Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Endophytes: Untapped Source of Antifungal Agents

Author(s): Sudesh Kumari, Prity Gulia, Pooja Choudhary, Namita Sharma, Sweety Dahiya, Aruna Punia and Anil Kumar Chhillar*

Volume 20, Issue 10, 2024

Published on: 29 January, 2024

Article ID: e290124226470 Pages: 12

DOI: 10.2174/0115734072276049231207110314

Price: $65

Abstract

Screening for novel bioactive compounds has become more critical since drugresistant fungal infections have emerged and ethno-medicinal plants have been embarked as antifungal agents. The emphasis on medicinal plants has recently switched to the study of endophytes and their interactions with the host plant and screening of their antifungal activity. Endophytes are an endosymbiotic group of microorganisms that thrive within plant tissues without causing any symptoms or marking their presence. Endophytes have been looked into as potential resources for producing distinctive bioactive substances. The quest for bioactive natural compounds of endophytes isolated from higher plants is receiving a lot of interest from researchers worldwide, as seen by the recent surge in studies and publications on antifungal potential. This review aims to comprehend the role and applications of endophytes as a promising source of antifungal agents and enlighten on their most common mode of action.

[1]
Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484(7393), 186-194.
[http://dx.doi.org/10.1038/nature10947] [PMID: 22498624]
[2]
Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis., 2019, 68(11), 1791-1797.
[http://dx.doi.org/10.1093/cid/ciy776] [PMID: 30204844]
[3]
Fisher, M.C.; Gow, N.A.R.; Gurr, S.J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. London. Ser. B, Biol. Sci., 2016, 371
[4]
Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390), 739-742.
[http://dx.doi.org/10.1126/science.aap7999] [PMID: 29773744]
[5]
Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev., 2009, 22(3), 447-465.
[http://dx.doi.org/10.1128/CMR.00055-08] [PMID: 19597008]
[6]
Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med., 2015, 373(15), 1445-1456.
[http://dx.doi.org/10.1056/NEJMra1315399] [PMID: 26444731]
[7]
Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Microbiol. Spectr., 2017, 5(3), 5.3.08.
[http://dx.doi.org/10.1128/microbiolspec.FUNK-0014-2016] [PMID: 28597822]
[8]
Gigliotti, F.; Limper, A.H.; Wright, T. Pneumocystis. Cold Spring Harb. Perspect. Med., 2014, 4(12), a019828.
[http://dx.doi.org/10.1101/cshperspect.a019828] [PMID: 25367973]
[9]
Bassetti, M.; Bouza, E. Invasive mould infections in the ICU setting: Complexities and solutions. J. Antimicrob. Chemother., 2017, 72(Suppl. 1), i39-i47.
[http://dx.doi.org/10.1093/jac/dkx032] [PMID: 28355466]
[10]
Rayens, E.; Norris, K.A. Prevalence and healthcare burden of fungal infections in the United States, 2018. Open Forum Infect. Dis., 2022, 9(1), ofab593.
[http://dx.doi.org/10.1093/ofid/ofab593] [PMID: 35036461]
[11]
Benedict, K.; Molinari, N.A.M.; Jackson, B.R. Public awareness of invasive fungal diseases — United States, 2019. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(38), 1343-1346.
[http://dx.doi.org/10.15585/mmwr.mm6938a2] [PMID: 32970658]
[12]
Buaban, K.; Phutdhawong, W.; Taechowisan, T.; Phutdhawong, W.S. Synthesis and investigation of tetrahydro-β-carboline derivatives as inhibitors of plant pathogenic fungi. Molecules, 2021, 26(1), 207.
[http://dx.doi.org/10.3390/molecules26010207] [PMID: 33401587]
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[14]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[15]
Wilson, D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2), 274.
[http://dx.doi.org/10.2307/3545919]
[16]
Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites (1987 to 2000). Nat. Prod. Rep., 2001, 18(4), 448-459.
[http://dx.doi.org/10.1039/b100918o] [PMID: 11548053]
[17]
Yu, H.; Zhang, L.; Li, L.; Zheng, C.; Guo, L.; Li, W.; Sun, P.; Qin, L. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res., 2010, 165(6), 437-449.
[http://dx.doi.org/10.1016/j.micres.2009.11.009] [PMID: 20116229]
[18]
Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv., 2020, 39, 107462.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107462] [PMID: 31669137]
[19]
Chhillar, A.K.; Kumari, S.; Gulia, P.; Sharma, N.; Dahiya, S.; Choudhary, P. Antimicrobial activity of bioactive compounds isolated from plant endophytes. Curr. Bioact. Compd., 2023, 19(3), e240522205175.
[http://dx.doi.org/10.2174/1573407218666220524120648]
[20]
Macías-Rubalcava, M.L.; Sánchez-Fernández, R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol., 2017, 33(1), 15.
[http://dx.doi.org/10.1007/s11274-016-2174-5] [PMID: 27896581]
[21]
Pal, G.; Kumar, K.; Verma, A.; Verma, S.K. Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol. Res., 2022, 255, 126926.
[http://dx.doi.org/10.1016/j.micres.2021.126926] [PMID: 34856481]
[22]
Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol., 2008, 16(10), 463-471.
[http://dx.doi.org/10.1016/j.tim.2008.07.008] [PMID: 18789693]
[23]
Zam, S.; Agustien, A.; Syamsuardi, S.; Djamaan, A.; Mustafa, I. The diversity of endophytic bacteria from the traditional medicinal plants leaves that have anti-phytopathogens activity. J. Trop. Life Sci., 2019, 9(1), 53-63.
[http://dx.doi.org/10.11594/jtls.09.01.08]
[24]
Musa, Z.; Ma, J.; Egamberdieva, D.; Abdelshafy Mohamad, O.A.; Abaydulla, G.; Liu, Y.; Li, W.J.; Li, L. Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus. Front. Microbiol., 2020, 11, 191.
[http://dx.doi.org/10.3389/fmicb.2020.00191] [PMID: 32226412]
[25]
Hong, C.E.; Jo, S.H.; Jo, I.H.; Park, J.M. Diversity and antifungal activity of endophytic bacteria associated with Panax ginseng seedlings. Plant Biotechnol. Rep., 2018, 12(6), 409-418.
[http://dx.doi.org/10.1007/s11816-018-0504-9]
[26]
Rong, S.; Xu, H.; Li, L.; Chen, R.; Gao, X.; Xu, Z. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pestic. Biochem. Physiol., 2020, 162, 69-77.
[http://dx.doi.org/10.1016/j.pestbp.2019.09.003] [PMID: 31836057]
[27]
Ngo, V.A.; Wang, S-L.; Nguyen, V.B.; Doan, C.T.; Tran, T.N.; Tran, D.M.; Tran, T.D.; Nguyen, A.D. Phytophthora antagonism of endophytic bacteria isolated from roots of black pepper (Piper nigrum L.). Agronomy, 2020, 10(2), 286.
[http://dx.doi.org/10.3390/agronomy10020286]
[28]
Pei, D.F.; Wu, Q.Q.; Luo, H.; Paul, N.C.; Deng, J.X.; Zhou, Y. Diversity and antifungal activity of endophytes associated with Spiranthes Sinensis (Orchidaceae, Magnoliophyta) in China. Int. J. Appl. Microbiol. Biotechnol. Res., 2019, 7, 7-17.
[29]
Ibrahim, E.; Zhang, M.; Zhang, Y.; Hossain, A.; Qiu, W.; Chen, Y.; Wang, Y.; Wu, W.; Sun, G.; Li, B. Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials, 2020, 10(2), 219.
[http://dx.doi.org/10.3390/nano10020219] [PMID: 32012732]
[30]
Photolo, M.M.; Mavumengwana, V.; Sitole, L.; Tlou, M.G. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. Int. J. Microbiol., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/9483670] [PMID: 32184829]
[31]
Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology, 2005, 151(5), 1691-1695.
[http://dx.doi.org/10.1099/mic.0.27758-0] [PMID: 15870476]
[32]
Barra-Bucarei, L.; France Iglesias, A.; Gerding González, M.; Silva Aguayo, G.; Carrasco-Fernández, J.; Castro, J.F.; Ortiz Campos, J. Antifungal activity of Beauveria bassiana Endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms, 2019, 8(1), 65.
[http://dx.doi.org/10.3390/microorganisms8010065] [PMID: 31906060]
[33]
Grigoletto, D.F.; Correia, A.M.L.; Abraham, W.R.; Rodrigues, A.; Assis, M.A.; Ferreira, A.G.; Massaroli, M.; Lira, S.P. Secondary metabolites produced by endophytic fungi: Novel antifungal activity of fumiquinone B. Acta Sci. Biol. Sci., 2019, 41, e48785.
[http://dx.doi.org/10.4025/actascibiolsci.v41i1.48785]
[34]
Ibrahim, S.R.M.; Elkhayat, E.S.; Mohamed, G.A.; Khedr, A.I.M.; Fouad, M.A.; Kotb, M.H.R.; Ross, S.A. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus. Phytochem. Lett., 2015, 14, 84-90.
[http://dx.doi.org/10.1016/j.phytol.2015.09.006]
[35]
Ratnaweera, P.B.; de Silva, E.D.; Williams, D.E.; Andersen, R.J. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement. Altern. Med., 2015, 15(1), 220.
[http://dx.doi.org/10.1186/s12906-015-0722-4] [PMID: 26160390]
[36]
Johann, S.; Rosa, L.H.; Rosa, C.A.; Perez, P.; Cisalpino, P.S.; Zani, C.L.; Cota, B.B. Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis. Rev. Iberoam. Micol., 2012, 29(4), 205-209.
[http://dx.doi.org/10.1016/j.riam.2012.02.002] [PMID: 22366718]
[37]
Sun, Z.L.; Zhang, M.; Zhang, J.F.; Feng, J. Antifungal and cytotoxic activities of the secondary metabolites from endophytic fungus Massrison sp. Phytomedicine, 2011, 18(10), 859-862.
[http://dx.doi.org/10.1016/j.phymed.2011.01.019] [PMID: 21377856]
[38]
Deng, B.W.; Liu, K.H.; Chen, W.Q.; Ding, X.W.; Xie, X.C. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microbiol. Biotechnol., 2009, 25(1), 139-143.
[http://dx.doi.org/10.1007/s11274-008-9876-2]
[39]
Cheplick, G.P.; Clay, K.; Marks, S. Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol., 1989, 111(1), 89-97.
[http://dx.doi.org/10.1111/j.1469-8137.1989.tb04222.x]
[40]
Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep., 2006, 23(5), 753-771.
[http://dx.doi.org/10.1039/b609472b] [PMID: 17003908]
[41]
Abdalla, M.A.; Matasyoh, J.C. Endophytes as producers of peptides: An overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect., 2014, 4(5), 257-270.
[http://dx.doi.org/10.1007/s13659-014-0038-y] [PMID: 25205333]
[42]
Golinska, P.; Wypij, M.; Agarkar, G.; Rathod, D.; Dahm, H.; Rai, M. Endophytic actinobacteria of medicinal plants: Diversity and bioactivity. Antonie van Leeuwenhoek, 2015, 108(2), 267-289.
[http://dx.doi.org/10.1007/s10482-015-0502-7] [PMID: 26093915]
[43]
Larran, S.; Simón, M.R.; Moreno, M.V.; Siurana, M.P.S.; Perelló, A. Endophytes from wheat as biocontrol agents against tan spot disease. Biol. Control, 2016, 92, 17-23.
[http://dx.doi.org/10.1016/j.biocontrol.2015.09.002]
[44]
Gupta, S.; Choudhary, M.; Singh, B.; Singh, R.; Dhar, M.K.; Kaul, S. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. Biocatal. Agric. Biotechnol., 2022, 39, 102234.
[http://dx.doi.org/10.1016/j.bcab.2021.102234]
[45]
Singh, P.; Xie, J.; Qi, Y.; Qin, Q.; Jin, C.; Wang, B.; Fang, W. A thermotolerant marine Bacillus amyloliquefaciens S185 producing Iturin A5 for antifungal activity against Fusarium oxysporum f. sp. cubense. Mar. Drugs, 2021, 19(9), 516.
[http://dx.doi.org/10.3390/md19090516] [PMID: 34564178]
[46]
Luu, T.A.; Phi, Q.T.; Nguyen, T.T.H.; Dinh, M.V.; Pham, B.N.; Do, Q.T. Antagonistic activity of endophytic bacteria isolated from weed plant against stem end rot pathogen of pitaya in Vietnam. Egypt. J. Biol. Pest Control, 2021, 31(1), 14.
[http://dx.doi.org/10.1186/s41938-021-00362-0]
[47]
Hamayun, M.; Khan, N.; Nauman Khan, M.; Qadir, M.; Hussain, A.; Iqbal, A.; Afzal Khan, S.; Ur Rehman, K.; Lee, I.J. Antimicrobial and plant growth-promoting activities of bacterial endophytes isolated from Calotropis procera (Ait.). W.T. Aiton. Biocell, 2021, 45(2), 363-369.
[http://dx.doi.org/10.32604/biocell.2021.013907]
[48]
Das, G.; Park, S.; Choi, J.; Baek, K.H. Anticandidal potential of endophytic bacteria isolated from Dryopteris Uniformis (Makino). Jundishapur J. Microbiol., 2018, In Press(In Press), 1-10.
[http://dx.doi.org/10.5812/jjm.69878]
[49]
Rahman, L.; Shinwari, Z.K.; Iqrar, I.; Rahman, L.; Tanveer, F. An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 53.
[http://dx.doi.org/10.1186/s12941-017-0228-7] [PMID: 28764775]
[50]
Jalgaonwala, R.; Mahajan, R. A review on microbial endophytes from plants: A treasure search for biologically active metabolites. Glob. J. Res. Med. Plants Indig. Med., 2014, 3, 263.
[51]
Photita, W.; Lumyong, S.; Lumyong, P.; Hyde, K.D. Endophytic fungi of wild banana (Musa acuminata) at Doi Suthep Pui National Park, Thailand. Mycol. Res., 2001, 105(12), 1508-1513.
[http://dx.doi.org/10.1017/S0953756201004968]
[52]
Strobel, G.A. Microbial gifts from rain forests. Can. J. Plant Pathol., 2002, 24(1), 14-20.
[http://dx.doi.org/10.1080/07060660109506965]
[53]
Patel, A.; Kumar, A.; Sheoran, N.; Kumar, M.; Sahu, K.P.; Ganeshan, P.; Ashajyothi, M.; Gopalakrishnan, S.; Gogoi, R. Antifungal and defense elicitor activities of pyrazines identified in endophytic Pseudomonas putida BP25 against fungal blast incited by Magnaporthe oryzae in rice. J. Plant Dis. Prot., 2021, 128(1), 261-272.
[http://dx.doi.org/10.1007/s41348-020-00373-3]
[54]
Ezra, D.; Castillo, U.F.; Strobel, G.A.; Hess, W.M.; Porter, H.; Jensen, J.B.; Condron, M.A.M.; Teplow, D.B.; Sears, J.; Maranta, M.; Hunter, M.; Weber, B.; Yaver, D. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 2004, 150(4), 785-793.
[http://dx.doi.org/10.1099/mic.0.26645-0] [PMID: 15073289]
[55]
Ek-Ramos, M.J.; Gomez-Flores, R.; Orozco-Flores, A.A.; Rodríguez-Padilla, C.; González-Ochoa, G.; Tamez-Guerra, P. Bioactive products from plant-endophytic gram-positive bacteria. Front. Microbiol., 2019, 10, 463.
[http://dx.doi.org/10.3389/fmicb.2019.00463] [PMID: 30984118]
[56]
Igarashi, Y. Screening of novel bioactive compounds from plant-associated actinomycetes. Actinomycetologica, 2004, 18(2), 63-66.
[http://dx.doi.org/10.3209/saj.18_63]
[57]
Lu, C.; Shen, Y. A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri. J. Antibiot., 2003, 56(4), 415-418.
[http://dx.doi.org/10.7164/antibiotics.56.415] [PMID: 12817815]
[58]
Lu, C.; Shen, Y. A novel ansamycin, naphthomycin K from Streptomyces sp. J. Antibiot., 2007, 60(10), 649-653.
[http://dx.doi.org/10.1038/ja.2007.84] [PMID: 17965482]
[59]
Zhao, Z.; Wang, Q.; Wang, K.; Brian, K.; Liu, C.; Gu, Y. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour. Technol., 2010, 101(1), 292-297.
[http://dx.doi.org/10.1016/j.biortech.2009.07.071] [PMID: 19717300]
[60]
Liu, C.H.; Chen, X.; Liu, T.T.; Lian, B.; Gu, Y.; Caer, V.; Xue, Y.R.; Wang, B.T. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl. Microbiol. Biotechnol., 2007, 76(2), 459-466.
[http://dx.doi.org/10.1007/s00253-007-1010-0] [PMID: 17534613]
[61]
Pereira De Melo, F.M.; Fiore, F.L.; Beraldo De Moraes, A.M.; Silva-Stenico, E. Antifungal compound produced by Cassava Endophyte B. Pumilus MAIIIM4A. Sci. Agric., 2009, 583-592.
[62]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot., 2005, 58(1), 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[63]
Suryanarayanan, T.S.; Thirunavukkarasu, N.; Govindarajulu, M.B.; Sasse, F.; Jansen, R.; Murali, T.S. Fungal endophytes and bioprospecting. Fungal Biol. Rev., 2009, 23(1-2), 9-19.
[http://dx.doi.org/10.1016/j.fbr.2009.07.001]
[64]
Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Kühn, T.; Pelzing, M.; Sakayaroj, J.; Taylor, W.C. Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 2008, 69(9), 1900-1902.
[http://dx.doi.org/10.1016/j.phytochem.2008.04.003] [PMID: 18495187]
[65]
Park, J.H.; Gyung, J.C.; Hyang, B.L.; Kyoung, M.K.; Hack, S.J.; Seon, W.L.; Kyoung, S.J. Griseofulvin from Xylaria Sp. Strain F0010, an endophytic fungus of Abies holiphylla and its antifungal activity against plant pathogenic fungi. J. Microbiol. Biotechnol., 2005, 15, 112-117.
[66]
Boonphong, S.; Kittakoop, P.; Isaka, M.; Pittayakhajonwut, D.; Tanticharoen, M.; Thebtaranonth, Y. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J. Nat. Prod., 2001, 64(7), 965-967.
[http://dx.doi.org/10.1021/np000291p] [PMID: 11473437]
[67]
Huang, Z.; Cai, X.; Shao, C.; She, Z.; Xia, X.; Chen, Y.; Yang, J.; Zhou, S.; Lin, Y. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry, 2008, 69(7), 1604-1608.
[http://dx.doi.org/10.1016/j.phytochem.2008.02.002] [PMID: 18343465]
[68]
Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg. Med. Chem., 2008, 16(17), 7894-7899.
[http://dx.doi.org/10.1016/j.bmc.2008.07.075] [PMID: 18694644]
[69]
Kusari, S.; Lamshöft, M.; Zühlke, S.; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 2008, 71(2), 159-162.
[http://dx.doi.org/10.1021/np070669k] [PMID: 18220354]
[70]
Wang, F.W.; Jiao, R.H.; Cheng, A.B.; Tan, S.H.; Song, Y.C. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol., 2007, 23(1), 79-83.
[http://dx.doi.org/10.1007/s11274-006-9195-4]
[71]
Silva, G.H.; Teles, H.L.; Trevisan, H.C.; Bolzani, V.S.; Young, M.C.M.; Pfenning, L.H.; Eberlin, M.N.; Haddad, R.; Costa-Neto, C.M.; Araújo, Â.R. New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J. Braz. Chem. Soc., 2005, 16(6b), 1463-1466.
[http://dx.doi.org/10.1590/S0103-50532005000800029]
[72]
Jalgaonwala, R.E.; Mohite, B.V.; Mahajan, R.T.A. Review: Natural products from plant associated endophytic fungi. J. Microbiol. Biotechnol. Res., 2011, 1, 21-32.
[73]
El-Gendy, M.M.A. EL-Bondkly, A.M.A. Production and genetic improvement of a novel antimycotic agent, Saadamycin, against Dermatophytes and other clinical fungi from Endophytic Streptomyces sp. Hedaya48. J. Ind. Microbiol. Biotechnol., 2010, 37(8), 831-841.
[http://dx.doi.org/10.1007/s10295-010-0729-2] [PMID: 20458610]
[74]
Cafêu, M.C.; Silva, G.H.; Teles, H.L.; Bolzani, V.; Araújo, A.R.; Young, M.C.M.; Pfenning, L.H. Antifungal compounds of Xylaria Sp., an endophytic fungus isolated from Palicourea Marcgravii (Rubiaceae). Quim. Nova, 2005, 28, 991-995.
[75]
Gai, Y.; Zhao, L.L.; Hu, C.Q.; Zhang, H.P. Fusarielin E, a new antifungal antibiotic from Fusarium sp. Chin. Chem. Lett., 2007, 18(8), 954-956.
[http://dx.doi.org/10.1016/j.cclet.2007.05.048]
[76]
Liu, J.Y.; Song, Y.C.; Zhang, Z.; Wang, L.; Guo, Z.J.; Zou, W.X.; Tan, R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol., 2004, 114(3), 279-287.
[http://dx.doi.org/10.1016/j.jbiotec.2004.07.008] [PMID: 15522437]
[77]
Wu, S.H.; Huang, R.; Miao, C.P.; Chen, Y.W. Two new steroids from an endophytic fungus Phomopsis sp. Chem. Biodivers., 2013, 10(7), 1276-1283.
[http://dx.doi.org/10.1002/cbdv.201200415] [PMID: 23847072]
[78]
Silva, G.H.; Teles, H.L.; Zanardi, L.M.; Marx Young, M.C.; Eberlin, M.N.; Hadad, R.; Pfenning, L.H.; Costa-Neto, C.M.; Castro-Gamboa, I.; da Silva Bolzani, V.; Araújo, Â.R. Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry, 2006, 67(17), 1964-1969.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.004] [PMID: 16857221]
[79]
Chomcheon, P.; Wiyakrutta, S.; Aree, T.; Sriubolmas, N.; Ngamrojanavanich, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata. Chemistry, 2010, 16(36), 11178-11185.
[http://dx.doi.org/10.1002/chem.201000652] [PMID: 20680940]
[80]
Mousa, W.K.; Raizada, M.N. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Front. Microbiol., 2013, 4, 65.
[http://dx.doi.org/10.3389/fmicb.2013.00065] [PMID: 23543048]
[81]
Saleem, M.; Hussain, H.; Ahmed, I.; Draeger, S.; Schulz, B.; Meier, K.; Steinert, M.; Pescitelli, G.; Kurtán, T.; Flörke, U.; Krohn, K. Viburspiran, an antifungal member of the octadride class of maleic anhydride natural products. Eur. J. Org. Chem., 2011, 2011(4), 808-812.
[http://dx.doi.org/10.1002/ejoc.201001324]
[82]
Ratnaweera, P.B.; Williams, D.E.; Patrick, B.O.; de Silva, E.D.; Andersen, R.J. Solanioic Acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solani isolated from tubers of the medicinal plant Cyperus rotundus. Org. Lett., 2015, 17(9), 2074-2077.
[http://dx.doi.org/10.1021/acs.orglett.5b00596] [PMID: 25860081]
[83]
Wicklow, D.T.; Roth, S.; Deyrup, S.T.; Gloer, J.B. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol. Res., 2005, 109(5), 610-618.
[http://dx.doi.org/10.1017/S0953756205002820] [PMID: 16018316]
[84]
Chen, L.; Chen, J.; Zhand, X.; Zhang, J. Identification and antifungal activity of the metabolite of endophytic fungi isolated from Llex Cornuta. Nongyaoxue Xuebao, 2007, 9, 143-148.
[85]
Guo, Z.K.; Wang, R.; Huang, W.; Li, X.N.; Jiang, R.; Tan, R.X.; Ge, H.M. Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3. Beilstein J. Org. Chem., 2014, 10, 2677-2682.
[http://dx.doi.org/10.3762/bjoc.10.282] [PMID: 25550731]
[86]
Li, H.Q.; Li, X.J.; Wang, Y.L.; Zhang, Q.; Zhang, A.L.; Gao, J.M.; Zhang, X.C. Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem. Syst. Ecol., 2011, 39(4-6), 876-879.
[http://dx.doi.org/10.1016/j.bse.2011.06.019]
[87]
Gu, W. Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana. World J. Microbiol. Biotechnol., 2009, 25(9), 1677-1683.
[http://dx.doi.org/10.1007/s11274-009-0062-y]
[88]
Ren, Y.; Strobel, G.A.; Graff, J.C.; Jutila, M.; Park, S.G.; Gosh, S.; Teplow, D.; Condron, M.; Pang, E.; Hess, W.M.; Moore, E. Colutellin A, an immunosuppressive peptide from Colletotrichum dematium. Microbiology, 2008, 154(7), 1973-1979.
[http://dx.doi.org/10.1099/mic.0.2008/017954-0] [PMID: 18599825]
[89]
Nifakos, K.; Tsalgatidou, P.C.; Thomloudi, E.E.; Skagia, A.; Kotopoulis, D.; Baira, E.; Delis, C.; Papadimitriou, K.; Markellou, E.; Venieraki, A.; Katinakis, P. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: A biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes. Plants, 2021, 10(8), 1716.
[http://dx.doi.org/10.3390/plants10081716] [PMID: 34451760]
[90]
Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol., 2017, 101(15), 5951-5960.
[http://dx.doi.org/10.1007/s00253-017-8396-0] [PMID: 28685194]
[91]
Yang, Y.C.; Li, K.; Liu, C.X.; Cheng, F.; Liu, C.; Quan, W.J.; Xue, Y.; Zou, K.; Liu, S.P. Sanxiapeptin, a linear pentapeptide from Penicillium oxalicum, inhibited the growth of citrus green mold. Food Chem., 2022, 366, 130541.
[http://dx.doi.org/10.1016/j.foodchem.2021.130541] [PMID: 34273855]
[92]
Falardeau, J.; Wise, C.; Novitsky, L.; Avis, T.J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol., 2013, 39(7), 869-878.
[http://dx.doi.org/10.1007/s10886-013-0319-7] [PMID: 23888387]
[93]
Alvarez, F.; Castro, M.; Príncipe, A.; Borioli, G.; Fischer, S.; Mori, G.; Jofré, E. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol., 2012, 112(1), 159-174.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05182.x] [PMID: 22017648]
[94]
Tang, Q.; Bie, X.; Lu, Z.; Lv, F.; Tao, Y.; Qu, X. Effects of fengycin from Bacillus subtilis FMBJ on apoptosis and necrosis in Rhizopus stolonifer. J. Microbiol., 2014, 52(8), 675-680.
[http://dx.doi.org/10.1007/s12275-014-3605-3] [PMID: 25098563]
[95]
Goutam, J.; Sharma, G.; Tiwari, V.K.; Mishra, A.; Kharwar, R.N.; Ramaraj, V.; Koch, B. Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthus aspera Varanasi, India. Front. Microbiol., 2017, 8, 1334.
[http://dx.doi.org/10.3389/fmicb.2017.01334] [PMID: 28790982]
[96]
Tran, C.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Bacillus: Metabolites and their mode of action. Antibiotics, 2022, 11(1), 88.
[http://dx.doi.org/10.3390/antibiotics11010088] [PMID: 35052965]
[97]
Naruse, N.; Tenmyo, O.; Kobaru, S.; Kamei, H.; Miyaki, T.; Konishi, M.; Oki, T. Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J. Antibiot., 1990, 43(3), 267-280.
[http://dx.doi.org/10.7164/antibiotics.43.267] [PMID: 2157695]
[98]
Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal peptides as therapeutic agents. Front. Cell. Infect. Microbiol., 2020, 10, 105.
[http://dx.doi.org/10.3389/fcimb.2020.00105] [PMID: 32257965]
[99]
Al-Wabli, R.I.; Al-Ghamdi, A.R.; Primsa, I.P.; Ghabbour, H.A.; Al-Agamy, M.H.; Joe, I.H.; Attia, M.I. (2 E)-2-[1-(1,3-Benzodioxol-5-yl)-3-(1 H -imidazol-1-yl)propylidene]- N -(4-methoxyphenyl)hydrazinecarboxamide: Synthesis, crystal structure, vibrational analysis, DFT computations, molecular docking and antifungal activity. J. Mol. Struct., 2018, 1166, 121-130.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.017]
[100]
Sheng, C.; Zhang, W. New lead structures in antifungal drug discovery. Curr. Med. Chem., 2011, 18(5), 733-766.
[http://dx.doi.org/10.2174/092986711794480113] [PMID: 21182484]
[101]
Peng, X.M.; Cai, G.X.; Zhou, C.H. Recent developments in azole compounds as antibacterial and antifungal agents. Curr. Top. Med. Chem., 2013, 13(16), 1963-2010.
[http://dx.doi.org/10.2174/15680266113139990125] [PMID: 23895097]
[102]
Radić, N.; Štrukelj, B. Endophytic fungi-the treasure chest of antibacterial substances. Phytomedicine, 2012, 19(14), 1270-1284.
[http://dx.doi.org/10.1016/j.phymed.2012.09.007] [PMID: 23079233]
[103]
Molinari, G. Natural products in drug discovery: Present status and perspectives. Adv. Exp. Med. Biol., 2009, 655, 13-27.
[http://dx.doi.org/10.1007/978-1-4419-1132-2_2] [PMID: 20047031]
[104]
Chaouachi, M.; Marzouk, T.; Jallouli, S.; Elkahoui, S.; Gentzbittel, L.; Ben, C.; Djébali, N. Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol. Technol., 2021, 172, 111389.
[http://dx.doi.org/10.1016/j.postharvbio.2020.111389]
[105]
Sharma, A.; Kaushik, N.; Sharma, A.; Bajaj, A.; Rasane, M. Screening of tomato seed bacterial endophytes for antifungal activity reveals lipopeptide producing Bacillus siamensis strain NKIT9 as a potential bio-control agent. Front Microbiol., 2021, (12), 609482.
[http://dx.doi.org/10.3389/fmicb.2021.609482]
[106]
Alijani, Z.; Amini, J.; Ashengroph, M.; Bahramnejad, B. Antifungal activity of Serratia Rubidaea Mar61-01 purified prodigiosin against Colletotrichum Nymphaeae, the causal agent of strawberry Anthracnose. J. Plant Growth Regul., 2021.
[http://dx.doi.org/10.1007/s00344-021-10323-4]
[107]
Meliah, S.; Sulistiyani, T.R.; Lisdiyanti, P.; Kanti, A.; Sudiana, I.M.; Kobayashi, M. Antifungal activity of endophytic bacteria associated with sweet Sorghum (Sorghum bicolor). J. Math. Fundam. Sci., 2021, 53(1), 16-30.
[http://dx.doi.org/10.5614/j.math.fund.sci.2021.53.1.2]
[108]
Devi, R.; Nath, T.; Boruah, R.R.; Darphang, B.; Nath, P.K.; Das, P.; Sarmah, B.K. Antimicrobial activity of bacterial endophytes from Chirata (Swertia chirata Wall.) and Datura (Datura stramonium L.). Egypt. J. Biol. Pest Control, 2021, 31(1), 69.
[http://dx.doi.org/10.1186/s41938-021-00410-9]
[109]
Ribeiro, I.D.A.; Bach, E.; da Silva Moreira, F.; Müller, A.R.; Rangel, C.P.; Wilhelm, C.M.; Barth, A.L.; Passaglia, L.M.P. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiol. Res., 2021, 248, 126754.
[http://dx.doi.org/10.1016/j.micres.2021.126754] [PMID: 33848783]
[110]
Tian, D.; Song, X.; Li, C.; Zhou, W.; Qin, L.; Wei, L.; Di, W.; Huang, S.; Li, B.; Huang, Q.; Long, S.; He, Z.; Wei, S. Antifungal mechanism of Bacillus amyloliquefaciens strain GKT04 against Fusarium wilt revealed using genomic and transcriptomic analyses. MicrobiologyOpen, 2021, 10(3), e1192.
[http://dx.doi.org/10.1002/mbo3.1192] [PMID: 34180606]
[111]
Shabanamol, S.; Thampi, M.; Sajana, P.; Varghese, S.; Karthika, S.; George, T.K.; Jisha, M.S. Characterization of the major antifungal extrolite from rice endophyte Lysinibacillus sphaericus against Rhizoctonia solani. Arch. Microbiol., 2021, 203(5), 2605-2613.
[http://dx.doi.org/10.1007/s00203-021-02229-2] [PMID: 33704544]
[112]
Cao, Y.; Ding, W.; Liu, C. Unraveling the metabolite signature of endophytic bacillus velezensis strain showing defense Response towards Fusarium oxysporum. Agronomy, 2021, 11(4), 683.
[http://dx.doi.org/10.3390/agronomy11040683]
[113]
Shurigin, V.; Alaylar, B.; Davranov, K.; Wirth, S. Diversity and biological activity of culturable endophytic bacteria associated with marigold (Calendula Officinalis L.). AIMS Microbiol., 2021, 7(3), 336-353.
[http://dx.doi.org/10.3934/microbiol.2021021]
[114]
Bolivar-Anillo, H.J.; González-Rodríguez, V.E.; Cantoral, J.M.; García-Sánchez, D.; Collado, I.G.; Garrido, C. Endophytic bacteria Bacillus subtilis, Isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biology, 2021, 10(6), 492.
[http://dx.doi.org/10.3390/biology10060492] [PMID: 34205845]
[115]
Martins, J.; Ares, A.; Casais, V.; Costa, J.; Canhoto, J. Identification and characterization of Arbutus unedo L. endophytic bacteria isolated from wild and cultivated trees for the biological control of Phytophthora cinnamomi. Plants, 2021, 10(8), 1569.
[http://dx.doi.org/10.3390/plants10081569] [PMID: 34451613]
[116]
Duong, B.; Nguyen, H.X.; Phan, H.V.; Colella, S.; Trinh, P.Q.; Hoang, G.T.; Nguyen, T.T.; Marraccini, P.; Lebrun, M.; Duponnois, R. Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiol. Res., 2021, 242, 126613.
[http://dx.doi.org/10.1016/j.micres.2020.126613] [PMID: 33070050]
[117]
Al-Nadabi, H.H.; Al-Buraiki, N.S.; Al-Nabhani, A.A.; Maharachchikumbura, S.N.; Velazhahan, R.; Al-Sadi, A.M. In vitro antifungal activity of endophytic bacteria isolated from date palm (Phoenix doctylifera L.) against fungal pathogens causing leaf spot of date palm. Egypt. J. Biol. Pest Control, 2021, 31(1), 65.
[http://dx.doi.org/10.1186/s41938-021-00413-6]
[118]
Putri, D.H.; Violita, V. Irdawati; Fifendy, M.; Nurhasnah, N. Production of antifungal compounds by andalas endophytic bacteria (Morus macroura Miq.) isolate ATB 10-6 at fermentation medium with optimum carbon and organic nitrogen source. J. Phys. Conf. Ser., 2021, 1940(1), 012076.
[http://dx.doi.org/10.1088/1742-6596/1940/1/012076]
[119]
Iqrar, I.; Numan, M.; Khan, T.; Shinwari, Z.K.; Ali, G.S. LC–MS/MS-based profiling of bioactive metabolites of endophytic bacteria from Cannabis sativa and their anti-Phytophthora activity. Antonie van Leeuwenhoek, 2021, 114(8), 1165-1179.
[http://dx.doi.org/10.1007/s10482-021-01586-8] [PMID: 33945066]
[120]
Peng, C.; Zhuang, X.; Gao, C.; Wang, Z.; Zhao, J.; Huang, S.X.; Liu, C.; Xiang, W. Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.). Antonie van Leeuwenhoek, 2021, 114(6), 823-833.
[http://dx.doi.org/10.1007/s10482-021-01561-3] [PMID: 33774760]
[121]
Zelaya-Molina, L.X.; Sanchez-Lima, A.D.; Arteaga-Garibay, R.I.; Bustamante-Brito, R.; Vásquez-Murrieta, M.S.; Martínez-Romero, E.; Ramos-Garza, J. Functional characterization of culturable fungi from microbiomes of the “conical cobs” Mexican maize (Zea mays L.) landrace. Arch. Microbiol., 2022, 204(1), 57.
[http://dx.doi.org/10.1007/s00203-021-02680-1] [PMID: 34939131]
[122]
Huang, X.; Zhou, D.; Liang, Y.; Liu, X.; Cao, F.; Qin, Y.; Mo, T.; Xu, Z.; Li, J.; Yang, R. Cytochalasins from endophytic Diaporthe sp. GDG-118. Nat. Prod. Res., 2021, 35(20), 3396-3403.
[http://dx.doi.org/10.1080/14786419.2019.1700504] [PMID: 31833797]
[123]
Khan, M.S.; Gao, J.; Munir, I.; Zhang, M.; Liu, Y.; Moe, T.S.; Xue, J.; Zhang, X. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects. BioMed Res. Int., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/9930210] [PMID: 34395628]
[124]
Wang, G.K.; Yang, J.S.; Huang, Y.F.; Liu, J.S.; Tsai, C.W.; Bau, D.T.; Chang, W.S. Culture separation, identification and unique anti-pathogenic fungi capacity of endophytic fungi from Gucheng Salvia Miltiorrhiza. In vivo., 2021, 35(1), 325-332.
[http://dx.doi.org/10.21873/invivo.12263]
[125]
Yang, Y.; Chen, Y.; Cai, J.; Liu, X.; Huang, G. Antifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense. PLoS One, 2021, 16(12), e0260747.
[http://dx.doi.org/10.1371/journal.pone.0260747] [PMID: 34855862]
[126]
Liu, X.B. Sarocladium brachiariae sp. nov., an endophytic fungus isolated from Brachiaria brizantha. Mycosphere, 2017, 8(7), 827-834.
[http://dx.doi.org/10.5943/mycosphere/8/7/2]
[127]
Li, X.; Wu, Y.; Liu, Z. Antifungal activity of an endophytic Fungus Aspergillus versicolor DYSJ3 from Aphanamixis grandifolia Blume against Colletotrichum musae. Mycobiology, 2021, 49(5), 498-506.
[http://dx.doi.org/10.1080/12298093.2021.1976967] [PMID: 36970635]
[128]
Munir, E.; Yurnaliza, Y.; Lutfia, A.; Hartanto, A. Antifungal activity and IAA production by endophytic fungi isolated from Elettaria sp. IOP Conf. Ser. Earth Environ. Sci., 2021, 782(4), 042037.
[http://dx.doi.org/10.1088/1755-1315/782/4/042037]
[129]
Fuego, B.N.; Romano, K.G.; Pinlac, C.D.; Lirio, G.A.C. Evaluation of the antimicrobial activity of endophytic fungus isolated from Cocos nucifera (L.) Cotyledon against medically-important pathogens. J. Biosci. Med., 2021, 9(1), 86-97.
[http://dx.doi.org/10.4236/jbm.2021.91007]
[130]
dos Santos, I.R.; Abdel-Azeem, A.M.; Mohesien, M.T.; Piekutowska, M.; Sheir, D.H.; da Silva, L.L.; da Silva Castro, C.; Carvalho, D.D.C.; Bezerra, J.D.P.; Saad, H.A.; Borges, L.L.; Xavier-Santos, S. Insights into the bioprospecting of the endophytic fungi of the medicinal plant Palicourea rigida Kunth (Rubiaceae): Detailed biological activities. J. Fungi, 2021, 7(9), 689.
[http://dx.doi.org/10.3390/jof7090689] [PMID: 34575727]
[131]
Sishuba, A.; Leboko, J.; Ateba, C.N.; Manganyi, M.C. First Report: Diversity of endophytic fungi possessing antifungal activity isolated from native Kougoed (Sceletium tortuosum L.). Mycobiology, 2021, 49(1), 89-94.
[http://dx.doi.org/10.1080/12298093.2020.1857009] [PMID: 33536817]
[132]
dos Santos, G.D.; Gomes, R.R.; Gonçalves, R.; Fornari, G.; Maia, B.H.L.N.S.; Schmidt-Dannert, C.; Gaascht, F.; Glienke, C.; Schneider, G.X.; Colombo, I.R.; Degenhardt-Goldbach, J.; Pietsch, J.L.M.; Costa-Ribeiro, M.C.V.; Vicente, V.A. Molecular identification and antimicrobial activity of foliar endophytic fungi on the brazilian pepper tree (Schinus terebinthifolius) reveal new species of diaporthe. Curr. Microbiol., 2021, 78(8), 3218-3229.
[http://dx.doi.org/10.1007/s00284-021-02582-x] [PMID: 34213615]
[133]
Kumar, V.; Prasher, I.B. Phytochemical analysis and antimicrobial potential of Nigrospora Sphaerica (Berk. & Broome) petch, a fungal endophyte isolated from Dillenia Indica L. Adv. Tradit. Med., 2021.
[http://dx.doi.org/10.1007/s13596-021-00619-x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy