Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Nanotechnology-based Herbal Drug Formulation in the Treatment of Diabetes Mellitus

In Press, (this is not the final "Version of Record"). Available online 31 January, 2024
Author(s): Namrata Bhadouria, Aftab Alam* and Awaneet Kaur
Published on: 31 January, 2024

Article ID: e310124226554

DOI: 10.2174/0115733998282162240116202813

Price: $95

Abstract

The utilization of nanotechnology-based herbal medication delivery systems is gaining attention as a novel approach to treating diabetes mellitus. The incorporation of nanotechnology into herbal medicine provides benefits such as enhanced Stability, solubility, and bioavailability of herbal medications. The purpose of this paper is to summarise the present status of research on herbal medicine delivery systems based on nanotechnology for the treatment of diabetic patients. The paper evaluates the various nanocarriers and herbal drugs used, the challenges and opportunities in the development of these systems, and their potential efficacy and safety. Additionally, the paper highlights the need for further research to optimize the formulation and delivery of these systems. This review's overarching objective is to provide a complete understanding of the possibilities of herbal medication delivery systems based on nanotechnology in diabetes mellitus treatment.

[1]
Marella S, Tollamadugu NVKVP. Nanotechnological approaches for the development of herbal drugs in treatment of diabetes mellitus - A critical review. IET Nanobiotechnol 2018; 12(5): 549-56.
[http://dx.doi.org/10.1049/iet-nbt.2017.0242] [PMID: 30095411]
[2]
Amjad S, Jafri A, Sharma AK, Serajuddin M. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects. J Herb Med 2019; 17-18: 100279.
[http://dx.doi.org/10.1016/j.hermed.2019.100279]
[3]
Atkinson MA, Eisenbarth GS. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet 2001; 358(9277): 221-9.
[http://dx.doi.org/10.1016/S0140-6736(01)05415-0] [PMID: 11476858]
[4]
Zimmet P, Tuomi T, Mackay IR, et al. Latent autoimmune diabetes mellitus in adults (LADA): The role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med 1994; 11(3): 299-303.
[http://dx.doi.org/10.1111/j.1464-5491.1994.tb00275.x] [PMID: 8033530]
[5]
DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004; 88(4): 787-835. ix.
[http://dx.doi.org/10.1016/j.mcna.2004.04.013] [PMID: 15308380]
[6]
Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diab Rep 2008; 8(3): 173-8.
[http://dx.doi.org/10.1007/s11892-008-0030-1] [PMID: 18625112]
[7]
Chen H, Nie Q, Hu J, Huang X, Huang W, Nie S. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats. Food Hydrocoll 2020; 102: 105582.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105582]
[8]
Armstrong DG, Lavery LA. Diabetic foot ulcers: Prevention, diagnosis and classification. Am Fam Physician 1998; 57(6): 1325-1332, 1337-1338.
[PMID: 9531915]
[9]
Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature 2016; 536(7614): 41-7.
[http://dx.doi.org/10.1038/nature18642] [PMID: 27398621]
[10]
Solis-Herrera C, Triplitt C, Reasner C, et al. Endotext. South Dartmouth: MDText.com, Inc 2000.
[11]
DeSisto CL, Kim SY, Sharma AJ. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007-2010. Prev Chronic Dis 2014; 11: 130415.
[http://dx.doi.org/10.5888/pcd11.130415] [PMID: 24945238]
[12]
Kota SK, Meher LK, Jammula S, Kota SK, Modi KD. Genetics of type 2 diabetes mellitus and other specific types of diabetes; its role in treatment modalities. Diabetes Metab Syndr 2012; 6(1): 54-8.
[http://dx.doi.org/10.1016/j.dsx.2012.05.014] [PMID: 23014256]
[13]
McCarthy MI, Froguel P. Genetic approaches to the molecular understanding of type 2 diabetes. Am J Physiol Endocrinol Metab 2002; 283(2): E217-25.
[http://dx.doi.org/10.1152/ajpendo.00099.2002] [PMID: 12110525]
[14]
Kahn CR, Flier JS, Bar RS, et al. The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man. N Engl J Med 1976; 294(14): 739-45.
[http://dx.doi.org/10.1056/NEJM197604012941401] [PMID: 176581]
[15]
Barkaoui M, Katiri A, Boubaker H, Msanda F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J Ethnopharmacol 2017; 198: 338-50.
[http://dx.doi.org/10.1016/j.jep.2017.01.023] [PMID: 28109915]
[16]
Rifaai RA, El-Tahawy NF, Ali Saber E. Effect of quercetin on the endocrine pancreas of the experimentally induced diabetes in male albino rats: A histological and immunohistochemical study Ali. J Diabetes Metab 2012; 3(3): 182.
[http://dx.doi.org/10.4172/2155-6156.1000182]
[17]
Module 3: Characteristics of particles – Particle size categories. Available from: www.epa.gov/apti/bces/module3/category/category.htmtt (Accessed 01 September 2015).
[18]
Schmid G, Ed. Nanoparticles: From theory to application. Chichester, UK: John Wiley & Sons 2011; p. 26.
[19]
Muddapur UM, Alshehri S, Ghoneim MM, et al. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules 2022; 27(4): 1391.
[http://dx.doi.org/10.3390/molecules27041391] [PMID: 35209180]
[20]
Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci 2015; 2277: 2502.
[21]
Weerapreeyakul N, Hollenbeck RG, Chikhale PJ. Stability of bioreductive drug delivery systems containing melphalan is influenced by conformational constraint and electronic properties of substituents. Bioorg Med Chem Lett 2000; 10(21): 2391-5.
[http://dx.doi.org/10.1016/S0960-894X(00)00496-0] [PMID: 11078186]
[22]
Khaleel Basha S, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 2010; 75(2): 405-9.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.008] [PMID: 19815393]
[23]
Hu HG, Wang MJ, Zhao QJ, Yu SC, Liu CM, Wu QY. Synthesis of mangiferin derivates and study their potent PTP1B inhibitory activity. Chin Chem Lett 2007; 18(11): 1323-6.
[http://dx.doi.org/10.1016/j.cclet.2007.09.011]
[24]
Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000; 26(2): 131-8.
[http://dx.doi.org/10.1016/S0305-4179(99)00116-3] [PMID: 10716355]
[25]
Gong P, Li H, He X, et al. Preparation and antibacterial activity of Fe3 O4 @Ag nanoparticles. Nanotechnology 2007; 18(28): 285604.
[http://dx.doi.org/10.1088/0957-4484/18/28/285604]
[26]
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27(1): 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[27]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[28]
Ghaffari-Moghaddam M, Hadi-Dabanlou R, Khajeh M, Rakhshanipour M, Shameli K. Green synthesis of silver nanoparticles using plant extracts. Korean J Chem Eng 2014; 31(4): 548-57.
[http://dx.doi.org/10.1007/s11814-014-0014-6]
[29]
Iravani S, Zolfaghari B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int 2013; 2013: 1-5.
[http://dx.doi.org/10.1155/2013/639725] [PMID: 24083233]
[30]
Lasic DD, Frederik PM, Stuart MCA, Barenholz Y, McIntosh TJ. Gelation of liposome interior A novel method for drug encapsulation. FEBS Lett 1992; 312(2-3): 255-8.
[http://dx.doi.org/10.1016/0014-5793(92)80947-F] [PMID: 1426260]
[31]
Dyer AM, Hinchcliffe M, Watts P, et al. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 2002; 19(7): 998-1008.
[http://dx.doi.org/10.1023/A:1016418523014] [PMID: 12180553]
[32]
Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. Int J Nanomedicine 2009; 4: 1-7.
[PMID: 19421366]
[33]
Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J 1985; 17(1): 117-32.
[http://dx.doi.org/10.1295/polymj.17.117]
[34]
Gillies E, Fréchet J. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[35]
Iwaki T, Kakihara Y, Toda T, Abdullah M, Okuyama K. Preparation of high coercivity magnetic FePt nanoparticles by liquid process. J Appl Phys 2003; 94(10): 6807-11.
[http://dx.doi.org/10.1063/1.1619577]
[36]
von zur Muhlen C, von Elverfeldt D, Bassler N, et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): Implications on imaging of atherosclerotic plaques. Atherosclerosis 2007; 193(1): 102-11.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.048] [PMID: 16997307]
[37]
Sohn BH, Cohen RE. Processible optically transparent block copolymer films containing superparamagnetic iron oxide nanoclusters. Chem Mater 1997; 9(1): 264-9.
[http://dx.doi.org/10.1021/cm960339d]
[38]
Tartaj P, Morales MP, González-Carreño T, Veintemillas-Verdaguer S, Serna CJ. Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 2005; 290-291: 28-34.
[http://dx.doi.org/10.1016/j.jmmm.2004.11.155]
[39]
Kouwenhoven L, Marcus C. Quantum dots. Phys World 1998; 11(6): 35-40.
[http://dx.doi.org/10.1088/2058-7058/11/6/26]
[40]
Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E 2004; 25(1): 1-12.
[http://dx.doi.org/10.1016/j.physe.2004.07.013]
[41]
Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environ Sci Technol 2008; 42(12): 4416-21.
[http://dx.doi.org/10.1021/es702916h] [PMID: 18605564]
[42]
Sharon M. Carbon nano forms and applications. New York, USA: McGraw-Hill Education 2010.
[43]
Nowack B, David RM, Fissan H, et al. Potential release scenarios for carbon nanotubes used in composites. Environ Int 2013; 59: 1-11.
[http://dx.doi.org/10.1016/j.envint.2013.04.003] [PMID: 23708563]
[44]
Bennett SW, Adeleye A, Ji Z, Keller AA. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 2013; 47(12): 4074-85.
[http://dx.doi.org/10.1016/j.watres.2012.12.039] [PMID: 23591109]
[45]
Nagavarma BV, Yadav HK, Ayaz AV, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles-A review. Asian J Pharm Clin Res 2012; 5: 16-23.
[46]
Shokri N, Akbari Javar H, Fouladdel Sh, et al. Preparation and evaluation of poly (caprolactone fumarate) nanoparticles containing doxorubicin HCI. Daru 2011; 19(1): 12-22.
[PMID: 22615635]
[47]
Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998; 24(12): 1113-28.
[http://dx.doi.org/10.3109/03639049809108571] [PMID: 9876569]
[48]
Chronopoulou L, Fratoddi I, Palocci C, Venditti I, Russo MV. Osmosis based method drives the self-assembly of polymeric chains into micro- and nanostructures. Langmuir 2009; 25(19): 11940-6.
[http://dx.doi.org/10.1021/la9016382] [PMID: 19572495]
[49]
Mehnert W, Mäder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[50]
Madden TD, Bally MB, Hope MJ, Cullis PR, Schieren HP, Janoff AS. Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents. Biochim Biophys Acta Biomembr 1985; 817(1): 67-74.
[http://dx.doi.org/10.1016/0005-2736(85)90069-0] [PMID: 4005259]
[51]
Domb AJ. Long acting injectable oxytetracycline-liposphere formulations. Int J Pharm 1995; 124(2): 271-8.
[http://dx.doi.org/10.1016/0378-5173(95)00098-4]
[52]
Hou D, Xie C, Huang K, Zhu C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003; 24(10): 1781-5.
[http://dx.doi.org/10.1016/S0142-9612(02)00578-1] [PMID: 12593960]
[53]
Verma H, Prasad SB, Yashwant SH. Herbal drug delivery system: A modern era perspective. Int J Curr Pharmaceut Rev Res 2013; 4: 88-101.
[54]
Atmakuri LR, Dathi S. Current trends in herbal medicines. J Pharm Res 2010; 3: 109-13.
[55]
Harish P. Herbal drugs. Current Science. 2001 Apr; 81(1): 15.
[56]
Coleman LM, Fowler LL, Williams ME. Use of unproven therapies by people with Alzheimer’s disease. J Am Geriatr Soc 1995; 43(7): 747-50.
[http://dx.doi.org/10.1111/j.1532-5415.1995.tb07043.x] [PMID: 7602024]
[57]
Kulkarni GT. Herbal drug delivery systems: An emerging area in herbal drug research. J Chronotherapy Drug Deliv 2011; 2: 113-9.
[58]
Jain N, Valli KS, Devi VK. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev 2010; 4(7): 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[59]
Sarangi M, Padhi S. Novel herbal drug delivery system: An overview. Arch Med Health Sci 2018; 6(1): 171.
[http://dx.doi.org/10.4103/amhs.amhs_88_17]
[61]
Nanotechnology for diabetes treatment. 2013. Available from: http://www.AZoM.com (Accessed December 16 2013).
[62]
Jafri SA, Syed S, Hasan ANK, Iqbal J. Hypoglycemic effect of Aloe vera extract in alloxan-induced diabetic albino rats. Med J Islam World Academy Sci 2011; 19(3): 127-30.
[63]
Ananthi J, Prakasam A, Pugalendi KV. Antihyperglycemic activity of Eclipta alba leaf on alloxan-induced diabetic rats. Yale J Biol Med 2003; 76(3): 97-102.
[PMID: 15369623]
[64]
Sindurani JA, Rajamohan T. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats. Indian J Physiol Pharmacol 2000; 44(1): 97-100.
[PMID: 10919103]
[65]
Vinuthan MK, Girish Kumar V, Ravindra JP, Jayaprakash N, Narayana K. Effect of extracts of Murraya koenigii leaves on the levels of blood glucose and plasma insulin in alloxan-induced diabetic rats. Indian J Physiol Pharmacol 2004; 48(3): 348-52.
[PMID: 15648408]
[66]
Thomson M, Zainab M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diab Metab 2007; 15: 108-15.
[67]
Patil R, Patil R, Ahirwar B, Ahirwar D. Current status of Indian medicinal plants with antidiabetic potential: A review. Asian Pac J Trop Biomed 2011; 1(2): S291-8.
[http://dx.doi.org/10.1016/S2221-1691(11)60175-5]
[68]
Silva ML, Bernardo MA, Singh J, de Mesquita MF. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review. Nutrients 2022; 14(13): 2773.
[http://dx.doi.org/10.3390/nu14132773] [PMID: 35807953]
[69]
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter melon and diabetes mellitus. Food Rev Int 2023; 39(1): 618-38.
[http://dx.doi.org/10.1080/87559129.2021.1923733]
[70]
Puri D, Prabhu KM, Murthy PS. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Indian J Physiol Pharmacol 2002; 46(4): 457-62.
[PMID: 12683221]
[71]
Uadia PO, Imagbovomwan IO, Oriakhi K, Eze IG. Effect of Abelmoschus esculentus (okra)-based diet on streptozotocin-induced diabetes mellitus in adult Wistar rats. Trop J Pharm Res 2020; 19(8): 1737-43.
[http://dx.doi.org/10.4314/tjpr.v19i8.24]
[72]
Kuroda M, Mimaki Y, Ohtomo T, et al. Hypoglycemic effects of clove (Syzygium aromaticum flower buds) on genetically diabetic KK-Ay mice and identification of the active ingredients. J Nat Med 2012; 66(2): 394-9.
[http://dx.doi.org/10.1007/s11418-011-0593-z] [PMID: 21987283]
[73]
Partha R, Conyers JL. Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine 2009; 4: 261-75.
[PMID: 20011243]
[74]
Loureiro JA, Gomes B, Coelho MAN, Carmo Pereira M, Rocha S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine 2014; 9(5): 709-22.
[http://dx.doi.org/10.2217/nnm.14.27] [PMID: 24827845]
[75]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[76]
Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: Is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 2000; 50(1): 147-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00084-9] [PMID: 10840198]
[77]
Viswanath B, Kim S. Recent insights into the development of nanotechnology to detect circulating tumor cells. Trends Analyt Chem 2016; 82: 191-8.
[http://dx.doi.org/10.1016/j.trac.2016.05.026]
[78]
Seth SD, Sharma B. Medicinal plants in India. Indian J Med Res 2004; 120(1): 9-11.
[PMID: 15299226]
[79]
Alarcon-Aguilar FJ, Roman-Ramos R, Flores-Saenz JL, Aguirre-Garcia F. Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and Alloxan‐diabetic mice. Phytother Res 2002; 16(4): 383-6.
[http://dx.doi.org/10.1002/ptr.914] [PMID: 12112298]
[80]
Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC, Flores-Saenz JL. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol 1998; 61(2): 101-10.
[http://dx.doi.org/10.1016/S0378-8741(98)00020-8] [PMID: 9683340]
[81]
Chakravarty S, Kalita JC. An investigation on antidiabetic medicinal plants used by villagers in Nalbari District, Assam, India. Int J Pharm Sci Res 2012; 3: 1693.
[82]
Das T, Mishra SB, Saha D, Agarwal S. Ethnobotanical survey of medicinal plants used by ethnic and rural people in eastern Sikkim Himalayan region. African Jf Basic Appl Sci 2012; 4: 16-20.
[83]
Khan MH, Yadava PS. Antidiabetic plants used in thoubal district of manipur, Northeast India. Indian J Tradit Knowl 2010; 9(3): 510-4.
[84]
Das A, Saikia R, Pathak K, Gogoi U, Pathak MP. Antidiabetic nanoformulation from herbal source. In: Nano Medicine & Nano safety. Springer 2020.
[85]
Mondal P, Bhuyan N, Das S, Kumar M, Borah S, Mahato K. Herbal medicines useful for the treatment of diabetes in North-East India: A review. Int J Pharm Biol Sci 2013; 3: 575-89.
[86]
Lakshmidevi GB. Diabetes and medicinal plants-A review. Int J Pharma Bio Sci 2011; 2: 65-80.
[87]
Sastry M, Ahmed A, Khan MI, et al. Biosynthesis of metal nanoparticles using fungi Andactinomycete. Curr Sci 2003; 85: 162-70.
[88]
Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 2014; 25(4): 363-76.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[89]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[90]
Pérez-Torres I, Ruiz-Ramírez A, Baños G, El-Hafidi M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc Hematol Agents Med Chem 2013; 11(1): 25-37.
[http://dx.doi.org/10.2174/1871525711311010006] [PMID: 22721439]
[91]
Singh IP, Mahajan S. Berberine and its derivatives: A patent review (2009 - 2012). Expert Opin Ther Pat 2013; 23(2): 215-31.
[http://dx.doi.org/10.1517/13543776.2013.746314] [PMID: 23231038]
[92]
Chueh WH, Lin JY. Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice. J Agric Food Chem 2011; 59(14): 8021-7.
[http://dx.doi.org/10.1021/jf201627w] [PMID: 21696141]
[93]
Chueh WH, Lin JY. Protective effect of berberine on serum glucose levels in non-obese diabetic mice. Int Immunopharmacol 2012; 12(3): 534-8.
[http://dx.doi.org/10.1016/j.intimp.2012.01.003] [PMID: 22266065]
[94]
Chen C, Zhou J, Ji C. Quercetin: A potential drug to reverse multidrug resistance. Life Sci 2010; 87(11-12): 333-8.
[http://dx.doi.org/10.1016/j.lfs.2010.07.004] [PMID: 20637779]
[95]
Shi GJ, Li Y, Cao QH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109: 1085-99.
[http://dx.doi.org/10.1016/j.biopha.2018.10.130] [PMID: 30551359]
[96]
Kirtikar KR, Basu BD. Indian Medicinal Plants. Indian Medicinal Plants 1935.
[97]
Suryavanshi SV, Barve K, Addepalli V, Utpat SV, Kulkarni YA, Churna T. Triphala Churna-A traditional formulation in Ayurveda mitigates diabetic neuropathy in rats. Front Pharmacol 2021; 12: 662000.
[http://dx.doi.org/10.3389/fphar.2021.662000] [PMID: 34149415]
[98]
Bharti N, Hari Kumar SL, Budhiraja A. Pulmonary drug delivery as a vital route for deliverying nanoparticles. World J Pharm Pharm Sci 2013; 2: 4037-60.
[99]
Subramani K. NPDDS for the treatment of diabetes. In: Pathak Y, Thassu D, Eds. Drug Delivery Nanoparticles Formulation and Characterization. USA: Informa Healthcare, Inc. 2009; p. 117.
[100]
Plumley CJ. Nanoparticle agglomeration via ionic colloidal destabilization as a novel approach to dry powder formulations for pulmonary drug delivery. 2009. Available from: https://dblp.org/rec/phd/basesearch/Plumley08.html
[101]
Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007; 117(3): 421-9.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.003] [PMID: 17239471]
[102]
Priya B, Rashmi T, Bozena M. Transdermal iontophoresis. Expert Opin Drug Deliv 2006; 3(1): 127-38.
[http://dx.doi.org/10.1517/17425247.3.1.127] [PMID: 16370945]
[103]
Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: An emerging transdermal drug delivery system. J Pharm Pharmacol 2011; 64(1): 11-29.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01369.x] [PMID: 22150668]
[104]
Klonoff DC. Overview of fluorescence glucose sensing: A technology with a bright future. J Diabetes Sci Technol 2012; 6(6): 1242-50.
[http://dx.doi.org/10.1177/193229681200600602] [PMID: 23294768]
[105]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14(1): 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[106]
Das P, Ganguly S, Bose M, et al. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater Sci Eng C 2018; 88: 115-29.
[http://dx.doi.org/10.1016/j.msec.2018.03.010] [PMID: 29636126]
[107]
Gu Z, Dang TT, Ma M, et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013; 7(8): 6758-66.
[http://dx.doi.org/10.1021/nn401617u] [PMID: 23834678]
[108]
Luo J, Cao S, Chen X, et al. Super long-term glycemic control in diabetic rats by glucose-sensitive LbL films constructed of supramolecular insulin assembly. Biomaterials 2012; 33(33): 8733-42.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.041] [PMID: 22954517]
[109]
Qi W, Yan X, Fei J, Wang A, Cui Y, Li J. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials 2009; 30(14): 2799-806.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.027] [PMID: 19203789]
[110]
Gu Z, Aimetti AA, Wang Q, et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 2013; 7(5): 4194-201.
[http://dx.doi.org/10.1021/nn400630x] [PMID: 23638642]
[111]
Pandit S, Dasgupta D, Dewan N, Prince A. Nanotechnology based biosensors and its application. J Pharm Innov 2016; 5: 18.
[112]
Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 2010; 16(12): 584-93.
[http://dx.doi.org/10.1016/j.molmed.2010.08.002] [PMID: 20869318]
[113]
Chang L, Hu J, Chen F, et al. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. Nanoscale 2016; 8(6): 3181-206.
[http://dx.doi.org/10.1039/C5NR06694H] [PMID: 26745513]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy