Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Neuro-pharmacological Assessment of Coleus forskohlii for Anti-compulsive Activity in Swiss Albino Mice

Author(s): Sagarika Majhi*, Manvi Singh, Iti Chauhan, Madhu Verma and Raj Kumari

Volume 20, Issue 9, 2024

Published on: 26 January, 2024

Article ID: e260124226355 Pages: 9

DOI: 10.2174/0115734072278540231229120913

Price: $65

Abstract

Background: Obsessive-Compulsive Disorder (OCD) is a common psychiatric illness characterized by obsessions or compulsions that significantly disrupt or impair daily functioning. Coleus forskohlii, a significant medicinal crop, has forskolin in its roots. It is utilized extensively as food and medicine all over the world. Coleus forskohlii has reputed medicinal uses, which include antidepressant, antiaggregant, cAMP-genic, anticancer, etc.

Objective: This study used mice models of marble burying and nestlet shredding to assess the potential efficacy of Coleus forskohlii against obsessive-compulsive disorder. 8-hydroxy-2-(di-npropylamino) tetralin (8-OH-DPAT) induced compulsive checking can demonstrate OCD-like repetitive and obsessive behavior as well as neurotransmitter imbalance (serotonin).

Methods: Each group had six mice, and the therapy was administered to the animals for a total of 15 days. On days 1, 7, and 14, the marble burying test was assessed for 30 minutes, and on days 2, 8 and 15, the nestlet shredding test was assessed for 30 minutes. The T-maze paradigm was used to assess anti-OCD activity. The brain histology and morphometry were also performed.

Results: When compared to the control group, treatments with Coleus forskohlii (50 and 100 mg/kg, p.o.) significantly enhanced performance on both behavior tests. The SAB score is dramatically increased following the administration of the 8-OH-DPAT (2 mg/kg, i.p.) group. Coleus forskohlii (50 and 100 mg/kg, p.o.) and fluoxetine (15 mg/kg, p.o.) groups showed significantly lowered results. Animals treated with 8-OH-DPAT showed a considerable reduction in serotonin levels. Following Coleus forskohlii administration, the histology of the brain tissues showed normal morphological structure with no toxicity or abnormalities.

Conclusion: The combination of all these findings points to Coleus forskohlii delivering a possible therapeutic option for the treatment of OCD. The identification and anticompulsive properties of the components from Coleus forskohlii should be the main aim of future studies.

Graphical Abstract

[1]
Pajouhinia, S.; Abavisani, Y.; Rezazadeh, Z. Explaining the obsessive-compulsive symptoms based on cognitive flexibility and social cognition. Pract. Clin. Psychol., 2020, 8(3), 233-242.
[http://dx.doi.org/10.32598/jpcp.8.3.10.717.1]
[2]
Maia, T.V.; Cooney, R.E.; Peterson, B.S. The neural bases of obsessive–compulsive disorder in children and adults. Dev. Psychopathol., 2008, 20(4), 1251-1283.
[http://dx.doi.org/10.1017/S0954579408000606] [PMID: 18838041]
[3]
Stein, D.J.; Costa, D.L.C.; Lochner, C.; Miguel, E.C.; Reddy, Y.C.J.; Shavitt, R.G.; van den Heuvel, O.A.; Simpson, H.B. Obsessive–compulsive disorder. Nat. Rev. Dis. Primers, 2019, 5(1), 52.
[http://dx.doi.org/10.1038/s41572-019-0102-3] [PMID: 31371720]
[4]
Charney, D.S.; Goodman, W.K.; Price, L.H.; Woods, S.W.; Rasmussen, S.A.; Heninger, G.R. Serotonin function in obsessive-compulsive disorder. A comparison of the effects of tryptophan and m-chlorophenylpiperazine in patients and healthy subjects. Arch. Gen. Psychiatry, 1988, 45(2), 177-185.
[http://dx.doi.org/10.1001/archpsyc.1988.01800260095012] [PMID: 3337615]
[5]
Patel, T.I.; Saraf, M.E. A review on the pharmacology of Coleus forskohlii Briq: A threatened medicinal plant; Research Gate, 2016.
[6]
Tiwari, N.; Mishra, A.; Bhatt, G.; Chaudhary, A. Anti stress activity (in-vivo) of forskolin isolated from coleus forskohlii Int. J. Pharm. Phytopharmacological Res., 2014, 4(3), 201-204.
[7]
Jeyabalan, S.; Bala, L.; Subramanian, K.; Jabaris, S.L.; Sekar, M.; Wong, L.S.; Subramaniyan, V.; Chidambaram, K.; Gan, S.H.; Mat Rani, N.N.I.; Begum, M.Y.; Safi, S.Z.; Selvaraj, S.; Al Fatease, A.; Alamri, A.; Vijeepallam, K.; Fuloria, S.; Fuloria, N.K.; Djearamane, S. Potential effects of noni (Morinda citrifolia L.) fruits extract against obsessive-compulsive disorder in marble burying and nestlet shredding behavior mice models. Front. Pharmacol., 2022, 13, 993927.
[http://dx.doi.org/10.3389/fphar.2022.993927] [PMID: 36188588]
[8]
Yadin, E.; Friedman, E.; Bridger, W.H. Spontaneous alternation behavior: An animal model for obsessive-compulsive disorder? Pharmacol. Biochem. Behav., 1991, 40(2), 311-315.
[http://dx.doi.org/10.1016/0091-3057(91)90559-K] [PMID: 1839567]
[9]
Angoa-Pérez, M.; Kane, M.J.; Briggs, D.I.; Francescutti, D.M.; Kuhn, D.M. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J. Vis. Exp., 2013, e50978(82), 50978.
[http://dx.doi.org/10.3791/50978] [PMID: 24429507]
[10]
Arora, T.; Bhowmik, M.; Khanam, R.; Vohora, D. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and creb pathway. Behav. Brain Res., 2013, 247, 146-152.
[http://dx.doi.org/10.1016/j.bbr.2013.02.038] [PMID: 23473877]
[11]
Pannu, A.S.; Parle, M. Anti-obsessive-compulsive activity of honey. Asian J. Pharm. Clin. Res., 2017, 10(5), 206.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.15940]
[12]
Liu, F.; Schafer, D.P.; McCullough, L.D. TTC, Fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J. Neurosci. Methods, 2009, 179(1), 1-8.
[http://dx.doi.org/10.1016/j.jneumeth.2008.12.028] [PMID: 19167427]
[13]
Chimakurthy, J.; Murthy, T.E. Effect of curcumin on quinpirole induced compulsive checking: An approach to determine the predictive and construct validity of the model. N. Am. J. Med. Sci., 2010, 2(2), 81-86.
[http://dx.doi.org/10.4297/najms.2010.281] [PMID: 22624119]
[14]
Barahona-Corrêa, J.B.; Camacho, M.; Castro-Rodrigues, P.; Costa, R.; Oliveira-Maia, A.J. From thought to action: How the interplay between neuroscience and phenomenology changed our understanding of obsessive-compulsive disorder. Front. Psychol., 2015, 6, 1798.
[http://dx.doi.org/10.3389/fpsyg.2015.01798] [PMID: 26635696]
[15]
Wachtel, H.; Löschmann, P.A.; Schneider, H.H.; Rettig, K.J. Effects of forskolin on spontaneous behavior, rectal temperature and brain cAMP levels of rats: Interaction with rolipram. Neurosci. Lett., 1987, 76(2), 191-196.
[http://dx.doi.org/10.1016/0304-3940(87)90714-2] [PMID: 3035438]
[16]
Shende, V.; Sahane, R.; Lawar, M.; Hamdulay, N.; Langote, H.A. Evaluation of anti-compulsive effect of ethanolic extract of clitoria ternatea in mice. Asian J. Pharm. Clin. Res., 2012, 5(3), 120-123.
[17]
Njung’e, K.; Handley, S.L. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol. Biochem. Behav., 1991, 38(1), 63-67.
[http://dx.doi.org/10.1016/0091-3057(91)90590-X] [PMID: 2017455]
[18]
Londei, T.; Valentini, A.M.; Leone, V.G. Investigative burying by laboratory mice may involve non-functional, compulsive, behaviour. Behav. Brain Res., 1998, 94(2), 249-254.
[http://dx.doi.org/10.1016/S0166-4328(97)00162-9] [PMID: 9722276]
[19]
Malik, R.I.; Gilhaotra, N.A. Novel non-receptor and non-gabaergic antianxiety-like activity of forskolin: Synergy with diazepam. Int. J. Pharm. Pharm. Sci., 2015, 7(2), 200-203.
[20]
Goddard, A.W.; Shekhar, A.; Whiteman, A.F.; McDougle, C.J. Serotoninergic mechanisms in the treatment of obsessive–compulsive disorder. Drug Discov. Today, 2008, 13(7-8), 325-332.
[http://dx.doi.org/10.1016/j.drudis.2007.12.009] [PMID: 18405845]
[21]
Yammamoto, H.; Tanaka, S.; Tanaka, A.; Hide, I.; Seki, T.; Sakai, N. Long-term exposure of RN46A cells expressing serotonin transporter (SERT) to a cAMP analog up-regulates SERT activity and is accompanied by neural differentiation of the cells. J. Pharmacol. Sci., 2013, 121(1), 25-38.
[http://dx.doi.org/10.1254/jphs.12229FP] [PMID: 23269237]
[22]
Seibell, P.J.; Demarest, J.; Rhoads, D.E. 5-HT1A receptor activity disrupts spontaneous alternation behavior in rats. Pharmacol. Biochem. Behav., 2003, 74(3), 559-564.
[http://dx.doi.org/10.1016/S0091-3057(02)01037-7] [PMID: 12543219]
[23]
Lissemore, J.I.; Sookman, D.; Gravel, P.; Berney, A.; Barsoum, A.; Diksic, M.; Nordahl, T.E.; Pinard, G.; Sibon, I.; Cottraux, J.; Leyton, M.; Benkelfat, C. Brain serotonin synthesis capacity in obsessive-compulsive disorder: Effects of cognitive behavioral therapy and sertraline. Transl. Psychiatry, 2018, 8(1), 82.
[http://dx.doi.org/10.1038/s41398-018-0128-4] [PMID: 29666372]
[24]
Woody, E.Z.; Szechtman, H. Adaptation to potential threat: The evolution, neurobiology, and psychopathology of the security motivation system. Neurosci. Biobehav. Rev., 2011, 35(4), 1019-1033.
[http://dx.doi.org/10.1016/j.neubiorev.2010.08.003] [PMID: 20727910]
[25]
Alam, M.M.; Minj, E.; Yadav, R.K.; Mehan, S. Neuroprotective potential of adenyl cyclase/cAMP/CREB and mitochondrial CoQ10 activator in amyotrophic lateral sclerosis rats. Curr. Bioact. Compd., 2021, 17(5), 53-69.
[http://dx.doi.org/10.2174/1573407216999200723113054]
[26]
Yakaiah Vangoori; Vangoori, Y.; Sayana, S.B. Evaluation of toxic effects of Coleus forskohlii extract on various body organs of experimental animals-rats. Asian J. Med. Sci., 2022, 13(12), 97-103.
[http://dx.doi.org/10.3126/ajms.v13i12.49018]
[27]
Rehncrona, S.; Mela, L.; Siesjö, B.K. Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia. Stroke, 1979, 10(4), 437-446.
[http://dx.doi.org/10.1161/01.STR.10.4.437] [PMID: 505482]
[28]
Siesjö, B.K. Cell damage in the brain: A speculative synthesis. J. Cereb. Blood Flow Metab., 1981, 1(2), 155-185.
[http://dx.doi.org/10.1038/jcbfm.1981.18] [PMID: 6276420]
[29]
Kuygun Karcı, C.; Gül Celik, G. Nutritional and herbal supplements in the treatment of obsessive compulsive disorder. Gen. Psychiatr., 2020, 33(2), e100159.
[http://dx.doi.org/10.1136/gpsych-2019-100159] [PMID: 32215361]
[30]
Mehan, S.; Khera, H.; Sharma, R. Neuroprotective Strategies of Blood-Brain Barrier Penetrant “Forskolin” (AC/cAMP/PKA/CREB Activator) to Ameliorate Mitochondrial Dysfunctioning in Neurotoxic Experimental Model of Autism;; Recent Advances in Neurodegeneration. IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.80046]
[31]
Patel, M.B. Forskolin: A successful therapeutic phytomolecule. East Cent. Afr. J. Pharm. Sci., 2010, 13, 25-32.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy