Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

A Comprehensive Study of Deep Learning Techniques to Predict Dissimilar Diseases in Diabetes Mellitus Using IoT

Author(s): Ramesh Balaraju and Kuruva Lakshmanna*

Volume 17, Issue 4, 2024

Published on: 30 January, 2024

Article ID: e300124226519 Pages: 18

DOI: 10.2174/0126662558291849240118104616

Price: $65

Abstract

India has evaluated 77 million people with diabetes, which makes it the second most elaborated disease in the world. Diabetes is a chronic syndrome that occurs with increased sugar levels in the blood cells. Once diabetes is diagnosed and untreated by physicians, it may affect the internal organs slowly, so there is a necessity for early prediction. Popular Machine Learning (ML) techniques existed for the early prediction of diabetes mellitus. A significant perspective is to be considered in total management by machine learning algorithms, but it is not a good enough model to predict DMT2. Therefore, Deep learning (DL) models are utilized to produce enhanced prediction accuracy. The ML methods are evaluated and analyzed distinctly on the inconspicuous test information. DL is a subpart of ML with many data sets recurrently used to train the system. IoT was another emerging technology-based Healthcare Monitoring System (HMS) built to support the vision of patients and doctors in the healthcare domain. This paper aims to survey ML and DL techniques relevant to Dissimilar Disease prediction in Diabetes Mellitus. Finally, by doing a study on it, deep learning methods performed well in predicting the dissimilar diseases related to diabetes and also other disease predictions using m-IoT devices. This study will contribute to future deep-learning ideas that will assist in detecting diabetic-related illnesses with greater accuracy.

Graphical Abstract

[1]
H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C.N. Chan, J.C. Mbanya, M.E. Pavkov, A. Ramachandaran, S.H. Wild, S. James, W.H. Herman, P. Zhang, C. Bommer, S. Kuo, E.J. Boyko, and D.J. Magliano, "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045", Diabetes Res. Clin. Pract., vol. 183, p. 109119, 2022.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
G.A. Gregory, T.I.G. Robinson, S.E. Linklater, F. Wang, S. Colagiuri, C. de Beaufort, K.C. Donaghue, D.J. Magliano, J. Maniam, T.J. Orchard, P. Rai, G.D. Ogle, J.L. Harding, P.L. Wander, X. Zhang, X. Li, S. Karuranga, H. Chen, H. Sun, Y. Xie, R. Oram, D.J. Magliano, Z. Zhou, A.J. Jenkins, and R.C.W. Ma, "Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study", Lancet Diabet. Endocrinol., vol. 10, no. 10, pp. 741-760, 2022.
[http://dx.doi.org/10.1016/S2213-8587(22)00218-2] [PMID: 36113507]
[3]
T. Zhang, Q. Mei, Z. Zhang, J.H. Walline, Y. Liu, H. Zhu, and S. Zhang, "Risk for newly diagnosed diabetes after COVID-19: A systematic review and meta-analysis", BMC Med., vol. 20, no. 1, p. 444, 2022.
[http://dx.doi.org/10.1186/s12916-022-02656-y] [PMID: 36380329]
[4]
D. Shah, S. Patel, and S.K. Bharti, "Heart disease prediction using machine learning techniques", SN Comput. Sci., vol. 1, no. 6, p. 345, 2020.
[http://dx.doi.org/10.1007/s42979-020-00365-y]
[5]
S. Mulder, P. Perco, C. Oxlund, U.F. Mehdi, T. Hankemeier, I.A. Jacobsen, R. Toto, H.J.L. Heerspink, and M.J. Pena, "Baseline urinary metabolites predict albuminuria response to spironolactone in type 2 diabetes", Transl. Res., vol. 222, pp. 17-27, 2020.
[http://dx.doi.org/10.1016/j.trsl.2020.04.010] [PMID: 32438071]
[6]
Shiva Shankar Reddy, "WITHDRAWN: Extensive analysis of machine learning algorithms to early detection of diabetic retinopathy", Mater. Proc., 2020.
[http://dx.doi.org/10.1016/j.matpr.2020.10.894]
[7]
B.M. Williams, D. Borroni, R. Liu, Y. Zhao, J. Zhang, J. Lim, B. Ma, V. Romano, H. Qi, M. Ferdousi, I.N. Petropoulos, G. Ponirakis, S. Kaye, R.A. Malik, U. Alam, and Y. Zheng, "An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: A development and validation study", Diabetologia, vol. 63, no. 2, pp. 419-430, 2020.
[http://dx.doi.org/10.1007/s00125-019-05023-4] [PMID: 31720728]
[8]
M. Javaid, A. Haleem, R. Pratap Singh, R. Suman, and S. Rab, "Significance of machine learning in healthcare: Features, pillars and applications", Int. J. Intell. Net., vol. 3, pp. 58-73, 2022.
[http://dx.doi.org/10.1016/j.ijin.2022.05.002]
[9]
S. Ramlakhan, R. Saatchi, L. Sabir, Y. Singh, R. Hughes, O. Shobayo, and D. Ventour, "Understanding and interpreting artificial intelligence, machine learning and deep learning in Emergency Medicine", Emerg. Med. J., vol. 39, no. 5, pp. 380-385, 2022.
[http://dx.doi.org/10.1136/emermed-2021-212068] [PMID: 35241440]
[10]
M. Alshamrani, "IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey", J. King Saud Univ. - Comput. Inform. Sci., vol. 34, no. 8, pp. 4687-4701, 2022.
[http://dx.doi.org/10.1016/j.jksuci.2021.06.005]
[11]
S. Krishnamoorthy, A. Dua, and S. Gupta, "Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey, current challenges and future directions", J. Ambient Intell. Humaniz. Comput., vol. 14, no. 1, pp. 361-407, 2023.
[http://dx.doi.org/10.1007/s12652-021-03302-w]
[12]
Pandiaraj Manickam, "Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare", Biosensors, vol. 12, no. 8, p. 562, 2022.
[http://dx.doi.org/10.3390/bios12080562]
[13]
V. Chang, J. Bailey, Q.A. Xu, and Z. Sun, "Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms", Neural Comput. Appl., vol. 35, no. 22, pp. 1-17, 2022.
[PMID: 35345556]
[14]
K. Rasheed, A. Qayyum, M. Ghaly, A. Al-Fuqaha, A. Razi, and J. Qadir, "Explainable, trustworthy, and ethical machine learning for healthcare: A survey", Comput. Biol. Med., vol. 149, p. 106043, 2022.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106043] [PMID: 36115302]
[15]
G.T. Reddy, M.P.K. Reddy, K. Lakshmanna, D.S. Rajput, R. Kaluri, and G. Srivastava, "Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis", Evol. Intell., vol. 13, no. 2, pp. 185-196, 2020.
[http://dx.doi.org/10.1007/s12065-019-00327-1]
[16]
X. Chen, X. Wang, K. Zhang, K.M. Fung, T.C. Thai, K. Moore, R.S. Mannel, H. Liu, B. Zheng, and Y. Qiu, "Recent advances and clinical applications of deep learning in medical image analysis", Med. Image Anal., vol. 79, p. 102444, 2022.
[http://dx.doi.org/10.1016/j.media.2022.102444] [PMID: 35472844]
[17]
Q. Zheng, P. Zhao, Y. Li, H. Wang, and Y. Yang, "Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification", Neural Comput. Appl., vol. 33, no. 13, pp. 7723-7745, 2021.
[http://dx.doi.org/10.1007/s00521-020-05514-1]
[18]
Henock M. Deberneh, and Intaek Kim, "Prediction of type 2 diabetes based on machine learning algorithm", Int. J. Environm. Res. Public Health, vol. 18, no. 6, p. 3317, 2021.
[http://dx.doi.org/10.3390/ijerph18063317]
[19]
H. Lu, S. Uddin, F. Hajati, M.A. Moni, and M. Khushi, "A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus", Appl. Intell., vol. 52, no. 3, pp. 2411-2422, 2022.
[http://dx.doi.org/10.1007/s10489-021-02533-w]
[20]
S. Suriya, and J. Joanish Muthu, "Type 2 diabetes prediction using K-nearest neighbor algorithm", J. Trends. Comput. Sci. Smart Technol., vol. 5, no. 2, pp. 190-205, 2023.
[http://dx.doi.org/10.36548/jtcsst.2023.2.007]
[21]
S.M. Ganie, M.B. Malik, and T. Arif, "Performance analysis and prediction of type 2 diabetes mellitus based on lifestyle data using machine learning approaches", J. Diabetes Metab. Disord., vol. 21, no. 1, pp. 339-352, 2022.
[http://dx.doi.org/10.1007/s40200-022-00981-w] [PMID: 35673418]
[22]
S. Grampurohit, and C. Sagarnal, "Disease prediction using machine learning algorithms", In 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 05-07 June, 2020.
[http://dx.doi.org/10.1109/INCET49848.2020.9154130]
[23]
J. Petch, S. Di, and W. Nelson, "Opening the black box: the promise and limitations of explainable machine learning in cardiology", Can. J. Cardiol., vol. 38, no. 2, pp. 204-213, 2022.
[http://dx.doi.org/10.1016/j.cjca.2021.09.004] [PMID: 34534619]
[24]
A.P. Rodrigues, R. Fernandes, A. A, A. B, A. Shetty, A. K, K. Lakshmanna, and R.M. Shafi, "Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques", Comput. Intell. Neurosci., vol. 2022, pp. 1-14, 2022.
[http://dx.doi.org/10.1155/2022/5211949] [PMID: 35463239]
[25]
L. DonHee, "Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges", Int. J. Environm. Res. Public Health, vol. 18, no. 1, p. 271, 2021.
[26]
S. Shamshirband, M. Fathi, A. Dehzangi, A.T. Chronopoulos, and H. Alinejad-Rokny, "A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues", J. Biomed. Inform., vol. 113, p. 103627, 2021.
[http://dx.doi.org/10.1016/j.jbi.2020.103627] [PMID: 33259944]
[27]
A.V.L.N. Sujith, "Systematic review of smart health monitoring using deep learning and Artificial intelligence", Neurosci. Inform., vol. 2, no. 3, p. 100028, 2022.
[http://dx.doi.org/10.1016/j.neuri.2021.100028]
[28]
Q. Zheng, "Fine-grained image classification based on the combination of artificial features and deep convolutional activation features", In 2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22-24 Oct, 2017.
[http://dx.doi.org/10.1109/ICCChina.2017.8330485]
[29]
Z. Yu, K. Wang, Z. Wan, S. Xie, and Z. Lv, "Popular deep learning algorithms for disease prediction: A review", Cluster Comput., vol. 26, no. 2, pp. 1231-1251, 2023.
[http://dx.doi.org/10.1007/s10586-022-03707-y] [PMID: 36120180]
[30]
Jaimon T. Kelly, "The internet of things: Impact and implications for health care delivery", J. Med. Int. Res., vol. 22, no. 11, p. e20135, 2020.
[http://dx.doi.org/10.2196/20135]
[31]
A. Hussain, and S. Naaz, "Prediction of diabetes mellitus: Comparative study of various machine learning models", In: International Conference on Innovative Computing and Communications, Springer, 2021.
[http://dx.doi.org/10.1007/978-981-15-5148-2_10]
[32]
F.A. Khan, "A prediction and recommendation system for diabetes mellitus using XAI-based lime explainer: A comprehensive review", IEEE Access, vol. 9, pp. 43711-43735, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3059343]
[33]
P. Nagaraj, "A prediction and recommendation system for diabetes mellitus using XAI-based lime explainer", In 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), Erode, India, 07-09 April, 2022.
[34]
Y. Kumar, A. Koul, P.S. Sisodia, J. Shafi, K. Verma, M. Gheisari, and M.B. Davoodi, "Heart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical things", Wirel. Commun. Mob. Comput., vol. 2021, pp. 1-16, 2021.
[http://dx.doi.org/10.1155/2021/1616725]
[35]
Ahmed R. Nasser, "Iot and cloud computing in health-care: A new wearable device and cloud-based deep learning algorithm for monitoring of diabetes", Electronics, vol. 10, no. 21, p. 2719, 2021.
[http://dx.doi.org/10.3390/electronics10212719]
[36]
S.S. Sarmah, "An efficient IoT-based patient monitoring and heart disease prediction system using deep learning modified neural network", IEEE Access, vol. 8, pp. 135784-135797, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3007561]
[37]
Usman Ahmad, "A novel deep learning model to secure internet of things in healthcare", In: Machine intelligence and big data analytics for cybersecurity applications., Springer, 2021.
[http://dx.doi.org/10.1007/978-3-030-57024-8_15]
[38]
R.H. Aswathy, "Optimized tuned deep learning model for chronic kidney disease classification", Comput. Mater. Continua, vol. 70, pp. 2097-2111, 2022.
[http://dx.doi.org/10.32604/cmc.2022.019790]
[39]
R.C. Poonia, "Intelligent diagnostic prediction and classification models for detection of kidney disease", Healthcare, vol. 10, no. 2, 2022.
[http://dx.doi.org/10.3390/healthcare10020371]
[40]
T.R. Ramesh, "Predictive analysis of heart diseases with machine learning approaches", Malays. J. Comput. Sci., pp. 132-148, 2022.
[41]
P. Nagaraj, and P. Deepalakshmi, "An intelligent fuzzy inference rule‐based expert recommendation system for predictive diabetes diagnosis", Int. J. Imaging Syst. Technol., vol. 32, no. 4, pp. 1373-1396, 2022.
[http://dx.doi.org/10.1002/ima.22710]
[42]
N.L. Fitriyani, M. Syafrudin, G. Alfian, and J. Rhee, "HDPM: An effective heart disease prediction model for a clinical decision support system", IEEE Access, vol. 8, pp. 133034-133050, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3010511]
[43]
S. Abbasi, M. Hajabdollahi, P. Khadivi, N. Karimi, R. Roshandel, S. Shirani, and S. Samavi, "Classification of diabetic retinopathy using unlabeled data and knowledge distillation", Artif. Intell. Med., vol. 121, p. 102176, 2021.
[http://dx.doi.org/10.1016/j.artmed.2021.102176] [PMID: 34763798]
[44]
B. Zohuri, and F.M. Rahmani, "Artificial intelligence driven resiliency with machine learning and deep learning components", Japan J. Res., vol. 1, p. 1, 2023.
[45]
D.S. Rajput, S.M. Basha, Q. Xin, T.R. Gadekallu, R. Kaluri, K. Lakshmanna, and P.K.R. Maddikunta, "Providing diagnosis on diabetes using cloud computing environment to the people living in rural areas of India", J. Ambient Intell. Humaniz. Comput., vol. 13, no. 5, pp. 2829-2840, 2022.
[http://dx.doi.org/10.1007/s12652-021-03154-4]
[46]
Q. Zheng, P. Zhao, D. Zhang, and H. Wang, "MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification", Int. J. Intell. Syst., vol. 36, no. 12, pp. 7204-7238, 2021.
[http://dx.doi.org/10.1002/int.22586]
[47]
Kuruva Lakshmanna, "A review on deep learning techniques for IoT data", Electronics, vol. 11, no. 10, p. 1604, 2022.
[http://dx.doi.org/10.3390/electronics11101604]
[48]
Parul Madan, "An optimization-based diabetes prediction model using CNN and Bi-directional LSTM in real-time environment", Appl. Sci., vol. 12, no. 8, p. 3989, 2022.
[http://dx.doi.org/10.3390/app12083989]
[49]
T.R. Gadekallu, M. Alazab, R. Kaluri, P.K.R. Maddikunta, S. Bhattacharya, K. Lakshmanna, and P. M, "Hand gesture classification using a novel CNN-crow search algorithm", Complex Intell. Syst., vol. 7, no. 4, pp. 1855-1868, 2021.
[http://dx.doi.org/10.1007/s40747-021-00324-x]
[50]
A.A. Hai, "Deep learning vs. traditional models for predicting hospital readmission among patients with diabetes", AMIA Annu. Symp. Proc., vol. 2022, pp. 512-521, 2022.
[51]
N. Jiang, "Long short-term memory based PM2. 5 concentration prediction method", Eng. Lett., vol. 29, p. 2, 2021.
[52]
Q. Zheng, X. Tian, Z. Yu, H. Wang, A. Elhanashi, and S. Saponara, "DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization", Eng. Appl. Artif. Intell., vol. 122, p. 106082, 2023.
[http://dx.doi.org/10.1016/j.engappai.2023.106082]
[53]
T. Zhu, "Blood glucose prediction for type 1 diabetes using generative adversarial networks", CEUR Workshop Proceedings, 2020.
[54]
L.H. Gong, J-J. Pei, T-F. Zhang, and N-R. Zhou, "Quantum convolutional neural network based on variational quantum circuits", Opt. Commun., vol. 550, p. 129993, 2024.
[http://dx.doi.org/10.1016/j.optcom.2023.129993]
[55]
V.V. Kamble, and R.D. Kokate, "Automated diabetic retinopathy detection using radial basis function", Procedia Comput. Sci., vol. 167, pp. 799-808, 2020.
[http://dx.doi.org/10.1016/j.procs.2020.03.429]
[56]
M. Nilashi, H. Ahmadi, A.A. Manaf, T.A. Rashid, S. Samad, L. Shahmoradi, N. Aljojo, and E. Akbari, "coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates", Int. J. Fuzzy Syst., vol. 22, no. 4, pp. 1376-1388, 2020.
[http://dx.doi.org/10.1007/s40815-020-00828-7]
[57]
Salaki Reynaldo Joshua, Wasim Abbas, and Je-Hoon Lee, "M-healthcare model: An architecture for a type 2 diabetes mellitus mobile application", Appl. Sci., vol. 13, no. 1, p. 8, 2022.
[http://dx.doi.org/10.3390/app13010008]
[58]
S. Padhy, S. Dash, S. Routray, S. Ahmad, J. Nazeer, and A. Alam, "IoT-based hybrid ensemble machine learning model for efficient diabetes mellitus prediction", Comput. Intell. Neurosci., vol. 2022, pp. 1-11, 2022.
[http://dx.doi.org/10.1155/2022/2389636] [PMID: 35634091]
[59]
Mohammad S. Al-Kahtani, Faheem Khan, and Whangbo Taekeun, "Application of internet of things and sensors in healthcare", Sensors, vol. 22, no. 15, p. 5738, 2022.
[http://dx.doi.org/10.3390/s22155738]
[60]
Navneet Verma, Sukhdip Singh, and Devendra Prasad, "A review on existing IoT architecture and communication protocols used in healthcare monitoring system", J. Instit. Eng. (India): Series B, vol. 103, no. 1, pp. 245-257, 2022.
[http://dx.doi.org/10.1007/s40031-021-00632-3]
[61]
M. BalaAnand, "IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector", Peer-to-peer Net. Appl., vol. 13, pp. 2123-2134, 2020.
[62]
T. Rajmohan, P.H. Nguyen, and N. Ferry, "A decade of research on patterns and architectures for IoT security", Cybersecurity, vol. 5, no. 1, p. 2, 2022.
[http://dx.doi.org/10.1186/s42400-021-00104-7]
[63]
A. Naseem, R. Habib, T. Naz, M. Atif, M. Arif, and S. Allaoua Chelloug, "Novel Internet of Things based approach toward diabetes prediction using deep learning models", Front. Public Health, vol. 10, p. 914106, 2022.
[http://dx.doi.org/10.3389/fpubh.2022.914106] [PMID: 36091536]
[64]
A.S. Mohd Faizal, T.M. Thevarajah, S.M. Khor, and S.W. Chang, "A review of risk prediction models in cardiovascular disease: Conventional approach vs. artificial intelligent approach", Comput. Methods Programs Biomed., vol. 207, p. 106190, 2021.
[http://dx.doi.org/10.1016/j.cmpb.2021.106190] [PMID: 34077865]
[65]
F. Ma, "Multi task learning-based immunofluorescence classification of kidney disease kidney disease using deep learning-based heterogeneous modified artificial neural network", Fut. Gener. Comput. Syst., vol. 111, pp. 17-26, 2020.
[http://dx.doi.org/10.1016/j.future.2020.04.036]
[66]
F. Ma, T. Sun, L. Liu, and H. Jing, "Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network", Fut. Gener. Comput. Syst., vol. 111, pp. 17-26, 2020.
[http://dx.doi.org/10.1016/j.future.2020.04.036]
[67]
S.A. Alsuhibany, S. Abdel-Khalek, A. Algarni, A. Fayomi, D. Gupta, V. Kumar, and R.F. Mansour, "Ensemble of deep learning based clinical decision support system for chronic kidney disease diagnosis in medical internet of things environment", Comput. Intell. Neurosci., vol. 2021, pp. 1-13, 2021.
[http://dx.doi.org/10.1155/2021/4931450] [PMID: 34987566]
[68]
Alauddin Bhuiyan, "Automated diabetic retinopathy screening for primary care settings using deep learning", Intell.-based Med., vol. 5, p. 100045, 2021.
[http://dx.doi.org/10.1016/j.ibmed.2021.100045]
[69]
Qiongjing Yuan, "Role of artificial intelligence in kidney disease", Int. J. Med. Sci., vol. 17, no. 7, p. 970, 2020.
[http://dx.doi.org/10.7150/ijms.42078]
[70]
M. Naeem, "Trends and future perspective challenges in big data", In: Advances in Intelligent Data Analysis and Applications., Springer, 2022.
[http://dx.doi.org/10.1007/978-981-16-5036-9_30]
[71]
G. Thippa Reddy, A. Srivatsava, K. Lakshmanna, R. Kaluri, S. Karnam, and G. Nagaraja, "Risk prediction to examine health status with real and synthetic datasets", Biomed. Pharmacol. J., vol. 10, no. 4, pp. 1897-1903, 2017.
[http://dx.doi.org/10.13005/bpj/1309]
[72]
Y. Yu, M. Li, L. Liu, Y. Li, and J. Wang, "Clinical big data and deep learning: Applications, challenges, and future outlooks", Big Data Mining Analyt., vol. 2, no. 4, pp. 288-305, 2019.
[http://dx.doi.org/10.26599/BDMA.2019.9020007]
[73]
R. Thirunavukarasu, G.P.D. C, G. R, M. Gopikrishnan, and V. Palanisamy, "Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review", Comput. Biol. Med., vol. 149, p. 106020, 2022.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106020] [PMID: 36088715]
[74]
Alzheimer’s Disease Neuroimaging Initiative. Available from:adni.loni.usc.edu
[76]
Available fom:https://sofonline.epiu
[77]
Medical Information Mart for Intensive Care. Available from:https://mimic.physionet.org/about/mimic/
[78]
T.R. Mahesh, "A comparative performance analysis of machine learning approaches for the early prediction of diabetes disease", In 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 28-29 Jan, 2022.
[http://dx.doi.org/10.1109/ACCAI53970.2022.9752543]
[79]
U. Ahmed, G.F. Issa, M.A. Khan, S. Aftab, M.F. Khan, R.A.T. Said, T.M. Ghazal, and M. Ahmad, "Prediction of diabetes empowered with fused machine learning", IEEE Access, vol. 10, pp. 8529-8538, 2022.
[http://dx.doi.org/10.1109/ACCESS.2022.3142097]
[80]
B. Ljubic, A.A. Hai, M. Stanojevic, W. Diaz, D. Polimac, M. Pavlovski, and Z. Obradovic, "Predicting complications of diabetes mellitus using advanced machine learning algorithms", J. Am. Med. Inform. Assoc., vol. 27, no. 9, pp. 1343-1351, 2020.
[http://dx.doi.org/10.1093/jamia/ocaa120] [PMID: 32869093]
[81]
A. Oza, and A. Bokhare, "Diabetes prediction using logistic regression and K-nearest neighbor", In: Congress on Intelligent Systems., Springer, 2022.
[http://dx.doi.org/10.1007/978-981-16-9113-3_30]
[82]
J.J. Khanam, and S.Y. Foo, "A comparison of machine learning algorithms for diabetes prediction", ICT Express, vol. 7, no. 4, pp. 432-439, 2021.
[http://dx.doi.org/10.1016/j.icte.2021.02.004]
[83]
D.F.M. Mohideen, S.S.R. Justin, and S.P.R. Raja, "Regression imputation and optimized Gaussian Naïve Bayes algorithm for an enhanced diabetes mellitus prediction model", Braz. Arch. Biol. Technol., p. 64, 2022.
[84]
S. Suyanto, S. Meliana, T. Wahyuningrum, and S. Khomsah, "A new nearest neighbor-based framework for diabetes detection", Expert Syst. Appl., vol. 199, p. 116857, 2022.
[http://dx.doi.org/10.1016/j.eswa.2022.116857]
[85]
M. Mehedi Hassan, S. Mollick, and F. Yasmin, "An unsupervised cluster-based feature grouping model for early diabetes detection", Healthcare Analyt., vol. 2, p. 100112, 2022.
[http://dx.doi.org/10.1016/j.health.2022.100112]
[86]
D. Ramos, P. Faria, A. Morais, and Z. Vale, "Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building", Energy Rep., vol. 8, pp. 417-422, 2022.
[http://dx.doi.org/10.1016/j.egyr.2022.01.046]
[87]
Q. Zheng, "Rethinking the role of activation functions in deep convolutional neural networks for image classification", Eng. Lett., vol. 28, p. 1, 2020.
[88]
Q. Zheng, "A bilinear multi-scale convolutional neural network for fine-grained object classification", IAENG Int. J. Comput. Sci., vol. 45, p. 2, 2018.
[89]
W. Hou, L. Miao, and Y-Z. You, "Quantum generative modeling of sequential data with trainable token embedding", arXiv, vol. 2023, p. 05050, 2023.
[90]
Q. Zheng, P. Zhao, H. Wang, A. Elhanashi, and S. Saponara, "Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation", IEEE Commun. Lett., vol. 26, no. 6, pp. 1298-1302, 2022.
[http://dx.doi.org/10.1109/LCOMM.2022.3145647]
[91]
S. Zulaikha Beevi, "Multi-Level severity classification for diabetic retinopathy based on hybrid optimization enabled deep learning", Biomed. Signal Process. Control, vol. 84, p. 104736, 2023.
[http://dx.doi.org/10.1016/j.bspc.2023.104736]
[92]
A. Ahmad, A.E. Gamal, and D. Saraswat, "Toward generalization of deep learning-based plant disease identification under controlled and field conditions", IEEE Access, vol. 11, pp. 9042-9057, 2023.
[http://dx.doi.org/10.1109/ACCESS.2023.3240100]
[93]
R. Krishnamoorthi, S. Joshi, H.Z. Almarzouki, P.K. Shukla, A. Rizwan, C. Kalpana, and B. Tiwari, "A novel diabetes healthcare disease prediction framework using machine learning techniques", J. Healthc. Eng., vol. 2022, pp. 1-10, 2022.
[http://dx.doi.org/10.1155/2022/1684017] [PMID: 35070225]
[94]
M.O. Edeh, O.I. Khalaf, C.A. Tavera, S. Tayeb, S. Ghouali, G.M. Abdulsahib, N.E. Richard-Nnabu, and A. Louni, "A classification algorithm-based hybrid diabetes prediction model", Front. Public Health, vol. 10, p. 829519, 2022.
[http://dx.doi.org/10.3389/fpubh.2022.829519] [PMID: 35433625]
[95]
C. Iwendi, C.G.Y. Huescas, C. Chakraborty, and S. Mohan, "COVID-19 health analysis and prediction using machine learning algorithms for Mexico and Brazil patients", J. Exp. Theor. Artif. Intell., pp. 1-21, 2022.
[http://dx.doi.org/10.1080/0952813X.2022.2058097]
[96]
M. Chugh, R. Johari, and A. Goel, "MATHS: Machine learning techniques in healthcare system", In: Advances in Intelligent Systems and Computing book series., Springer, 2022.
[http://dx.doi.org/10.1007/978-981-16-3071-2_56]
[97]
M.T. Islam, S.R. Rafa, and M.G. Kibria, "Early prediction of heart disease using PCA and hybrid genetic algorithm with k-means", In 23rd International Conference on Computer and Information Technology (ICCIT), DHAKA, Bangladesh, 19-21 Dec, 2020.
[http://dx.doi.org/10.1109/ICCIT51783.2020.9392655]
[98]
Y.K. Qawqzeh, A.S. Bajahzar, M. Jemmali, M.M. Otoom, and A. Thaljaoui, "Classification of diabetes using photoplethysmogram (PPG) waveform analysis: Logistic regression modeling", BioMed Res. Int., vol. 2020, pp. 1-6, 2020.
[http://dx.doi.org/10.1155/2020/3764653] [PMID: 32851065]
[99]
S. Moturi, and D.S. Srikanth Vemuru, "Classification model for prediction of heart disease using correlation coefficient technique", Int. J., vol. 9, p. 2, 2020.
[100]
S. Barik, "Heart disease prediction using machine learning techniques", In: Advances in Electrical Control and Signal Systems., Springer, 2020.
[http://dx.doi.org/10.1007/978-981-15-5262-5_67]
[101]
A.S. Rahman, "A comparative study on liver disease prediction using supervised machine learning algorithms", Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 419-422, 2019.
[102]
R. Alanazi, "Identification and prediction of chronic diseases using machine learning approach", J. Healthc. Eng., vol. 2022, pp. 1-9, 2022.
[http://dx.doi.org/10.1155/2022/2826127] [PMID: 35251563]
[103]
W. Gouda, "Detection of COVID-19 based on chest x-rays using deep learning", Healthcare, vol. 10, no. 2, 2022.
[http://dx.doi.org/10.3390/healthcare10020343]
[104]
A. Kumar, S.S. Satyanarayana Reddy, G.B. Mahommad, B. Khan, and R. Sharma, "Smart healthcare: Disease prediction using the cuckoo-enabled deep classifier in IoT framework", Sci. Program., vol. 2022, pp. 1-11, 2022.
[http://dx.doi.org/10.1155/2022/2090681]
[105]
A. Varshney, and A. Subasi, "A deep learning approach for COVID-19 detection from computed tomography scans", In: Applications of Artificial Intelligence in Medical Imaging., Academic Press, 2023, pp. 223-240.
[106]
L. Men, N. Ilk, X. Tang, and Y. Liu, "Multi-disease prediction using LSTM recurrent neural networks", Expert Syst. Appl., vol. 177, p. 114905, 2021.
[http://dx.doi.org/10.1016/j.eswa.2021.114905]
[107]
R.F. Mansour, A.E. Amraoui, I. Nouaouri, V.G. Diaz, D. Gupta, and S. Kumar, "Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systems", IEEE Access, vol. 9, pp. 45137-45146, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3066365]
[108]
H. Naz, and S. Ahuja, "Deep learning approach for diabetes prediction using PIMA Indian dataset", J. Diabetes Metab. Disord., vol. 19, no. 1, pp. 391-403, 2020.
[http://dx.doi.org/10.1007/s40200-020-00520-5] [PMID: 32550190]
[109]
J. Han, J. Pei, and H. Tong, Data mining: Concepts and techniques., Morgan kaufmann, 2022.
[110]
Songhee Cheon, Jungyoon Kim, and Jihye Lim, "The use of deep learning to predict stroke patient mortality", Int. J. Environm. Res. Public Health, vol. 16, no. 11, p. 1876, 2019.
[http://dx.doi.org/10.3390/ijerph16111876]
[111]
Karlo Abnoosian, Rahman Farnoosh, and Mohammad Hassan Behzadi, "Prediction of diabetes disease using an ensemble of machine learning multi-classifier models", BMC Bioinform., vol. 24, no. 1, p. 337, 2023.
[http://dx.doi.org/10.1186/s12859-023-05465-z]
[112]
Mohammed Badawy, Nagy Ramadan, and Hesham Ahmed Hefny, "Healthcare predictive analytics using machine learning and deep learning techniques: A survey", J. Elec. Syst. Inform. Technol., vol. 10, no. 1, p. 40, 2023.
[http://dx.doi.org/10.1186/s43067-023-00108-y]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy