Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Synthesis of Optimal Control of Spacecraft Angular Momentum for Spatial Turn Taking into Account Energy Costs Using Quaternions

Author(s): Mikhail Levskii*

Volume 1, 2024

Published on: 26 January, 2024

Article ID: e260124226419 Pages: 11

DOI: 10.2174/0127723348245209231205063839

Price: $65

Abstract

Background: In this paper, we propose solving the specific original problem of control synthesis of spacecraft attitude. Optimization of the control program is made with the use of a new criterion of quality that combines energy costs and duration of reorientation under restrictions on control (the presence of a time factor limits the duration of slew maneuver).

Methods: The construction of optimal control for angular momentum change is based on the quaternion method and L.S. Pontryagin maximum principle. An analytical solution to the problem was obtained on the base of a differential equation relating the orientation quaternion and angular momentum of a spacecraft.

Results: Key properties of the optimal solution are formulated in analytical form; the features of optimal motion are studied in detail. The control law is formulated in the form of explicit dependence between control and phase variables. In a case when the controlling torque is limited by the given restriction (at the beginning and end of a turn), analytical formulas have been written for the duration of braking and acceleration. Main relations which determine optimal values of parameters of the algorithm for control of angular momentum are given. Examples and results of mathematical modeling of spacecraft motion formed by optimal control were given. This data in addition to the theoretical descriptions illustrates the process of reorientation in evident form and demonstrates the practical feasibility of a designed method for control of angular momentum during spatial turn.

Conclusion: The designed optimal algorithm of control of spacecraft motion improves the efficiency of spacecraft attitude system, and originates more economical performance of spacecraft during flight on orbit.

[1]
Branets, V.N.; Shmyglevskii, I.P. Use of quaternions in problems of orientation of solid bodies; Nauka: Moscow, 1973.
[2]
Velishchanskii, M.A.; Krishchenko, A.P.; Tkachev, S.B. Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem. J. Comput. Syst. Sci. Int., 2003, 42, 811-818.
[3]
Ermoshina, O.V.; Krishchenko, A.P. Synthesis of programmed controls of spacecraft orientation by the method of inverse problem of dynamics. J. Comput. Syst. Sci. Int., 2000, 39, 313-320.
[4]
Alekseev, K.B.; Malyavin, A.A.; Shadyan, A.V. Extensive control of spacecraft orientation based on fuzzy logic. Polet, 2009, 47-53.
[5]
Raushenbakh, B.V.; Tokar’, E.N. Spacecraft orientation control; Nauka: Moscow, 1974.
[6]
Krasovskii, A.A. Automatic flight control systems and their analytical design; Nauka: Moscow, 1973.
[7]
Li, F.; Bainum, P.M. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers. J. Guid. Control Dyn., 1990, 13(1), 38-45.
[http://dx.doi.org/10.2514/3.20515]
[8]
Scrivener, S.L.; Thompson, R.C. Survey of time-optimal attitude maneuvers. J. Guid. Control Dyn., 1994, 17(2), 225-233.
[http://dx.doi.org/10.2514/3.21187]
[9]
Liu, S.W.; Singh, T. Fuel/time optimal control of spacecraft maneuvers. J. Guid. Control Dyn., 1997, 20(2), 394-397.
[http://dx.doi.org/10.2514/2.4053]
[10]
Byers, R.M.; Vadali, S.R. Quasi-closed-form solution to the time-optimal rigid spacecraft reorientation problem. J. Guid. Control Dyn., 1993, 16(3), 453-461.
[http://dx.doi.org/10.2514/3.21031]
[11]
Junkins, J.L.; Turner, J.D. Optimal spacecraft rotational maneuvers; Elsevier: Amsterdam, 1986.
[12]
Levskii, M.V. Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft. J. Comput. Syst. Sci. Int., 2008, 47(6), 974-986.
[http://dx.doi.org/10.1134/S1064230708060117]
[13]
Shen, H.; Tsiotras, P. Time-optimal control of axi-symmetric rigid spacecraft with two controls. J. Guid. Control Dyn., 1999, 22(5), 682-694.
[http://dx.doi.org/10.2514/2.4436]
[14]
Molodenkov, A.V.; Sapunkov, Y.G. A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions. J. Comput. Syst. Sci. Int., 2007, 46(2), 310-323.
[http://dx.doi.org/10.1134/S1064230707020189]
[15]
Molodenkov, A.V.; Sapunkov, Y.G. Special control regime in the problem of optimal turn of an axially symmetric spacecraft. J. Comput. Syst. Sci. Int., 2010, 49(6), 891-899.
[http://dx.doi.org/10.1134/S1064230710060079]
[16]
Mv, L. Special aspects in attitude control of a spacecraft, equipped with inertial actuators. J. Comput. Sci. Appl. Info. Techno., 2017, 2(4), 1-9.
[http://dx.doi.org/10.15226/2474-9257/2/4/00121]
[17]
Platonov, V.N.; Kovtun, V.S. Method for spacecraft control using reactive actuators during execution of a programmed turn RF Patent for the Invention, No. 2098325. In: Byull. Izobret; , 1997; p. 34.
[18]
Levskii, M.V. Features of attitude control of a spacecraft, equipped with inertial actuators. Mekhatron Avtomatiz Upravl, 2015, 16, 188-195.
[http://dx.doi.org/10.17587/mau.16.188-195]
[19]
Kovtun, V.S.; Mitrikas, V.V.; Platonov, V.N.; Revnivykh, S.G.; Sukhanov, N.A. Mathematical support for conducting experiments with attitude control of space astrophysical module gamma, news from academy of sciences USSR. Technical Cybernetics, 1990, (3), 144-157.
[20]
Levskii, M.V. Method of controlling a spacecraft turn, RF Patent for the Invention, No. 2093433, Byull. Izobret, 1997, (29), 271.
[21]
Molodenkov, A.V.; Sapunkov, Y.G. Analytical solution of the optimal attitude maneuver problem with a combined objective functional for a rigid body in the class of conical motions. Mech. Solids, 2016, 51(2), 135-147.
[http://dx.doi.org/10.3103/S0025654416020011]
[22]
Levskii, M.V. Analytic controlling reorientation of a spacecraft using a combined criterion of optimality. J. Comput. Syst. Sci. Int., 2018, 57(2), 283-301.
[http://dx.doi.org/10.1134/S1064230718010069]
[23]
Levskii, M.V. The use of universal variables in problems of optimal control concerning spacecrafts orientation, Mekhatron., Avtomatiz. Upravl., 2014, (1), 53-59.
[24]
Levskii, M.V. On optimal spacecraft damping. J. Comput. Syst. Sci. Int., 2011, 50(1), 144-157.
[http://dx.doi.org/10.1134/S1064230711010138]
[25]
Levskii, M.V. Optimal spacecraft terminal attitude control synthesis by the quaternion method. Mech. Solids, 2009, 44(2), 169-183.
[http://dx.doi.org/10.3103/S0025654409020022]
[26]
Levskii, M.V. Synthesis of the optimal control of the spacecraft orientation using combined criteria of quality. J. Comput. Syst. Sci. Int., 2019, 58(6), 980-1003.
[http://dx.doi.org/10.1134/S1064230719040105]
[27]
Mv, L. Special optimization problem of control mode of spacecraft motion. Intern. Robo. & Auto J., 2018, 4(6), 423-432.
[http://dx.doi.org/10.15406/iratj.2018.04.00159]
[28]
Levskii, M.V. Optimization problem of attitude control of a spacecraft with bounded rotary energy using quaternions. Intern. Robo. & Auto J., 2021, 7(2), 63-73.
[http://dx.doi.org/10.15406/iratj.2021.07.00228]
[29]
Trukhanov, S.V.; Trukhanov, A.V.; Kostishyn, V.G.; Zabeivorota, N.S.; Panina, L.V.; Trukhanov, A.V.; Turchenko, V.A.; Trukhanova, E.L.; Oleynik, V.V.; Yakovenko, O.S.; Matzui, L.Y.; Zhivulin, V.E. High-frequency absorption properties of gallium weakly doped barium hexaferrites. Philos. Mag., 2019, 99(5), 585-605.
[http://dx.doi.org/10.1080/14786435.2018.1547431]
[30]
Turchenko, V.A.; Trukhanov, S.V.; Kostishin, V.G.; Damay, F.; Porcher, F.; Klygach, D.S.; Vakhitov, M.G.; Lyakhov, D.; Michels, D.; Bozzo, B.; Fina, I.; Almessiere, M.A.; Slimani, Y.; Baykal, A.; Zhou, D.; Trukhanov, A.V. Features of structure, magnetic state and electrodynamic performance of SrFe12−xInxO19. Sci. Rep., 2021, 11(1), 18342.
[http://dx.doi.org/10.1038/s41598-021-97684-8] [PMID: 34526572]
[31]
Almessiere, M.A.; Slimani, Y.; Algarou, N.A.; Vakhitov, M.G.; Klygach, D.S.; Baykal, A.; Zubar, T.I.; Trukhanov, S.V.; Trukhanov, A.V.; Attia, H.; Sertkol, M.; Auwal, İ.A. Tuning the structure, magnetic and high frequency properties of Sc-doped Sr0.5Ba0.5ScxFe12-xO19/NiFe2O4 hard/soft nanocomposites. Adv. Electron. Mater., 2022, 8(2), 2101124.
[http://dx.doi.org/10.1002/aelm.202101124]
[32]
Almessiere, M.A.; Algarou, N.A.; Slimani, Y.; Sadaqat, A.; Baykal, A.; Manikandan, A.; Trukhanov, S.V.; Trukhanov, A.V.; Ercan, I. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Materials Today Nano, 2022, 18, 100186.
[http://dx.doi.org/10.1016/j.mtnano.2022.100186]
[33]
Gorshkov, O.A.; Muravev, V.A.; Shagayda, A.A. Holl’s and ionic plasma engines for spacecrafts; Mashinostroenie: Moscow, 2008.
[34]
Kulkov, V.M.; Gorshkov, V.A.; Egorov, Yu.G.; Belik, A.A.; Krainov, A.M. Comparative estimation of efficiency of applying the perspective types of electric-rocket engines on small spacecrafts. In: Byull; Samara’s State Space University, 2012.
[35]
Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The mathematical theory of optimal processes; Gordon and Breach: New York, 1986.
[36]
Chanyal, B.C. A relativistic quantum theory of dyons wave propagation. Can. J. Phys., 2017, 95(12), 1200-1207.
[http://dx.doi.org/10.1139/cjp-2017-0080]
[37]
Chanyal, B.C.; Pathak, M. Quaternionic approach to dual Magnetohydrodynamics of dyonic cold plasma. Adv. High Energy Phys., 2018, 2018(3805), 1-13.
[http://dx.doi.org/10.1155/2018/7843730]
[38]
Chanyal, B.C. Quaternionic approach on the dirac–maxwell, bernoulli and navier–stokes equations for dyonic fluid plasma. Int. J. Mod. Phys. A, 2019, 34(31), 1950202.
[http://dx.doi.org/10.1142/S0217751X19502026]
[39]
Chanyal, B.C.; Karnatak, S. A comparative study of quaternionic rotational Dirac equation and its interpretation. Int. J. Geom. Methods Mod. Phys., 2020, 17(2), 2050018.
[http://dx.doi.org/10.1142/S0219887820500188]
[40]
Young, L.C. Lectures on the calculus of variations and optimal control theory; American Mathematical Society, 1969, pp. 1-337.
[41]
Markeev, A.P. Theoretical mechanics; Nauka: Moscow, 1990.
[42]
Levskii, M.V. Device for regular rigid body precession parameters formation. RF Patent for the Invention, No. 2146638. Byull. Izobret, 2000, (8), 148.
[43]
Lastman, G.J. A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems. Int. J. Control, 1978, 27(4), 513-524.
[http://dx.doi.org/10.1080/00207177808922388]
[44]
Bertolazzi, E.; Biral, F.; Da Lio, M. Symbolic-numeric efficient solution of optimal control problems for multibody systems. J. Comput. Appl. Math., 2006, 185(2), 404-421.
[http://dx.doi.org/10.1016/j.cam.2005.03.019]
[45]
Kumar, S.; Kanwar, V.; Singh, S. Modified efficient families of two and three-step predictor-corrector iterative methods for solving nonlinear equations. Appl. Math., 2010, 1(3), 153-158.
[http://dx.doi.org/10.4236/am.2010.13020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy