Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Achievements and Difficulties with Batch and Optimization Investigations of Heavy Metal Adsorptive Removal Utilizing Enhanced Biomass-based Adsorption Materials

In Press, (this is not the final "Version of Record"). Available online 26 January, 2024
Author(s): Mohamed M. El-Fahaam*, Mohamed N. Sanad and Mohamed Farouz
Published on: 26 January, 2024

DOI: 10.2174/0115734137282899240102085324

open access plus

Abstract

Surface enhancement improves the porousness and surface area (SSA) of biomass materials, which boosts their adsorption capability. This work investigates recent advances in surface modification technologies of biomass-based materials for heavy metal adsorption, including Pb, As, Cr, Fe, Cd, Mn, Cu, Co, Hg, Ni, Zn, and their ions in waters/wastewaters. The chemical structure and surface properties of biomass were examined in connection with various surface modification approaches and their effects on the adsorption process. In addition, adsorption performance we assessed using various operating conditions, isotherms, kinetics, and computational and artificial intelligence methodologies. This study found that acid-activated Posidonia oceanica had the highest adsorption effectiveness of 631.13 mg/g to eliminate Pb2+, whereas H3PO4/furnace-modified oil palm biomass had the lowest (0.1576 mg/g) for removing Cd2+. Important insights into knowledge gaps for changing these materials for extremely effective adsorption performance were emphasized to improve the area.

[1]
Ahmad, M.A.; Eusoff, M.A.; Adegoke, K.A.; Bello, O.S. Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent. Environ. Technol. Innov., 2021, 24, 101917.
[2]
Brtnicky, M.; Dokulilova, T.; Holatko, J.; Pecina, V.; Kintl, A.; Latal, O.; Vyhnanek, T.; Prichystalova, J.; Datta, R. Long-term effects of biochar-based organic amendments on soil microbial parameters. Agronomy, 2019, 9(11), 747.
[http://dx.doi.org/10.3390/agronomy9110747]
[3]
Liu, W.J.; Jiang, H.; Yu, H.Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev., 2015, 115(22), 12251-12285.
[http://dx.doi.org/10.1021/acs.chemrev.5b00195] [PMID: 26495747]
[4]
Mohamed S. Afify, Mohamed M. El Faham, Usama Eldemerdash, S. I. El-Dek, Waleed M. A. El Rouby, Effects of Ag doping on LaMnO3 photocatalysts for photoelectrochemical water splitting, Applied Physics A, 2022, 128, 871.
[http://dx.doi.org/10.1007/s00339-022-05895-1]
[5]
Rozumová, L.; Životský, O.; Seidlerová, J.; Motyka, O.; Šafařík, I.; Šafaříková, M. Magnetically modified peanut husks as an effective sorbent of heavy metals. J. Environ. Chem. Eng., 2016, 4(1), 549-555.
[http://dx.doi.org/10.1016/j.jece.2015.10.039]
[6]
Adegoke, K.A.; Olagunju, A.O.; Alagbada, T.C.; Alao, O.C.; Adesina, M.O.; Afolabi, I.C.; Adegoke, R.O.; Bello, O.S. Adsorptive removal of endocrine-disrupting chemicals from aqueous solutions: A review. Water Air Soil Pollut., 2022, 233(2), 38.
[http://dx.doi.org/10.1007/s11270-021-05405-8]
[7]
Adegoke, K.A.; Adesina, O.O.; Okon-Akan, O.A.; Adegoke, O.R.; Olabintan, A.B.; Ajala, O.A.; Olagoke, H.; Maxakato, N.W.; Bello, O.S. Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications. Curr. Res. Green Sustain. Chem., 2022, 5, 100274.
[http://dx.doi.org/10.1016/j.crgsc.2022.100274]
[8]
Niad, M.; Rasoolzadeh, L.; Zarei, F. Biosorption of copper (II) on Sargassum angostifolium C.Agardh phaeophyceae biomass. Chem. Spec. Bioavail., 2014, 26(3), 176-183.
[http://dx.doi.org/10.3184/095422914X14039722451529]
[9]
Yoon, S.; Han, S.; Shin, S. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy, 2014, 77, 19-24.
[http://dx.doi.org/10.1016/j.energy.2014.01.104]
[10]
Cai, W.; Wei, J.; Li, Z.; Liu, Y.; Zhou, J.; Han, B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surfaces A Physicochem. Eng. Asp., 2019, 563, 102-111.
[11]
Artioli, Y. Adsorption. In: Encyclopedia of Ecology, Five-volume Set; Elsevier Inc.: Padua, Italy, 2008; pp. 60-65.
[http://dx.doi.org/10.1016/B978-008045405-4.00252-4]
[12]
Assirey, E.A.; Sirry, S.M.; Burkani, H.A.; Ibrahim, M.A. Modified Ziziphus spina-christi stones as green route for the removal of heavy metals. Sci. Rep., 2020, 10(1), 20557.
[http://dx.doi.org/10.1038/s41598-020-76810-y] [PMID: 33239668]
[13]
Biswas, S.; Bal, M.; Behera, S.; Sen, T.; Meikap, B. Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM). Water, 2019, 11(2), 325.
[http://dx.doi.org/10.3390/w11020325]
[14]
Júnior, O.; Gurgel, L.V.; Freitas, R.P.; Laurent Fr´ed´eric, G. Adsorption of Cu (II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr. Polym., 2009, 77, 643-650.
[15]
Fröhlich, A.C.; Foletto, E.L.; Dotto, G.L. Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions. J. Clean. Prod., 2019, 229, 828-837.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.037]
[16]
Adegoke, K.A.; Bello, O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind., 2015, 12, 8-24.
[http://dx.doi.org/10.1016/j.wri.2015.09.002]
[17]
Ahmad, M.A.; Ahmed, N.A.B.; Adegoke, K.A.; Bello, O.S. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chem. Data Collec., 2019, 22, 100249.
[http://dx.doi.org/10.1016/j.cdc.2019.100249]
[18]
Taoufik, N.; Boumya, W.; Achak, M.; Chennouk, H.; Dewil, R.; Barka, N. The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. Sci. Total Environ., 2022, 807(Pt 1), 150554.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150554] [PMID: 34597573]
[19]
Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents. Resour., Environm. Sustainab., 2020, 1, 100001.
[http://dx.doi.org/10.1016/j.resenv.2020.100001]
[20]
Meena, A.K.; Rajagopal, C. Removal of heavy metal ions from aqueous solutions using chemically (Na2S) treated granular activated carbon as an adsorbent. J. Sci. Ind. Res., 2010, 69, 449-453.
[21]
Tijani, J.O.; Bankole, M.T.; Muriana, M.; Falana, I.O. Development of low cost adsorbent from cow horn for the biosorption of Mn (II), Ni (II) and Cd (II) ion from aqueous solution. Res. J. Appl. Sci. Eng. Technol., 2014, 7(1), 9-17.
[http://dx.doi.org/10.19026/rjaset.7.213]
[22]
Zhang, H.; Xue, G.; Chen, H.; Li, X. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 2018, 191, 64-71.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.026] [PMID: 29031054]
[23]
Zhang, W.; Duo, H.; Li, S.; An, Y.; Chen, Z.; Liu, Z.; Ren, Y.; Wang, S.; Zhang, X.; Wang, X. An overview of the recent advances in functionalization biomass adsorbents for toxic metals removal. Colloid Interface Sci. Commun., 2020, 38, 100308.
[http://dx.doi.org/10.1016/j.colcom.2020.100308]
[24]
Zhang, X.; Shen, J.; Pan, S.; Qian, J.; Pan, B. Metastable zirconium phosphate under nanoconfinement with superior adsorption capability for water treatment. Adv. Funct. Mater., 2020, 30(12), 1909014.
[http://dx.doi.org/10.1002/adfm.201909014] [PMID: 32952492]
[25]
Agboola, O.S.; Bello, O.S. Enhanced adsorption of ciprofloxacin from aqueous solutions using functionalized banana stalk. Biomass Conv. Biorefi., 2022, 12, 5463-5478.
[http://dx.doi.org/10.1007/s13399-020-01038-9]
[26]
Gopalram, K.; Kapoor, A.; Kumar, P.S.; Sunil, A.; Rangasamy, G. MXenes and MXene-based materials for removal and detection of water contaminants: A review. Ind. Eng. Chem. Res., 2023, 62(17), 6559-6583.
[http://dx.doi.org/10.1021/acs.iecr.3c00595]
[27]
Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol., 2011, 102(2), 716-723.
[http://dx.doi.org/10.1016/j.biortech.2010.08.067] [PMID: 20863698]
[28]
Choi, J.; Won, W.; Capareda, S.C. Industrial crops & products the economical production of functionalized Ashe juniper derived-biochar with high hazardous dye removal efficiency. Ind. Crop. Prod., 2019, 137, 672-680.
[29]
Fagbohungbe, M.O.; Herbert, B.M.J.; Hurst, L.; Ibeto, C.N.; Li, H.; Usmani, S.Q.; Semple, K.T. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag., 2017, 61, 236-249.
[http://dx.doi.org/10.1016/j.wasman.2016.11.028] [PMID: 27923546]
[30]
Ghrab, S.; Benzina, M.; Lambert, S.D. Copper adsorption from wasterwater using bone charcoal. Adv. Mater. Phys. Chem., 2017, 7(5), 139-147.
[http://dx.doi.org/10.4236/ampc.2017.75012]
[31]
Lakshmi, D.; Akhil, D.; Kartik, A.; Gopinath, K.P.; Arun, J.; Bhatnagar, A.; Rinklebe, J.; Kim, W.; Muthusamy, G. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Sci. Total Environ., 2021, 801, 149623.
[http://dx.doi.org/10.1016/j.scitotenv.2021.149623] [PMID: 34425447]
[32]
Mohamed, N. Sanad, Mohamed Farouz, Mohamed M. ElFaham, recent advancement in NANO cellulose as a biomass-based adsorbent for heavy metal ions removal: a review of a sustainable waste management approach, Adv. Eng. Lett., 2023, 2(4), 120-142.
[http://dx.doi.org/10.46793/adeletters.2023.2.4.1]
[33]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[34]
Huang, B.; Liu, G.; Wang, P.; Zhao, X.; Xu, H. Effect of nitric acid modification on characteristics and adsorption properties of lignite. Processes, 2019, 7(3), 167.
[http://dx.doi.org/10.3390/pr7030167]
[35]
Khare, P.; Dilshad, U.; Rout, P.K.; Yadav, V.; Jain, S. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arab. J. Chem., 2017, 10, S3054-S3063.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.047]
[36]
Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J. Environ. Manage., 2018, 227, 395-405.
[http://dx.doi.org/10.1016/j.jenvman.2018.08.069] [PMID: 30212686]
[37]
Gunorubon, A.J.; Chukwunonso, N. Kinetics, equilibrium and thermodynamics studies of Fe3+ ion removal from aqueous solutions using periwinkle shell activated carbon. Adv. Chem. Eng. Sci., 2018, 8(2), 49-66.
[http://dx.doi.org/10.4236/aces.2018.82004]
[38]
Xu, L.; Zheng, X.; Cui, H.; Zhu, Z.; Liang, J.; Zhou, J. Equilibrium, kinetic, and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomaterials ash. Bioinorg. Chem. Appl., 2017, 2017, 3695604.
[http://dx.doi.org/10.1155/2017/3695604] [PMID: 28348509]
[39]
Chen, C.K.; Chen, J.J.; Nguyen, N.T.; Le, T.T.; Nguyen, N.C.; Chang, C.T. Specifically designed magnetic biochar from waste wood for arsenic removal. Sustain. Environ. Res., 2021, 31(1), 29.
[http://dx.doi.org/10.1186/s42834-021-00100-z]
[40]
Huang, L.; Chen, B.; Pistolozzi, M.; Wu, Z.; Wang, J. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge. Bioresour. Technol., 2014, 153, 87-94.
[http://dx.doi.org/10.1016/j.biortech.2013.11.049] [PMID: 24345567]
[41]
Lawal, O.S. Removal of lead (II) ion from aqueous solutions using black walnut (Juglan nigra) seed husk. Curr. Trends Biomed. Eng. Biosci., 2017, 9(1), 555755.
[http://dx.doi.org/10.19080/CTBEB.2017.09.555755]
[42]
Liao, M.; Yao, Y. Applications of artificial intelligence‐based modeling for bioenergy systems: A review. Glob. Change Biol. Bioenergy, 2021, 13(5), 774-802.
[http://dx.doi.org/10.1111/gcbb.12816]
[43]
Yanyan, L.; Kurniawan, T.A.; Zhu, M.; Ouyang, T.; Avtar, R.; Dzarfan Othman, M.H.; Mohammad, B.T.; Albadarin, A.B. Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO3, ozone, and/or chitosan. J. Environ. Manage., 2018, 226, 365-376.
[http://dx.doi.org/10.1016/j.jenvman.2018.08.032] [PMID: 30138836]
[44]
(a) Mamisahebei, S.; Torabian, A.; Nasseri, S.; Naddafi, K. Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Iran. J. Environ. Health. Sci. Eng., 2007, 4(2), 85-92.;
(b) Martini, S.; Roni, K.A. The existing technology and the application of digital artificial intelligent in the wastewater treatment area: A review paper. J. Phys. Conf. Ser., 2021, 1858, 012013.
[http://dx.doi.org/10.1088/1742-6596/1858/1/012013]
[45]
Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod., 2021, 296, 126589.
[http://dx.doi.org/10.1016/j.jclepro.2021.126589]
[46]
Horsfall, J.; Spiff, A.I. Effect of 2-mercaptoethanoic acid treatment of fluted pumpkin waste (Telfairia occidentalis Hook. f.) on the sorption of Ni2+ ions from aqueous solution. J. Sci. Ind. Res., 2005, 64, 613-620.
[47]
Islam, T.; Golam, A.H.M.; Saenz-arana, R.; Hernandez, C.; Guinto, T.; Ahsan, A.; Alvarado-tenorio, B.; Noveron, J.C. Removal of methylene blue and tetracycline from water using peanut shell derived adsorbent prepared by sulfuric acid reflux. J. Environ. Chem. Eng., 2019, 7, 102816.
[48]
Reyes-Ledezma, J.L.; Cristiani-Urbina, E.; Morales-Barrera, L. Biosorption of Co2+ ions from aqueous solution by K2HPO4-pretreated duckweed Lemna gibba. Processes, 2020, 8(12), 1532.
[http://dx.doi.org/10.3390/pr8121532]
[49]
Lesaoana, M.; Mlaba, R.P.V.; Mtunzi, F.M.; Klink, M.J.; Ejidike, P.; Pakade, V.E. Influence of inorganic acid modification on Cr(VI) adsorption performance and the physicochemical properties of activated carbon. S. Afr. J. Chem. Eng., 2019, 28, 8-18.
[http://dx.doi.org/10.1016/j.sajce.2019.01.001]
[50]
Wang, Z.; Guo, H.; Shen, F.; Yang, G.; Zhang, Y.; Zeng, Y.; Wang, L.; Xiao, H.; Deng, S. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4(+)), nitrate (NO3(-)), and phosphate (PO4(3-)). Chemosphere, 2015, 119, 646-653.
[http://dx.doi.org/10.1016/j.chemosphere.2014.07.084] [PMID: 25150468]
[51]
Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol., 2008, 99(10), 3935-3948.
[http://dx.doi.org/10.1016/j.biortech.2007.06.011] [PMID: 17681755]
[52]
Chamarthy, S.; Seo, C.W.; Marshall, W.E. Adsorption of selected toxic metals by modified peanut shells. J. Chem. Technol. Biotechnol., 2001, 76(6), 593-597.
[http://dx.doi.org/10.1002/jctb.418]
[53]
Güzel, F.; Sayğılı, H.; Akkaya Sayğılı, G.; Koyuncu, F.; Yılmaz, C. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J. Clean. Prod., 2017, 144, 260-265.
[http://dx.doi.org/10.1016/j.jclepro.2017.01.029]
[54]
Li, R.; Wang, J.J.; Zhou, B.; Awasthi, M.K.; Ali, A.; Zhang, Z.; Lahori, A.H.; Mahar, A. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour. Technol., 2016, 215, 209-214.
[http://dx.doi.org/10.1016/j.biortech.2016.02.125] [PMID: 26995322]
[55]
Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq., 2019, 276, 728-747.
[http://dx.doi.org/10.1016/j.molliq.2018.12.001]
[56]
Foroutan, R.; Esmaeili, H.; Rishehri, S.D.; Sadeghzadeh, F.; Mirahmadi, S.; Kosarifard, M.; Ramavandi, B. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomaterials: A dataset. Data Brief, 2017, 12, 485-492.
[57]
Zango, Z.U.; Ramli, A.; Jumbri, K.; Sambudi, N.S.; Isiyaka, H.A.; Abu Bakar, N.H.H.; Saad, B. Response surface methodology optimization and kinetics study for anthracene adsorption onto MIL-88(Fe) and NH2-MIL-88(Fe) metal-organic frameworks. IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1092, 012035.
[http://dx.doi.org/10.1088/1757-899X/1092/1/012035]
[58]
An, Q.; Miao, Y.; Zhao, B.; Li, Z.; Zhu, S. An alkali modified biochar for enhancing Mn2+ adsorption: Performance and chemical mechanism. Mater. Chem. Phys., 2020, 248, 122895.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122895]
[59]
Kong, M.; Huang, L.; Li, L.; Zhang, Z.; Zheng, S.; Wang, M.K. Effects of oxalic and citric acids on three clay minerals after incubation. Appl. Clay Sci., 2014, 99, 207-214.
[http://dx.doi.org/10.1016/j.clay.2014.06.035]
[60]
Ren, B.; Jin, Y.; zhao, L.; Cui, C.; Song, X. Enhanced Cr(VI) adsorption using chemically modified dormant Aspergillus niger spores: Process and mechanisms. J. Environ. Chem. Eng., 2022, 10(1), 106955.
[http://dx.doi.org/10.1016/j.jece.2021.106955]
[61]
Moreno, J.C.; Gómez, R.; Giraldo, L. Removal of Mn, Fe, Ni and Cu ions from wastewater using cow bone charcoal. Materials, 2010, 3(1), 452-466.
[http://dx.doi.org/10.3390/ma3010452]
[62]
Abbas, A.; Mariana, L.T.; Phan, A.N. Biomaterials-waste derived graphene quantum dots and their applications. Carbon, 2018, 140, 77-99.
[63]
Gasim, M.F.; Choong, Z.Y.; Koo, P.L.; Low, S.C.; Abdurahman, M.H.; Ho, Y.C.; Mohamad, M.; Suryawan, I.W.K.; Lim, J.W.; Oh, W-D. Application of biochar as functional material for remediation of organic pollutants in water: An overview. Catalysts, 2022, 12(2), 210.
[http://dx.doi.org/10.3390/catal12020210]
[64]
Rangraz, Y.; Heravi, M.M. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Advances, 2021, 11(38), 23725-23778.
[http://dx.doi.org/10.1039/D1RA03446D] [PMID: 35479780]
[65]
Elmorsi, R.R.; El-Wakeel, S.T.; Shehab El-Dein, W.A.; Lotfy, H.R.; Rashwan, W.E.; Nagah, M.; Shaaban, S.A.; Sayed, A.S.A.; El-Sherif, I.Y.; Abou-El-Sherbini, K.S. Adsorption of Methylene Blue and Pb2+ by using acid-activated Posidonia oceanica waste. Sci. Rep., 2019, 9(1), 3356.
[http://dx.doi.org/10.1038/s41598-019-39945-1] [PMID: 30833622]
[66]
Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp., 2013, 437, 3-32.
[http://dx.doi.org/10.1016/j.colsurfa.2013.01.007]
[67]
Daochalermwong, A.; Chanka, N.; Songsrirote, K.; Dittanet, P.; Niamnuy, C.; Seubsai, A. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber. ACS Omega, 2020, 5(10), 5285-5296.
[http://dx.doi.org/10.1021/acsomega.9b04326] [PMID: 32201817]
[68]
Salman, M.; Rehman, R.; Farooq, U.; Tahir, A.; Mitu, L. Biosorptive removal of cadmium(II) and copper(II) using microwave-assisted thiourea-modified sorghum bicolor agrowaste. J. Chem., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8269643]
[69]
Tejada-Tovar, C.; Herrera-Barros, A.; Villabona-Ortíz, A. Assessment of chemically modified lignocellulose waste for the adsorption of Cr (VI). Rev. Fac. Ing., 2019, 29(54), e10298.
[http://dx.doi.org/10.19053/01211129.v29.n54.2020.10298]
[70]
Ashrafi, S.D.; Kamani, H.; Soheil Arezomand, H.; Yousefi, N.; Mahvi, A.H. Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology. Desalination Water Treat., 2016, 57(30), 14051-14059.
[http://dx.doi.org/10.1080/19443994.2015.1060903]
[71]
Dai, Z.; Xiong, X.; Zhu, H.; Xu, H.; Leng, P.; Li, J.; Tang, C.; Xu, J. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar, 2021, 3(3), 239-254.
[http://dx.doi.org/10.1007/s42773-021-00099-x]
[72]
Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ., 2021, 754, 142150.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142150] [PMID: 32920404]
[73]
Nageswaran, G.; Jothi, L.; Jagannathan, S. Plasma assisted polymer modifications. In: Non- Thermal Plasma Technology for Polymeric Materials; Elsevier, 2019; pp. 95-127.
[http://dx.doi.org/10.1016/B978-0-12-813152-7.00004-4]
[74]
Ghasemi, M.; Ghoreyshi, A.A.; Younesi, H.; Khoshhal, S.K. Synthesis of a high characteristics activated carbon from walnut shell for the removal of Cr(VI) and Fe (II) from aqueous solution: single and binary solutes adsorption. Iran. J. Chem. Eng., 2015, 12, 28-51.
[75]
Moradi, M.; Fazlzadehdavil, M.; Pirsaheb, M.; Mansouri, Y.; Khosravi, T.; Sharafi, K. Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent. Arch. Environ. Prot., 2016, 42(2), 33-43.
[http://dx.doi.org/10.1515/aep-2016-0018]
[76]
Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Mater. Adv., 2021, 2(2), 598-627.
[http://dx.doi.org/10.1039/D0MA00087F]
[77]
McSweeny, J.D.; Rowell, R.M.; Min, S.H. Effect of citric acid modification of aspen wood on sorption of copper ion. J. Nat. Fibers, 2006, 3(1), 43-58.
[http://dx.doi.org/10.1300/J395v03n01_05]
[78]
Haham, H.; Grinblat, J.; Sougrati, M.T.; Stievano, L.; Margel, S. Engineering of iron-based magnetic activated carbon fabrics for environmental remediation. Materials, 2015, 8(7), 4593-4607.
[http://dx.doi.org/10.3390/ma8074593] [PMID: 28793459]
[79]
Tarasi, S.; Morsali, A. Fabrication of transparent ultraviolet blocking films using nanocomposites derived from metal-organic frameworks. J. Alloys Compd., 2021, 868, 158996.
[http://dx.doi.org/10.1016/j.jallcom.2021.158996]
[80]
Repo, E.; Warchoł, J.K.; Bhatnagar, A.; Mudhoo, A.; Sillanpää, M. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res., 2013, 47(14), 4812-4832.
[http://dx.doi.org/10.1016/j.watres.2013.06.020] [PMID: 23863393]
[81]
Adeniyi, A.G.; Ighalo, J.O. Biosorption of pollutants by plant leaves: An empirical review. J. Environ. Chem. Eng., 2019, 7, 103100.
[82]
Purnomo, C.W.; Kesuma, E.P.; Perdana, I.; Aziz, M. Lithium recovery from spent Li-ion batteries using coconut shell activated carbon. Waste Manag., 2018, 79, 454-461.
[http://dx.doi.org/10.1016/j.wasman.2018.08.017] [PMID: 30343775]
[83]
Wong, Y.J.; Arumugasamy, S.K.; Chung, C.H.; Selvarajoo, A.; Sethu, V. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Environ. Monit. Assess., 2020, 192(7), 439.
[http://dx.doi.org/10.1007/s10661-020-08268-4] [PMID: 32556670]
[84]
Wu, Z.; Chen, X.; Yuan, B.; Fu, M.L. A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere, 2020, 239, 124745.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124745] [PMID: 31521939]
[85]
Zhao, L.; Wu, Y.; Han, J.; Wang, H.; Liu, D.; Lu, Q.; Yang, Y. Density functional theory study on mechanism of mercury removal by CeO2 modified activated carbon. Energies, 2018, 11(11), 2872.
[http://dx.doi.org/10.3390/en11112872]
[86]
Fei, Y.; Hu, Y.H. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: A review. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(3), 1047-1085.
[http://dx.doi.org/10.1039/D1TA06612A]
[87]
Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J., 2022, 427, 130011.
[http://dx.doi.org/10.1016/j.cej.2021.130011]
[88]
Khan, Z.H.; Gao, M.; Qiu, W.; Song, Z. Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions. Environ. Sci. Pollut. Res. Int., 2021, 28(26), 34979-34989.
[http://dx.doi.org/10.1007/s11356-021-13199-9] [PMID: 33661497]
[89]
Solomon, A. Synthesis, modification, applications and challenges of titanium dioxide nanoparticles. Res. J. Nanosci. Eng., 2019, 3(4), 10-22.
[http://dx.doi.org/10.22259/2637-5591.0304003]
[90]
Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmen. Technol. Innov., 2021, 22, 101504.
[http://dx.doi.org/10.1016/j.eti.2021.101504]
[91]
Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99, 19-33.
[http://dx.doi.org/10.1016/j.chemosphere.2013.10.071]
[92]
Li, M.; Wei, D.; Liu, T.; Liu, Y.; Yan, L.; Wei, Q.; Du, B.; Xu, W. EDTA functionalized magnetic biochar for Pb(II) removal: Adsorption performance, mechanism and SVM model prediction. Sep. Purif. Technol., 2019, 227, 115696.
[93]
Liu, T.; Lawluvy, Y.; Shi, Y.; Ighalo, J.O.; He, Y.; Zhang, Y.; Yap, P.S. Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. J. Environ. Chem. Eng., 2022, 10(1), 106502.
[http://dx.doi.org/10.1016/j.jece.2021.106502]
[94]
Naihi, H.; Baini, R.; Yakub, I. Oil palm biomass-based activated carbons for the removal of cadmium-a review. AIMS Mater. Sci., 2021, 8(3), 453-468.
[http://dx.doi.org/10.3934/matersci.2021028]
[95]
Bello, O.S.; Alagbada, T.C.; Alao, O.C.; Olatunde, A.M. Sequestering a non-steroidal anti-inflammatory drug using modified orange peels. Appl. Water Sci., 2020, 10(7), 172.
[http://dx.doi.org/10.1007/s13201-020-01254-8]
[96]
Li, H.; Mahyoub, S.A.A.; Liao, W.; Xia, S.; Zhao, H.; Guo, M.; Ma, P. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresour. Technol., 2017, 223, 20-26.
[http://dx.doi.org/10.1016/j.biortech.2016.10.033] [PMID: 27771526]
[97]
Nasr, M.; Mahmoud, A.E.D.; Fawzy, M.; Radwan, A. Artificial intelligence modeling of cadmium(II) biosorption using rice straw. Appl. Water Sci., 2017, 7(2), 823-831.
[http://dx.doi.org/10.1007/s13201-015-0295-x]
[98]
Zhu, X.; Wang, X.; Ok, Y.S. The application of machine learning methods for prediction of metal sorption onto biochars. J. Hazard. Mater., 2019, 378, 120727.
[http://dx.doi.org/10.1016/j.jhazmat.2019.06.004] [PMID: 31202073]
[99]
Wang, Z.; Shen, D.; Shen, F.; Li, T. Phosphate adsorption on lanthanum loaded biochar. Chemosphere, 2016, 150, 1-7.
[http://dx.doi.org/10.1016/j.chemosphere.2016.02.004]
[100]
Palapa, N.; Taher, T.; Siregar, P.; Normah, N.; Juleanti, N.; Wijaya, A.; Badri, A.; Lesbani, A. High structural stability and adsorption capacity of Zn/Al-biochar and Cu/Al-biochar toward adsorption of Cr(VI). J. Ecol. Eng., 2021, 22(4), 213-223.
[http://dx.doi.org/10.12911/22998993/134153]
[101]
Acelas, N.Y.; Flórez, E. Density functional theory studies of the adsorption of Cr (VI) on Fe-(hydr) oxide: Gibbs free energies and pH effect. J. Phys. Conf. Ser., 2019, 1247(1), 012051.
[http://dx.doi.org/10.1088/1742-6596/1247/1/012051]
[102]
Zhou, R.; Zhang, M.; Zhou, J.; Wang, J. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2. Sci. Rep., 2019, 9(1), 17538.
[http://dx.doi.org/10.1038/s41598-019-54105-1] [PMID: 31772278]
[103]
Sanad, M.N.; El-Dek, S.I.; Eldemerdash, U.; ElFaham, M.M. Study of the adsorptive removal of (Fe+2) and (Ni+2) from water by synthesized magnetite/corn cobs magnetic nanocomposite. Nano Futures, 2022, 6(2), 025004.
[http://dx.doi.org/10.1088/2399-1984/ac6a31]
[104]
Joshua, O. Cost of adsorbent preparation and usage in wastewater treatment: A review. Cleaner Chem. Eng., 2022, 3, 100042.
[http://dx.doi.org/10.1016/j.clce.2022.100042]

© 2025 Bentham Science Publishers | Privacy Policy