foresight committee of the pesticide residue observatory | Environmental Observatory in Brittany. 2010. Available from: https://bretagne-environnement.fr/exposition-de-la-population-generale-aux-pesticides-synthese-et-recommandations-du-comite-d-orientation-et-de-prospective-scientifique-de-l-observatoire-des-residus-de-pesticides (Accessed April 28, 2023).
[68]
Ferguson, K.K.; O’Neill, M.S.; Meeker, J.D. Environmental contaminant exposures and preterm birth: A comprehensive review. J. Toxicol. Environ. Health B Crit. Rev., 2013, 16(2), 69-113.
[http://dx.doi.org/10.1080/10937404.2013.775048] [PMID: 23682677]
[69]
Vrijheid, M.; Casas, M.; Gascon, M.; Valvi, D.; Nieuwenhuijsen, M. Environmental pollutants and child health—A review of recent concerns. Int. J. Hyg. Environ. Health, 2016, 219(4-5), 331-342.
[http://dx.doi.org/10.1016/j.ijheh.2016.05.001] [PMID: 27216159]
[70]
Nieuwenhuijsen, M.J.; Dadvand, P.; Grellier, J.; Martinez, D.; Vrijheid, M. Environmental risk factors of pregnancy outcomes: A summary of recent meta-analyses of epidemiological studies. Environ. Health, 2013, 12(1), 6.
[http://dx.doi.org/10.1186/1476-069X-12-6] [PMID: 23320899]
[71]
Daxenberger, A. Pollutants with androgen-disrupting potency. Eur. J. Lipid Sci. Technol., 2002, 104(2), 124-130.
[http://dx.doi.org/10.1002/1438-9312(200202)104:2<124::AID-EJLT124>3.0.CO;2-T]
[72]
Lemaire, G.; Terouanne, B.; Mauvais, P.; Michel, S.; Rahmani, R. Effect of organochlorine pesticides on human androgen receptor activation in vitro. Toxicol. Appl. Pharmacol., 2004, 196(2), 235-246.
[http://dx.doi.org/10.1016/j.taap.2003.12.011] [PMID: 15081270]
[73]
Scippo, M.L.; Argiris, C.; Van De Weerdt, C.; Muller, M.; Willemsen, P.; Martial, J.; Maghuin-Rogister, G. Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal. Bioanal. Chem., 2004, 378(3), 664-669.
[http://dx.doi.org/10.1007/s00216-003-2251-0] [PMID: 14579009]
[74]
Sonnenschein, C.; Soto, A.M. An updated review of environmental estrogen and androgen mimics and antagonists. J. Steroid Biochem. Mol. Biol., 1998, 65(1-6), 143-150.
[http://dx.doi.org/10.1016/S0960-0760(98)00027-2] [PMID: 9699867]
[75]
Storrs, S.I.; Kiesecker, J.M. Survivorship patterns of larval amphibians exposed to low concentrations of atrazine. Environ. Health Perspect., 2004, 112(10), 1054-1057.
[http://dx.doi.org/10.1289/ehp.6821] [PMID: 15238276]
[76]
McDuffie, H.H. Host factors and genetic susceptibility: A paradigm of the conundrum of pesticide exposure and cancer associations. Rev. Environ. Health, 2005, 20(2), 77-101.
[PMID: 16121832]
[77]
Mathur, V.; Bhatnagar, P.; Sharma, R.G.; Acharya, V.; Sexana, R. Breast cancer incidence and exposure to pesticides among women originating from Jaipur. Environ. Int., 2002, 28(5), 331-336.
[http://dx.doi.org/10.1016/S0160-4120(02)00031-4] [PMID: 12437282]
[78]
Starek, A. Estrogens and organochlorine xenoestrogens and breast cancer risk. Int. J. Occup. Med. Environ. Health, 2003, 16(2), 113-124.
[PMID: 12921380]
[79]
Gwinn, M.R.; Whipkey, D.L.; Tennant, L.B.; Weston, A. Differential gene expression in normal human mammary epithelial cells treated with malathion monitored by DNA microarrays. Environ. Health Perspect., 2005, 113(8), 1046-1051.
[http://dx.doi.org/10.1289/ehp.7311] [PMID: 16079077]
[80]
Jeong, S.H.; Kim, B.Y.; Kang, H.G.; Ku, H.O.; Cho, J.H. Effect of chlorpyrifos-methyl on steroid and thyroid hormones in rat F0- and F1-generations. Toxicology, 2006, 220(2-3), 189-202.
[http://dx.doi.org/10.1016/j.tox.2006.01.005] [PMID: 16472551]
[81]
Kang, H.G.; Jeong, S.H.; Cho, J.H.; Kim, D.G.; Park, J.M.; Cho, M.H. Chlropyrifos-methyl shows anti-androgenic activity without estrogenic activity in rats. Toxicology, 2004, 199(2-3), 219-230.
[http://dx.doi.org/10.1016/j.tox.2004.02.025] [PMID: 15147795]
[82]
Cabello, G.; Valenzuela, M.; Vilaxa, A.; Durán, V.; Rudolph, I.; Hrepic, N.; Calaf, G. A rat mammary tumor model induced by the organophosphorous pesticides parathion and malathion, possibly through acetylcholinesterase inhibition. Environ. Health Perspect., 2001, 109(5), 471-479.
[http://dx.doi.org/10.1289/ehp.01109471] [PMID: 11401758]
[83]
Goldsmith, D.F. Linking environmental cancer with occupational epidemiology research: the role of the International Agency for Research on Cancer (IARC). J. Environ. Pathol. Toxicol. Oncol., 2000, 19(1-2), 171-175.
[PMID: 10905524]
[84]
Mills, P.K.; Yang, R. Breast cancer risk in Hispanic agricultural workers in California. Int. J. Occup. Environ. Health, 2005, 11(2), 123-131.
[http://dx.doi.org/10.1179/oeh.2005.11.2.123] [PMID: 15875887]
[85]
Routledge, E.J.; Parker, J.; Odum, J.; Ashby, J.; Sumpter, J.P. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol. Appl. Pharmacol., 1998, 153(1), 12-19.
[http://dx.doi.org/10.1006/taap.1998.8544] [PMID: 9875295]
[86]
Soni, M.G.; Carabin, I.G.; Burdock, G.A. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem. Toxicol., 2005, 43(7), 985-1015.
[http://dx.doi.org/10.1016/j.fct.2005.01.020] [PMID: 15833376]
[87]
Hoberman, A.M.; Schreur, D.K.; Leazer, T.; Daston, G.P.; Carthew, P.; Re, T.; Loretz, L.; Mann, P. Lack of effect of butylparaben and methylparaben on the reproductive system in male rats. Birth Defects Res. B Dev. Reprod. Toxicol., 2008, 83(2), 123-133.
[http://dx.doi.org/10.1002/bdrb.20153] [PMID: 18393383]
[88]
Błędzka, D.; Gromadzińska, J.; Wąsowicz, W. Parabens. From environmental studies to human health. Environ. Int., 2014, 67, 27-42.
[http://dx.doi.org/10.1016/j.envint.2014.02.007] [PMID: 24657492]
[89]
Soni, M.G.; Taylor, S.L.; Greenberg, N.A.; Burdock, G.A. Evaluation of the health aspects of methyl paraben: A review of the published literature. Food Chem. Toxicol., 2002, 40(10), 1335-1373.
[http://dx.doi.org/10.1016/S0278-6915(02)00107-2] [PMID: 12387298]
[90]
Nishizawa, C.; Takeshita, K.; Ueda, J.; Nakanishi, I.; Suzuki, K.T.; Ozawa, T. Reaction of para -hydroxybenzoic acid esters with singlet oxygen in the presence of glutathione produces glutathione conjugates of hydroquinone, potent inducers of oxidative stress. Free Radic. Res., 2006, 40(3), 233-240.
[http://dx.doi.org/10.1080/10715760500485036] [PMID: 16484039]
[91]
Oishi, S. Effects of butylparaben on the male reproductive system in rats. Toxicol. Ind. Health, 2001, 17(1), 31-39.
[http://dx.doi.org/10.1191/0748233701th093oa] [PMID: 12004923]
[92]
Kim, S.; Jung, D.; Kho, Y.; Choi, K. Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)—A two generation exposure study. Aquat. Toxicol., 2014, 155, 244-252.
[http://dx.doi.org/10.1016/j.aquatox.2014.07.004] [PMID: 25064457]
[93]
Kinnberg, K.L.; Petersen, G.I.; Albrektsen, M.; Minghlani, M.; Awad, S.M.; Holbech, B.F.; Green, J.W.; Bjerregaard, P.; Holbech, H. Endocrine‐disrupting effect of the ultraviolet filter benzophenone‐3 in zebrafish, Danio rerio. Environ. Toxicol. Chem., 2015, 34(12), 2833-2840.
[http://dx.doi.org/10.1002/etc.3129] [PMID: 26118430]
[94]
Zhan, T.; Cui, S.; Liu, X.; Zhang, C.; Huang, Y.M.; Zhuang, S. Enhanced disrupting effect of benzophenone-1 chlorination byproducts to the androgen receptor: Cell-based assays and gaussian accelerated molecular dynamics simulations. Chem. Res. Toxicol., 2021, 34(4), 1140-1149.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00023] [PMID: 33684284]
[95]
Zota, A.R.; Geller, R.J.; Romano, L.E.; Coleman-Phox, K.; Adler, N.E.; Parry, E.; Wang, M.; Park, J.S.; Elmi, A.F.; Laraia, B.A.; Epel, E.S. Association between persistent endocrine-disrupting chemicals (PBDEs, OH-PBDEs, PCBs, and PFASs) and biomarkers of inflammation and cellular aging during pregnancy and postpartum. Environ. Int., 2018, 115, 9-20.
[http://dx.doi.org/10.1016/j.envint.2018.02.044] [PMID: 29533840]
[96]
Jugan, M.L.; Levi, Y.; Blondeau, J.P. Endocrine disruptors and thyroid hormone physiology. Biochem. Pharmacol., 2010, 79(7), 939-947.
[http://dx.doi.org/10.1016/j.bcp.2009.11.006] [PMID: 19913515]
[97]
Tachachartvanich, P.; Singam, E.R.A.; Durkin, K.A.; Furlow, J.D.; Smith, M.T.; La Merrill, M.A. In vitro characterization of the endocrine disrupting effects of per- and poly-fluoroalkyl substances (PFASs) on the human androgen receptor. J. Hazard. Mater., 2022, 429, 128243.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128243] [PMID: 35093747]
[98]
Fenton, S.E; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem., 2021, 40(3), 606-630.
[http://dx.doi.org/10.1002/etc.4890]
[99]
Joensen, U.N.; Bossi, R.; Leffers, H.; Jensen, A.A.; Skakkebæk, N.E.; Jørgensen, N. Do perfluoroalkyl compounds impair human semen quality? Environ. Health Perspect., 2009, 117(6), 923-927.
[http://dx.doi.org/10.1289/ehp.0800517] [PMID: 19590684]
[100]
Qiu, Z.; Qu, K.; Luan, F.; Liu, Y.; Zhu, Y.; Yuan, Y.; Li, H.; Zhang, H.; Hai, Y.; Zhao, C. Binding specificities of estrogen receptor with perfluorinated compounds: A cross species comparison. Environ. Int., 2020, 134, 105284.
[http://dx.doi.org/10.1016/j.envint.2019.105284] [PMID: 31707300]
[101]
Di Pietro, G.; Forcucci, F.; Chiarelli, F. Endocrine disruptor chemicals and children’s health. Int. J. Mol. Sci., 2023, 24(3), 2671.
[http://dx.doi.org/10.3390/ijms24032671] [PMID: 36768991]
[102]
Wu, Q.; Coumoul, X.; Grandjean, P.; Barouki, R.; Audouze, K. Endocrine disrupting chemicals and COVID-19 relationships: A computational systems biology approach. Environ. Int., 2021, 157, 106232.
[http://dx.doi.org/10.1016/j.envint.2020.106232] [PMID: 33223326]
[103]
Macedo, S.; Teixeira, E.; Gaspar, T.B.; Boaventura, P.; Soares, M.A.; Miranda-Alves, L.; Soares, P. Endocrine-disrupting chemicals and endocrine neoplasia: A forty-year systematic review. Environ. Res., 2023, 218, 114869.
[http://dx.doi.org/10.1016/j.envres.2022.114869] [PMID: 36460069]
[104]
Midya, V.; Colicino, E.; Conti, D.V.; Berhane, K.; Garcia, E.; Stratakis, N.; Andrusaityte, S.; Basagaña, X.; Casas, M.; Fossati, S.; Gražulevičienė, R.; Haug, L.S.; Heude, B.; Maitre, L.; McEachan, R.; Papadopoulou, E.; Roumeliotaki, T.; Philippat, C.; Thomsen, C.; Urquiza, J.; Vafeiadi, M.; Varo, N.; Vos, M.B.; Wright, J.; McConnell, R.; Vrijheid, M.; Chatzi, L.; Valvi, D. Association of prenatal exposure to endocrine-disrupting chemicals with liver injury in children. JAMA Netw. Open, 2022, 5(7), e2220176.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.20176] [PMID: 35793087]
[105]
OECD. Series on testing and assessment: Testing for endocrine disrupters. Retrieved from website. Available from: https://www.oecd.org/chemicalsafety/testing/seriesontestingandassessmenttestingforendocrinedisrupters.htm (Accessed on 7.11.23).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy