Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Unraveling the Role of the Glycogen Synthase Kinase-3β, Bruton’s Tyrosine Kinase, and Sphingosine 1 Phosphate Pathways in Multiple Sclerosis

Author(s): Rupali Mohite, Sankalp Gharat and Gaurav Doshi*

Volume 24, Issue 10, 2024

Published on: 26 January, 2024

Page: [1131 - 1145] Pages: 15

DOI: 10.2174/0118715303261413231117113707

Price: $65

Abstract

Inflammation, demyelination, and neurodegeneration are symptoms of the central nervous system (CNS) condition known as Multiple sclerosis (MS). Due to its crucial function in controlling immune cell activation and inflammation, the glycogen synthase kinase-3β (GSK- 3β), Bruton's tyrosine kinase (BTK), and Sphingosine 1 phosphate (S1P) signaling pathway have become a viable target for the therapy of MS. The GSK-3β signaling system, which controls several biological target processes, including cell survival, proliferation, and inflammation, depends on the GSK-3β enzyme. In MS animal models and human studies, GSK-3β inhibition has been demonstrated to lessen demyelination and inflammation. Clinical research on MS has demonstrated that BTK inhibitors decrease inflammation and disease activity by preventing B cell activation and the subsequent release of cytokines. Clinical investigations for MS have demonstrated that S1P modulators, such as fingolimod, lower disease activity and inflammation by limiting immune cell migration to the central nervous system and preventing cytokine production. The GSK-3β /BTK/S1P signaling pathway in MS is the subject of this paper's summary and discussion of prospective treatment targets.

Graphical Abstract

[1]
Sicotte, N.L. Magnetic resonance imaging in multiple sclerosis: The role of conventional imaging. Neurol. Clin., 2011, 29(2), 343-356.
[http://dx.doi.org/10.1016/j.ncl.2011.01.005] [PMID: 21439445]
[2]
Wang, H. MicroRNAs, multiple sclerosis, and depression. Int. J. Mol. Sci., 2021, 22(15), 7802.
[http://dx.doi.org/10.3390/ijms22157802] [PMID: 34360568]
[3]
TaŞKapilioĞLu, Ö. Recent advances in the treatment for multiple sclerosis; current new drugs specific for multiple sclerosis. Noro Psikiyatri Arsivi, 2018, 55(Suppl. 1), S15-S20.
[http://dx.doi.org/10.29399/npa.23402] [PMID: 30692849]
[4]
Apostolopoulos, V.; Matsoukas, J. Advances in multiple sclerosis research–series I. Brain Sci., 2020, 10(11), 795.
[http://dx.doi.org/10.3390/brainsci10110795] [PMID: 33137992]
[5]
Bradl, M.; Lassmann, H. Oligodendrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 37-53.
[http://dx.doi.org/10.1007/s00401-009-0601-5] [PMID: 19847447]
[6]
Burrows, D.J.; McGown, A.; Jain, S.A.; De Felice, M.; Ramesh, T.M.; Sharrack, B.; Majid, A. Animal models of multiple sclerosis: From rodents to zebrafish. Mult. Scler., 2019, 25(3), 306-324.
[http://dx.doi.org/10.1177/1352458518805246] [PMID: 30319015]
[7]
Wingerchuk, D.M.; Carter, J.L. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin. Proc., 2014, 89(2), 225-240.
[http://dx.doi.org/10.1016/j.mayocp.2013.11.002] [PMID: 24485135]
[8]
Calabresi, P.A. Diagnosis and management of multiple sclerosis. Am. Fam. Physician, 2004, 70(10), 1935-1944.
[PMID: 15571060]
[9]
Lassmann, H. Targets of therapy in progressive MS. Mult. Scler., 2017, 23(12), 1593-1599.
[http://dx.doi.org/10.1177/1352458517729455] [PMID: 29041864]
[10]
Doble, B.W.; Woodgett, J.R. GSK-3: Tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(7), 1175-1186.
[http://dx.doi.org/10.1242/jcs.00384] [PMID: 12615961]
[11]
Rippin, I.; Eldar-Finkelman, H. Mechanisms and therapeutic implications of GSK-3 in treating neurodegeneration. Cells, 2021, 10(2), 262.
[http://dx.doi.org/10.3390/cells10020262] [PMID: 33572709]
[12]
Martelli, A.M.; Paganelli, F.; Evangelisti, C.; Chiarini, F.; McCubrey, J.A. Pathobiology and therapeutic relevance of GSK-3 in chronic hematological malignancies. Cells, 2022, 11(11), 1812.
[http://dx.doi.org/10.3390/cells11111812] [PMID: 35681507]
[13]
Freedman, M.S.; Selchen, D.; Prat, A.; Giacomini, P.S. Managing multiple sclerosis: Treatment initiation, modification, and sequencing. Can. J. Neurol. Sci., 2018, 45(5), 489-503.
[http://dx.doi.org/10.1017/cjn.2018.17] [PMID: 29893652]
[14]
Göbel, K.; Ruck, T.; Meuth, S.G. Cytokine signaling in multiple sclerosis: Lost in translation. Mult. Scler., 2018, 24(4), 432-439.
[http://dx.doi.org/10.1177/1352458518763094] [PMID: 29512406]
[15]
Hemmer, B.; Cepok, S.; Nessler, S.; Sommer, N. Pathogenesis of multiple sclerosis: An update on immunology. Curr. Opin. Neurol., 2002, 15(3), 227-231.
[http://dx.doi.org/10.1097/00019052-200206000-00001] [PMID: 12045717]
[16]
Immovilli, P.; Morelli, N.; Terracciano, C.; Rota, E.; Marchesi, E.; Vollaro, S.; De Mitri, P.; Zaino, D.; Bazzurri, V.; Guidetti, D. Multiple sclerosis treatment in the COVID-19 Era: A risk-benefit approach. Neurol. Int., 2022, 14(2), 368-377.
[http://dx.doi.org/10.3390/neurolint14020030] [PMID: 35466211]
[17]
Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov., 2021, 20(1), 39-63.
[http://dx.doi.org/10.1038/s41573-020-0082-8] [PMID: 33077936]
[18]
Krämer, J.; Bar-Or, A.; Turner, T.J.; Wiendl, H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat. Rev. Neurol., 2023, 19(5), 289-304.
[http://dx.doi.org/10.1038/s41582-023-00800-7] [PMID: 37055617]
[19]
Bravo, G.Á.; Cedeño, R.R.; Casadevall, M.P.; Ramió-Torrentà, L. Sphingosine-1-Phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells, 2022, 11(13), 2058.
[http://dx.doi.org/10.3390/cells11132058] [PMID: 35805142]
[20]
Dargahi, N.; Katsara, M.; Tselios, T.; Androutsou, M.E.; de Courten, M.; Matsoukas, J.; Apostolopoulos, V. Multiple sclerosis: Immunopathology and treatment update. Brain Sci., 2017, 7(12), 78.
[http://dx.doi.org/10.3390/brainsci7070078] [PMID: 28686222]
[21]
Piehl, F. Current and emerging disease-‐modulatory therapies and treatment targets for multiple sclerosis. J. Intern. Med., 2021, 289(6), 771-791.
[http://dx.doi.org/10.1111/joim.13215] [PMID: 33258193]
[22]
Lauretti, E.; Dincer, O.; Praticò, D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(5), 118664.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118664] [PMID: 32006534]
[23]
Noori, T.; Dehpour, A.R.; Sureda, A.; Fakhri, S.; Sobarzo-Sanchez, E.; Farzaei, M.H.; Akkol, E.; Khodarahmi, Z.; Hosseini, S.Z.; Alavi, S.D.; Shirooie, S. The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed. Pharmacother., 2020, 132, 110874.
[http://dx.doi.org/10.1016/j.biopha.2020.110874] [PMID: 33080467]
[24]
Issa, M.E.; Rudd, C.E. Glycogen Synthase Kinase-3 (GSK-3) regulation of inhibitory coreceptor expression in T-cell immunity. J. Cell. Immunol., 2021, 3(5), 336-342.
[http://dx.doi.org/10.33696/immunology.3.115] [PMID: 35693319]
[25]
Mancinelli, R.; Carpino, G.; Petrungaro, S.; Mammola, C.L.; Tomaipitinca, L.; Filippini, A.; Facchiano, A.; Ziparo, E.; Giampietri, C. Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid. Med. Cell. Longev., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/4629495] [PMID: 29379583]
[26]
Pavelek, Z.; Angelucci, F. Sou-ček, O.; Krejsek, J.; Sobíšek, L.; Klímová, B.; Šarláková, J.; Halúsková, S.; Ku-ča, K.; Vališ, M. Innate immune system and multiple sclerosis. granulocyte numbers are reduced in patients affected by relapsing-remitting multiple sclerosis during the remission phase. J. Clin. Med., 2020, 9(5), 1468.
[http://dx.doi.org/10.3390/jcm9051468] [PMID: 32422897]
[27]
Ghosouri, S.; Soleimani, M.; Bakhtiari, M.; Ghasemi, N. Evaluation of in vivo lithium chloride effects as a GSK3--β inhibitor on human adipose derived stem cells differentiation into oligodendrocytes and re-myelination in an animal model of multiple sclerosis. Mol. Biol. Rep., 2023, 50(2), 1617-1625.
[http://dx.doi.org/10.1007/s11033-022-08181-8] [PMID: 36526850]
[28]
Wada, A. GSK-3 inhibitors and insulin receptor signaling in health, disease, and therapeutics. Front. Biosci., 2009, 14, 1558-1570.
[http://dx.doi.org/10.2741/3324] [PMID: 19273146]
[29]
Cohen, P.; Goedert, M. GSK3 inhibitors: Development and therapeutic potential. Nat. Rev. Drug Discov., 2004, 3(6), 479-487.
[http://dx.doi.org/10.1038/nrd1415] [PMID: 15173837]
[30]
Benítez-Fernández, R.; Gil, C.; Guaza, C.; Mestre, L.; Martínez, A. The Dual PDE7-GSK3-β Inhibitor, VP3.15, as neuroprotective disease-modifying treatment in a model of primary progressive multiple sclerosis. Int. J. Mol. Sci., 2022, 23(22), 14378.
[http://dx.doi.org/10.3390/ijms232214378] [PMID: 36430856]
[31]
Bertrand, F.E. The cross-talk of NOTCH and GSK-3 signaling in colon and other cancers. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(9), 118738.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118738] [PMID: 32389646]
[32]
Study to assess whether GSK239512 can remyelinate lesions in subjects with relapsing-remitting multiple sclerosis. Full Text View - ClinicalTrials.gov, Available from: http://classic.clinicaltrials.gov/ct2/show/NCT01067521 (Accessed 07 September 2023).
[33]
Wang, B.; Khan, S.; Wang, P.; Wang, X.; Liu, Y.; Chen, J.; Tu, X. A highly selective GSK-3-β Inhibitor CHIR99021 promotes osteogenesis by activating canonical and autophagy-mediated wnt signaling. Front. Endocrinol., 2022, 13, 926622.
[http://dx.doi.org/10.3389/fendo.2022.926622] [PMID: 35923616]
[34]
Hoffmeister, L.; Diekmann, M.; Brand, K.; Huber, R. GSK3: A kinase balancing promotion and resolution of inflammation. Cells, 2022, 9(4), 820.
[http://dx.doi.org/10.3390/cells9040820]
[35]
Arciniegas Ruiz, S.M.; Eldar-Finkelman, H. Glycogen synthase kinase-3 Inhibitors: Preclinical and clinical focus on CNS-A decade onward. Front. Mol. Neurosci., 2022, 14, 792364.
[http://dx.doi.org/10.3389/fnmol.2021.792364] [PMID: 35126052]
[36]
Sánchez-Cruz, A.; Villarejo-Zori, B.; Marchena, M.; Zaldivar-Díez, J.; Palomo, V.; Gil, C.; Lizasoain, I.; de la Villa, P.; Martínez, A.; de la Rosa, E.J.; Hernández-Sánchez, C. Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa. Mol. Neurodegener., 2018, 13(1), 19.
[http://dx.doi.org/10.1186/s13024-018-0251-y] [PMID: 29661219]
[37]
Milo, R. Therapies for multiple sclerosis targeting B cells. Croat. Med. J., 2019, 60(2), 87-98.
[http://dx.doi.org/10.3325/cmj.2019.60.87] [PMID: 31044580]
[38]
Li, R.; Tang, H.; Burns, J.C.; Hopkins, B.T.; Le Coz, C.; Zhang, B.; de Barcelos, I.P.; Romberg, N.; Goldstein, A.C.; Banwell, B.L.; Luning Prak, E.T.; Mingueneau, M.; Bar-Or, A. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: Implications for multiple sclerosis therapy. Acta Neuropathol., 2022, 143(4), 505-521.
[http://dx.doi.org/10.1007/s00401-022-02411-w] [PMID: 35303161]
[39]
Alomar, H.A.; Nadeem, A.; Ansari, M.A.; Attia, S.M.; Bakheet, S.A.; Al-Mazroua, H.A.; Alhazzani, K.; Assiri, M.A.; Alqinyah, M.; Almudimeegh, S.; Ahmad, S.F. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res. Bull., 2023, 194, 45-53.
[http://dx.doi.org/10.1016/j.brainresbull.2023.01.003] [PMID: 36646144]
[40]
Lewis, K.L.; Cheah, C.Y. Non-covalent BTK inhibitors-the new BTKids on the block for B-cell malignancies. J. Pers. Med., 2021, 11(8), 764.
[http://dx.doi.org/10.3390/jpm11080764] [PMID: 34442408]
[41]
Qiao, H.; Mao, Z.; Wang, W.; Chen, X.; Wang, S.; Fan, H.; Zhao, T.; Hou, H.; Dong, M. Changes in the BTK/NF--κB signaling pathway and related cytokines in different stages ofneuromyelitis optica spectrum disorders. Eur. J. Med. Res., 2022, 27(1), 96.
[http://dx.doi.org/10.1186/s40001-022-00723-x] [PMID: 35729649]
[42]
Contentti, E.; Correale, J. Current perspectives: Evidence to date on BTK inhibitors in the management of multiple sclerosis. Drug Des. Devel. Ther., 2022, 16, 3473-3490.
[http://dx.doi.org/10.2147/DDDT.S348129] [PMID: 36238195]
[43]
Rozkiewicz, D.; Hermanowicz, J.M.; Kwiatkowska, I.; Krupa, A.; Pawlak, D. Bruton’s tyrosine kinase inhibitors (BTKIs): Review of preclinical studies and evaluation of clinical trials. Molecules, 2023, 28(5), 2400.
[http://dx.doi.org/10.3390/molecules28052400] [PMID: 36903645]
[44]
Gu, D.; Tang, H.; Wu, J.; Li, J.; Miao, Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J. Hematol. Oncol., 2021, 14(1), 40.
[http://dx.doi.org/10.1186/s13045-021-01049-7] [PMID: 33676527]
[45]
Ringheim, G.E.; Wampole, M.; Oberoi, K. Bruton’s tyrosine kinase (BTK) inhibitors and autoimmune diseases: Making sense of BTK inhibitor specificity profiles and recent clinical trial successes and failures. Front. Immunol., 2021, 12, 662223.
[http://dx.doi.org/10.3389/fimmu.2021.662223] [PMID: 34803999]
[46]
Roberti, A. Chaffey, L.E.; Greaves, D.R. NF--κB signaling and inflammation-drug repurposing to treat inflammatory disorders? Biology, 2022, 11(3), 372.
[http://dx.doi.org/10.3390/biology11030372] [PMID: 35336746]
[47]
Park, H.Y.; Chae, M.K.; Ko, J.; Kikkawa, D.O.; Jang, S.Y.; Yoon, J.S. Therapeutic effect of ibrutinib, a selective Bruton’s tyrosine kinase inhibitor, in orbital fibroblasts from patients with Graves’ orbitopathy. PLoS One, 2022, 17(12), e0279060.
[http://dx.doi.org/10.1371/journal.pone.0279060] [PMID: 36521376]
[48]
Najmi, A.; Thangavel, N.; Mohanan, A.T.; Qadri, M.; Albratty, M.; Ashraf, S.E.; Saleh, S.F.; Nayeem, M.; Mohan, S. Structural Complementarity of Bruton’s tyrosine kinase and its inhibitors for implication in b-cell malignancies and autoimmune diseases. Pharmaceuticals, 2023, 16(3), 400.
[http://dx.doi.org/10.3390/ph16030400] [PMID: 36986499]
[49]
Correale, J. BTK inhibitors as potential therapies for multiple sclerosis. Lancet Neurol., 2021, 20(9), 689-691.
[http://dx.doi.org/10.1016/S1474-4422(21)00250-7] [PMID: 34418385]
[50]
Weber, A.N.R.; Bittner, Z.; Liu, X.; Dang, T.M.; Radsak, M.P.; Brunner, C. Bruton’s Tyrosine Kinase: An emerging key player in innate immunity. Front. Immunol., 2017, 8, 1454.
[http://dx.doi.org/10.3389/fimmu.2017.01454] [PMID: 29167667]
[51]
Torke, S.; Weber, M.S. Inhibition of Bruton’s tyrosine kinase as a novel therapeutic approach in multiple sclerosis. Expert Opin. Investig. Drugs, 2020, 29(10), 1143-1150.
[http://dx.doi.org/10.1080/13543784.2020.1807934] [PMID: 32772592]
[52]
Carnero Contentti, E.; Correale, J. Bruton’s tyrosine kinase inhibitors: A promising emerging treatment option for multiple sclerosis. Expert Opin. Emerg. Drugs, 2020, 25(4), 377-381.
[http://dx.doi.org/10.1080/14728214.2020.1822817] [PMID: 32910702]
[53]
Zhang, D.; Gong, H.; Meng, F. Recent Advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules, 2021, 26(16), 4907.
[http://dx.doi.org/10.3390/molecules26164907] [PMID: 34443496]
[54]
García-Merino, A. Bruton’s tyrosine kinase inhibitors: A new generation of promising agents for multiple sclerosis therapy. Cells, 2021, 10(10), 2560.
[http://dx.doi.org/10.3390/cells10102560] [PMID: 34685540]
[55]
Becker, A.; Martin, E.C.; Mitchell, D.Y.; Grenningloh, R.; Bender, A.T.; Laurent, J.; Mackenzie, H.; Johne, A. Safety, tolerability, pharmacokinetics, target occupancy, and concentration-‐qt analysis of the Novel BTK inhibitor evobrutinib in healthy volunteers. Clin. Transl. Sci., 2020, 13(2), 325-336.
[http://dx.doi.org/10.1111/cts.12713] [PMID: 31654487]
[56]
Haselmayer, P.; Camps, M.; Liu-Bujalski, L.; Nguyen, N.; Morandi, F.; Head, J.; O’Mahony, A.; Zimmerli, S.C.; Bruns, L.; Bender, A.T.; Schroeder, P.; Grenningloh, R. Efficacy and pharmacodynamic modeling of the btk inhibitor evobrutinib in autoimmune disease models. J. Immunol., 2019, 202(10), 2888-2906.
[http://dx.doi.org/10.4049/jimmunol.1800583] [PMID: 30988116]
[57]
Study of Evobrutinib in Participants with RMS. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT04338061 (Accessed 07 September 2023).
[58]
Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med., 2019, 380(25), 2406-2417.
[http://dx.doi.org/10.1056/NEJMoa1901981] [PMID: 31075187]
[59]
Saberi, D.; Geladaris, A.; Dybowski, S.; Weber, M.S. Bruton’s tyrosine kinase as a promising therapeutic target for multiple sclerosis. Expert Opin. Ther. Targets, 2023, 27(4-5), 347-359.
[http://dx.doi.org/10.1080/14728222.2023.2218615] [PMID: 37272515]
[60]
Dose-finding study for SAR442168 in relapsing multiple sclerosis. Full Text View - ClinicalTrials.gov Available from: http://classic.clinicaltrials.gov/ct2/show/NCT03889639 (Accessed 07 September 2023).
[61]
Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mareš, M.; Khabirov, F.A.; Traboulsee, A.; Grand’Maison, F.; Jacques, F.; Traboulsee, A.; Tyblova, M.; Meluzinova, E.; Ampapa, R.; Valis, M.; Hradilke, P.; Mareš, M.; Stourac, P.; Gross-Paju, K.; Laplaud, D.; Mathey, G.; Uitdehaag, B.; Evdoshenkoo, E.; Popova, E.; Zakharova, M.; Totolyan, N.; Litvinenko, I.; Khabirov, F.; Sivertseva, S.; Hancinova, V.; Kantorova, E.; Gines, M.L.M.; Montalban, X.; Maduano, S.E.; Meca-Lallana, J.; Ramió-Torrentà, L.; Nehrych, T.; Pashkovskyy, V.; Moskovko, S.; Kalbus, O.; Khavunka, M.; Pryshchepa, V.; Goloborodko, A.; Wynn, D.; Honeycutt, W.; Wray, S.; Steingo, B.; LaGanke, C.; Huang, D.; Hemphill, J.M.; Goldstick, L.; Robertson, D. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2021, 20(9), 729-738.
[http://dx.doi.org/10.1016/S1474-4422(21)00237-4] [PMID: 34418400]
[62]
Nonrelapsing secondary progressive multiple sclerosis (NRSPMS) study of bruton's tyrosine kinase (BTK) inhibitor tolebrutinib (SAR442168) (HERCULES). Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT04411641
[63]
Observational study of fostamatinib as second line therapy in adult patients with immune thrombocytopenia (ITP) and insufficient response to a prior therapy. Full Text View - ClinicalTrials.gov, Available from: http://classic.clinicaltrials.gov/ct2/show/NCT04904276 (Accessed 07 September 2023).
[64]
A study to evaluate the efficacy and safety of fenebrutinib compared with ocrelizumab in adult participants with primary progressive multiple sclerosis (FENtrepid). Full Text View - ClinicalTrials. gov, Available from: http://classic.clinicaltrials.gov/ct2/show/NCT04544449 (Accessed 07 September 2023).
[65]
A efficacy and safety study of fostamatinib in the treatment of persistent/chronic immune thrombocytopenic purpura (ITP) (FIT). Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT02076412 (Accessed 07 September 2023).
[66]
Study of Evobrutinib in Participants with RMS (evolutionRMS 1). Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT04338022 (Accessed 07 September 2023).
[67]
Proia, R.L.; Hla, T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest., 2015, 125(4), 1379-1387.
[http://dx.doi.org/10.1172/JCI76369] [PMID: 25831442]
[68]
Chi, H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol. Sci., 2011, 32(1), 16-24.
[http://dx.doi.org/10.1016/j.tips.2010.11.002] [PMID: 21159389]
[69]
Balasa, R.; Barcutean, L.; Mosora, O.; Manu, D. Reviewing the significance of blood–brain barrier disruption in multiple sclerosis pathology and treatment. Int. J. Mol. Sci., 2021, 22(16), 8370.
[http://dx.doi.org/10.3390/ijms22168370] [PMID: 34445097]
[70]
Roggeri, A.; Schepers, M.; Tiane, A.; Rombaut, B.; van Veggel, L.; Hellings, N.; Prickaerts, J.; Pittaluga, A.; Vanmierlo, T. Sphingosine-1-phosphate receptor modulators and oligodendroglial cells: Beyond immunomodulation. Int. J. Mol. Sci., 2020, 21(20), 7537.
[http://dx.doi.org/10.3390/ijms21207537] [PMID: 33066042]
[71]
Terlizzi, M.; Colarusso, C.; Somma, P.; De Rosa, I.; Panico, L.; Pinto, A.; Sorrentino, R. S1P-Induced TNF--α and IL-6 Release from PBMCs exacerbates lung cancer-associated inflammation. Cells, 2022, 11(16), 2524.
[http://dx.doi.org/10.3390/cells11162524] [PMID: 36010601]
[72]
Chun, J.; Giovannoni, G.; Hunter, S.F. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs, 2021, 81(2), 207-231.
[http://dx.doi.org/10.1007/s40265-020-01431-8] [PMID: 33289881]
[73]
McGinley, M.P.; Cohen, J.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet, 2021, 398(10306), 1184-1194.
[http://dx.doi.org/10.1016/S0140-6736(21)00244-0] [PMID: 34175020]
[74]
Lucaciu, A.; Brunkhorst, R.; Pfeilschifter, J.M.; Pfeilschifter, W.; Subburayalu, J. The S1P-S1PR Axis in neurological disorders-insights into current and future therapeutic perspectives. Cells, 2020, 9(6), 1515.
[http://dx.doi.org/10.3390/cells9061515]
[75]
Giovannoni, F.; Quintana, F.J. The Role of Astrocytes in CNS Inflammation. Trends Immunol., 2020, 41(9), 805-819.
[http://dx.doi.org/10.1016/j.it.2020.07.007] [PMID: 32800705]
[76]
Haines, J.D.; Inglese, M.; Casaccia, P. Axonal damage in multiple sclerosis. Mt. Sinai J. Med., 2011, 78(2), 231-243.
[http://dx.doi.org/10.1002/msj.20246] [PMID: 21425267]
[77]
Cartier, A.; Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science, 2019, 366(6463)
[78]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), 000034.
[79]
Pérez-Jeldres, T.; Alvarez-Lobos, M.; Rivera-Nieves, J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: Beyond multiple sclerosis. Drugs, 2021, 81(9), 985-1002.
[http://dx.doi.org/10.1007/s40265-021-01528-8] [PMID: 33983615]
[80]
Chatzikonstantinou, S.; Poulidou, V.; Arnaoutoglou, M.; Kazis, D.; Heliopoulos, I.; Grigoriadis, N.; Boziki, M. Signaling through the S1P-−S1PR Axis in the Gut, the immune and the central nervous system in multiple sclerosis: Implication for pathogenesis and treatment. Cells, 2021, 10(11), 3217.
[http://dx.doi.org/10.3390/cells10113217] [PMID: 34831439]
[81]
Groves, A.; Kihara, Y.; Chun, J. Fingolimod: Direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J. Neurol. Sci., 2013, 328(1-2), 9-18.
[http://dx.doi.org/10.1016/j.jns.2013.02.011] [PMID: 23518370]
[82]
Bordet, R.; Camu, W.; De Seze, J.; Laplaud, D.A.; Ouallet, J.C.; Thouvenot, E. Mechanism of action of s1p receptor modulators in multiple sclerosis: The double requirement. Rev. Neurol., 2020, 176(1-2), 100-112.
[http://dx.doi.org/10.1016/j.neurol.2019.02.007] [PMID: 31757428]
[83]
Dumitrescu, L.; Papathanasiou, A.; Coclitu, C.; Garjani, A.; Evangelou, N.; Constantinescu, C.S.; Popescu, B.O.; Tanasescu, R. An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert Opin. Pharmacother., 2023, 24(4), 495-509.
[http://dx.doi.org/10.1080/14656566.2023.2178898] [PMID: 36946625]
[84]
Martín-Hernández, D.; Muñoz-López, M.; Tendilla-Beltrán, H.; Caso, J.R.; García-Bueno, B.; Menchén, L.; Leza, J.C. Immune system and brain/intestinal barrier functions in psychiatric diseases: Is sphingosine-1-phosphate at the helm? Int. J. Mol. Sci., 2023, 24(16), 12634.
[http://dx.doi.org/10.3390/ijms241612634] [PMID: 37628815]
[85]
Mendelson, K.; Evans, T.; Hla, T. Sphingosine 1-phosphate signalling. Development, 2014, 141(1), 5-9.
[http://dx.doi.org/10.1242/dev.094805] [PMID: 24346695]
[86]
Exploring the efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis. Full Text View - ClinicalTrials. gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT01665144 (Accessed 07 September 2023).
[87]
D’Ambrosio, D.; Freedman, M.S.; Prinz, J. Ponesimod, a selective S1P1 receptor modulator: A potential treatment for multiple sclerosis and other immune-mediated diseases. Ther. Adv. Chronic Dis., 2016, 7(1), 18-33.
[http://dx.doi.org/10.1177/2040622315617354] [PMID: 26770667]
[88]
Clinical study to evaluate the efficacy, safety, and tolerability of ACT-128800 in patients with relapsing-remitting multiple sclerosis. Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT01006265 (Accessed 07 September 2023).
[89]
Oral ponesimod versus teriflunomide in relapsing multiple sclerosis (OPTIMUM). Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT02425644 (Accessed 07 September 2023).
[90]
Efficacy and safety of fingolimod in patients with relapsingremitting multiple sclerosis with optional extension phase (TRANSFORMS). Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT00340834 (Accessed 07 September 2023).
[91]
Efficacy and safety study of ozanimod in relapsing multiple sclerosis (RADIANCE). Full Text View - ClinicalTrials.gov. Available from: http://classic.clinicaltrials.gov/ct2/show/NCT02047734 (Accessed 07 September 2023).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy