Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Phyllanthus-derived Naturally-occurring Products: An Overview of their Effects against Viruses in Cell Models

Author(s): Taylor H. Díaz-Herrera*, María L. Caldas Martínez and Ericsson Coy-Barrera

Volume 20, Issue 9, 2024

Published on: 26 January, 2024

Article ID: e260124226282 Pages: 26

DOI: 10.2174/0115734072275982231230073813

Price: $65

Abstract

Background: Infectious diseases are considered a global public health problem, with viruses being the predominant infectious agents afflicting the human population. The most used control alternatives are the search and development of vaccines and drugs. Nevertheless, their efficacy has limitations related to the immune response stimulation, resistance mechanisms, costeffort ratio, development, and production. An alternative to these drawbacks is the search for compounds isolated from plants with antiviral and/or virucidal properties. The genus Phyllanthus is a plant group producing compounds that gathers an antiviral and virucidal spectrum on different biological models. However, there is no complete review of their properties against viruses in cell models.

Objective: To compile and analyse the more relevant information on the antiviral and virucidal activity in cell models, phytochemical composition, and generalities of the genus Phyllanthus.

Method: The information was assembled from a general search for articles in various databanks, and the information was organized, tabulated, and discussed.

Results: The taxonomic classification of the genus Phyllanthus showed discrepancies between different authors and publications. The antiviral and virucidal effects of Phyllanthus naturallyoccurring compounds on cell models showed a broad spectrum and a high chemical diversity mainly related to phenols and polyphenols.

Conclusion: Antiviral and virucidal properties of Phyllanthus-derived compounds showed promising results as controlling agents against viral infections in different cell models, particularly in the viral replication and translation processes. Further studies are required to elucidate the specific mechanisms involved in these natural alternatives to expand their efficient and effective applications.

Graphical Abstract

[1]
Afrough, B.; Dowall, S.; Hewson, R. Emerging viruses and current strategies for vaccine intervention. Clin. Exp. Immunol., 2019, 196(2), 157-166.
[http://dx.doi.org/10.1111/cei.13295] [PMID: 30993690]
[2]
Carrasco-Hernandez, R.; Jácome, R.; López Vidal, Y.; Ponce de León, S. Are RNA viruses candidate agents for the next global pandemic? a review. ILAR J., 2017, 58(3), 343-358.
[http://dx.doi.org/10.1093/ilar/ilx026] [PMID: 28985316]
[3]
Parvez, M.K.; Parveen, S. Evolution and emergence of pathogenic viruses: Past, present, and future. Intervirology, 2017, 60(1-2), 1-7.
[http://dx.doi.org/10.1159/000478729] [PMID: 28772262]
[4]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[5]
Ghanemi, A. Cell cultures in drug development: Applications, challenges and limitations. Saudi Pharm. J., 2015, 23(4), 453-454.
[http://dx.doi.org/10.1016/j.jsps.2014.04.002] [PMID: 27134549]
[6]
Jaroch, K.; Jaroch, A.; Bojko, B. Cell cultures in drug discovery and development: The need of reliable in vitro-In vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J. Pharm. Biomed. Anal., 2018, 147, 297-312.
[http://dx.doi.org/10.1016/j.jpba.2017.07.023] [PMID: 28811111]
[7]
Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med., 2014, 4(1), 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[8]
Plotkin, S.A. Increasing complexity of vaccine development. J. Infect. Dis., 2015, 212(S1), S12-S16.
[http://dx.doi.org/10.1093/infdis/jiu568] [PMID: 26116724]
[9]
Douglas, R.G.; Samant, V.B. The Vaccine Industry; Plotkin’s Vaccines, 2018, pp. 41-50.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00004-3]
[10]
Aguilar, A.; Amin, N.; Pérez, E.M. Vacunas contra El virus dengue : Desarrollo histórico. Vaccimonitor, 2003, 12(2), 19-27.
[11]
Hombach, J. Vaccines against dengue: A review of current candidate vaccines at advanced development stages. Rev. Panam. Salud Publica, 2007, 21(4), 254-260.
[http://dx.doi.org/10.1590/S1020-49892007000300011] [PMID: 17612469]
[12]
Galabov, A.S. Virucidal agents in the eve of manorapid synergy. GMS Krankenhhyg. Interdiszip., 2007, 2(1), Doc18.
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[14]
Mustafa, G.; Arif, R.; Atta, A.; Sharif, S.; Jamil, A. Bioactive compounds from medicinal plants and their importance in drug discovery in pakistan. Matrix Science Pharma, 2017, 1(1), 17-26.
[http://dx.doi.org/10.26480/msp.01.2017.17.26]
[15]
Lee, S.H.; Tang, Y.Q.; Rathkrishnan, A.; Wang, S.M.; Ong, K.C.; Manikam, R.; Payne, B.J.; Jaganath, I.B.; Sekaran, S.D. Effects of cocktail of four local Malaysian medicinal plants (Phyllanthus spp.) against dengue virus 2. BMC Complement. Altern. Med., 2013, 13(1), 192.
[http://dx.doi.org/10.1186/1472-6882-13-192] [PMID: 23889893]
[16]
Notka, F.; Meier, G.; Wagner, R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res., 2004, 64(2), 93-102.
[http://dx.doi.org/10.1016/S0166-3542(04)00129-9] [PMID: 15498604]
[17]
Harikumar, K.B.; Kuttan, G.; Kuttan, R. Inhibition of viral carcinogenesis by Phyllanthus amarus. Integr. Cancer Ther., 2009, 8(3), 254-260.
[http://dx.doi.org/10.1177/1534735409340162] [PMID: 19815595]
[18]
Manjrekar, A.P.; Jisha, V.; Bag, P.P.; Adhikary, B.; Pai, M.M.; Hegde, A.; Nandini, M. Effect of Phyllanthus niruri Linn. treatment on liver, kidney and testes in CCl4 induced hepatotoxic rats. Indian J. Exp. Biol., 2008, 46(7), 514-520.
[PMID: 18807755]
[19]
Onocha, P.A.; Ali, M.S. Antileishmaniasis, phytotoxicity and cytotoxicity of nigerian euphorbiaceous plants 2 : Phyllanthus amarus and Phyllanthus muellerianus Extracts. Am. Sci., 2010, 11(2), 79-83.
[20]
Raphael, K.R.; Sabu, M.C.; Kuttan, R. Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. Indian J. Exp. Biol., 2002, 40(8), 905-909.
[PMID: 12597020]
[21]
Calixto, J.B.; Santos, A.R.S.; Filho, V.C.; Yunes, R.A. A review of the plants of the genus Phyllanthus : And therapeutic potential. Med. Res. Rev., 1998, 18(4), 225-258.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199807)18:4<225:AID-MED2>3.0.CO;2-X] [PMID: 9664291]
[22]
Sarin, B.; Verma, N.; Martín, J.P.; Mohanty, A. An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future prospects. ScientificWorldJournal, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/839172] [PMID: 24672382]
[23]
Mao, X.; Wu, L.F.; Guo, H.L.; Chen, W.J.; Cui, Y.P.; Qi, Q.; Li, S.; Liang, W.Y.; Yang, G.H.; Shao, Y.Y.; Zhu, D.; She, G.M.; You, Y.; Zhang, L.Z. The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-36.
[http://dx.doi.org/10.1155/2016/7584952] [PMID: 27200104]
[24]
Kaur, N.; Kaur, B.; Sirhindi, G. Phytochemistry and pharmacology of Phyllanthus niruri L.: A review. Phytother. Res., 2017, 31(7), 980-1004.
[http://dx.doi.org/10.1002/ptr.5825] [PMID: 28512988]
[25]
Nisar, M.; He, J.; Ahmed, A.; Yang, Y.; Li, M.; Wan, C. Chemical components and biological activities of the genus Phyllanthus: A review of the recent literature. Molecules, 2018, 23(10), 2567.
[http://dx.doi.org/10.3390/molecules23102567] [PMID: 30297661]
[26]
Upadhyay, R.; Tiwari, K.N. The antiviral potential of Phyllanthus species: A systematic review. Arch. Virol., 2023, 168(7), 177.
[http://dx.doi.org/10.1007/s00705-023-05802-w]
[27]
Bouman, R.W.; Keβller, P.J.A.; Telford, I.R.H.; Bruhl, J.J.; van Welzen, P.C. Subgeneric delimitation of the plant genus Phyllanthus (Phyllanthaceae). Blumea, 2018, 63(2), 167-198.
[http://dx.doi.org/10.3767/blumea.2018.63.02.14]
[28]
Webster, G.L. A revision of Phyllanthus (Euphorbiaceae) in the Continental United States. Brittonia, 1970, 22(1), 44-76.
[http://dx.doi.org/10.2307/2805721]
[29]
Webster, G.L. A Synopsis of the Brazilian Taxa of Phyllanthus section Phyllanthus (Euphorbiaceae). Lundellia (Austin, Tex.), 2002, 5(1), 1-26.
[http://dx.doi.org/10.25224/1097-993X-5.1.1]
[30]
Webster, G.L. A synopsis of Phyllanthus section nothoclema (EUPHORBIACEAE). Lundellia (Austin, Tex.), 2003, 6(1), 19-36.
[http://dx.doi.org/10.25224/1097-993X-6.1.19]
[31]
Punt, W. Pollen morphology of the genus Phyllanthus (Euphorbiaceae). Rev. Palaeobot. Palynol., 1967, 3(1-4), 141-150.
[http://dx.doi.org/10.1016/0034-6667(67)90047-4]
[32]
Santiago, L.J.M.; Louro, R.P.; Emmerich, M. Phyllanthus section Choretropsis (Euphorbiaceae) in Brazil. Bot. J. Linn. Soc., 2006, 150(2), 131-164.
[http://dx.doi.org/10.1111/j.1095-8339.2006.00459.x]
[33]
Verwijs, J.I.M.; Bouman, R.W.; van Welzen, P.C. A taxonomic revision of Phyllanthus subgenus Macraea (Phyllanthaceae). Blumea, 2019, 64(3), 231-252.
[http://dx.doi.org/10.3767/blumea.2019.64.03.05]
[34]
James, J.M.; Antony, T. Morpho-anatomical, fluorescence, phytochemical and antibacterial studies of Phyllanthus myrtifolius Moon. and Phyllanthus reticulatus Poir. of Kerala. Plant Sci. Today, 2020, 7(2), 219-226.
[http://dx.doi.org/10.14719/pst.2020.7.2.744]
[35]
Noor, N.A.M.; Nafiah, M.A.; Tuan Johari, S.A.T.; Hasnan, M.H.H.; Tan, S.P.; Liew, S.Y.; Supratman, U. Anticancer effect of hypophyllanthin, niranthin and lintetralin from Phyllanthus amarus on hela cells and NIH/3T3 cells. IJRTE, 2019, 8(2S7), 106-110.
[36]
Addotey, J.N.; Lengers, I.; Jose, J.; Hensel, A. Hyal-1 inhibitors from the leaves of Phyllanthus muellerianus (Kuntze). Excell. J. Ethnopharmacol., 2019, 236, 326-335.
[http://dx.doi.org/10.1016/j.jep.2019.03.022] [PMID: 30877065]
[37]
Du, G.; Xiao, M.; Yu, S.; Wang, M.; Xie, Y.; Sang, S. Phyllanthus urinaria : A Potential Phytopharmacological Source of Natural Medicine. Int. J. Clin. Exp. Med., 2018, 11(7), 6509-6520.
[38]
Li, Y.; Guo, B.; Wang, W.; Li, L.; Cao, L.; Yang, C.; Liu, J.; Liang, Q.; Chen, J.; Wu, S.; Zhang, L. Characterization of phenolic compounds from Phyllanthus emblica fruits using HPLC-ESI-TOF-MS as affected by an optimized microwave-assisted extraction. Int. J. Food Prop., 2019, 22(1), 330-342.
[http://dx.doi.org/10.1080/10942912.2019.1583249]
[39]
Gu, C.; Yin, A.P.; Yuan, H.Y.; Yang, K.; Luo, J.; Zhan, Y.J.; Yang, C.R.; Zuo, D.M.; Li, H.Z.; Xu, M. New anti-HBV norbisabolane sesquiterpenes from Phyllantus acidus. Fitoterapia, 2019, 137, 104151.
[http://dx.doi.org/10.1016/j.fitote.2019.04.006] [PMID: 30999024]
[40]
Reddy, B.U.; Mullick, R.; Kumar, A.; Sharma, G.; Bag, P.; Roy, C.L.; Sudha, G.; Tandon, H.; Dave, P.; Shukla, A.; Srinivasan, P.; Nandhitha, M.; Srinivasan, N.; Das, S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res., 2018, 150, 47-59.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.004] [PMID: 29224736]
[41]
Zhang, X.; Xia, Q.; Yang, G.; Zhu, D.; Shao, Y.; Zhang, J.; Cui, Y.; Wang, R.; Zhang, L. The anti-HIV-1 activity of polyphenols from Phyllanthus urinaria and the pharmacokinetics and tissue distribution of its marker compound, gallic acid. J. Tradit. Chin. Med. Sci., 2017, 4(2), 158-166.
[http://dx.doi.org/10.1016/j.jtcms.2017.07.013]
[42]
Wahyuni, T.S.; Azmi, D.; Permanasari, A.A.; Adianti, M.; Tumewu, L.; Widiandani, T.; Utsubo, C.A.; Widyawaruyanti, A.; Fuad, A.; Hotta, H. Anti-viral activity of Phyllanthus niruri against hepatitis C virus. Malays. Appl. Biol., 2019, 48(3), 105-111.
[43]
Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal., 2017, 7(4), 214-222.
[http://dx.doi.org/10.1016/j.jpha.2017.01.005] [PMID: 29404041]
[44]
Malayaman, V.; Sheik Mohamed, S.; Senthilkumar, R.; Ghouse Basha, M. Analysis of phytochemical constituents in leaves of Bhumyamalaki (Phyllanthus Debilis Klein Ex Willd.) from servaroy hills, Tamil Nadu, India. J. Pharmacogn. Phytochem., 2019, 8(1), 2678-2683.
[45]
Asmilia, N.; Fahrimal, Y.; Abrar, M.; Rinidar, R. Chemical compounds of malacca leaf (Phyllanthus emblica) after triple extraction with n-hexane, ethyl acetate, and ethanol. ScientificWorldJournal, 2020, 2020, 1-5.
[http://dx.doi.org/10.1155/2020/2739056] [PMID: 32395086]
[46]
Mohd Jusoh, N.H.; Subki, A.; Yeap, S.K.; Yap, K.C.; Jaganath, I.B. Pressurized hot water extraction of hydrosable tannins from Phyllanthus tenellus Roxb. BMC Chem., 2019, 13(1), 134.
[http://dx.doi.org/10.1186/s13065-019-0653-0] [PMID: 31891160]
[47]
Oshomoh, E.O.; Uzama-Avenbuan, O. Quantitative phytochemical composition and bioactive constituents of ethanolic extract of Phyllanthus amarus (schum. et thonn) leaves. European J. Agric. Food Sci., 2020, 2(4), 2-5.
[http://dx.doi.org/10.24018/ejfood.2020.2.4.59]
[48]
Yang, F.; Yaseen, A.; Chen, B.; Li, F.; Wang, L.; Hu, W.; Wang, M. Chemical constituents from the fruits of Phyllanthus emblica L. Biochem. Syst. Ecol., 2020, 92, 104122.
[http://dx.doi.org/10.1016/j.bse.2020.104122]
[49]
Grauzdytė, D.; Pukalskas, A.; El Kalamouni, C.; Venskutonis, P.R. Antioxidant potential and phytochemical composition of extracts obtained from Phyllanthus phillyreifolius by different extraction methods. Nat. Prod. Res., 2020, 34(5), 706-709.
[http://dx.doi.org/10.1080/14786419.2018.1493586] [PMID: 30445845]
[50]
Vijaiyan Siva, G.; Subramaniam, P. Molecular, morphometric and anatomical diversity of Phyllanthus amarus schum. and thonn. collected from different localities in namakkal District, Tamil Nadu, India. Int. J Curr. Biotech., 2016, 4(8), 1-12.
[51]
Santos, M.Z.; De Ávila, J.; Morel, A.; Canto-Dorow, T.S.; Mostardeiro, M.A.; Dalcol, I.I. Evaluation of prolyl oligopeptidase and acetylcholinesterase inhibition by Phyllanthus tenellus Roxb. from Brazil. Nat. Prod. Res., 2019, 1-7.
[http://dx.doi.org/10.1080/14786419.2019.1637869] [PMID: 31282201]
[52]
Xin, Y.; Xu, M.; Wang, Y-F.; Zheng, X-H.; Zhu, H-T.; Wang, D.; Yang, C-R.; Zhang, Y-J.; Phyllanthacidoid, U. A new N -glycosyl norbisabolane sesquiterpene from Phyllanthus acidus (L.) skeels. Nat. Prod. Res., 2020, 35(21), 3540-3547.
[http://dx.doi.org/10.1080/14786419.2020.1712387] [PMID: 31979989]
[53]
Tan, S.P.; Tan, E.N.Y.; Lim, Q.Y.; Nafiah, M.A. Phyllanthus acidus (L.) Skeels: A review of its traditional uses, phytochemistry, and pharmacological properties. J. Ethnopharmacol., 2020, 253, 112610.
[http://dx.doi.org/10.1016/j.jep.2020.112610] [PMID: 31991202]
[54]
Haddad, J.G.; Grauzdytė, D.; Koishi, A.C.; Viranaicken, W.; Venskutonis, P.R.; dos Santos, N.S.C.; Desprès, P.; Diotel, N.; El Kalamouni, C. The geraniin-rich extract from reunion island endemic medicinal plant Phyllanthus phillyreifolius inhibits zika and dengue virus infection at non-toxic effect doses in zebrafish. Molecules, 2020, 25(10), 2316.
[http://dx.doi.org/10.3390/molecules25102316] [PMID: 32429073]
[55]
Li, Y.; Li, X.; Wang, J.K.; Kuang, Y.; Qi, M.X.; Anti-Hepatitis, B. Anti-hepatitis B viral activity of Phyllanthus niruri L (Phyllanthaceae) in HepG2/C3A and SK-HEP-1 cells. Trop. J. Pharm. Res., 2017, 16(8), 1873-1879.
[http://dx.doi.org/10.4314/tjpr.v16i8.17]
[56]
Muthusamy, A.; Sanjay, E.R.; Nagendra, P.H.N.; Radhakrishna, R.M.; Manjunath, J.B.; Padmalatha, R.S.; Satyamoorthy, K. Quantitative analysis of Phyllanthus species for bioactive molecules using high-pressure liquid chromatography and liquid chromatography–mass spectrometry. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2018, 88(3), 1043-1054.
[http://dx.doi.org/10.1007/s40011-017-0839-y]
[57]
Francioso, A.; Franke, K.; Villani, C.; Mosca, L.; D’Erme, M.; Frischbutter, S.; Brandt, W.; Sanchez-Lamar, A.; Wessjohann, L. Insights into the phytochemistry of the cuban endemic medicinal plant Phyllanthus orbicularis: Fideloside, a novel bioactive 8-C-glycosyl 2,3-Dihydroflavonol. Molecules, 2019, 24(15), 2855.
[http://dx.doi.org/10.3390/molecules24152855] [PMID: 31390787]
[58]
Nikule, H.A.; Nitnaware, K.M.; Chambhare, M.R.; Kadam, N.S.; Borde, M.Y.; Nikam, T.D. In-vitro propagation, callus culture and bioactive lignan production in Phyllanthus tenellus Roxb: A new source of phyllanthin, hypophyllanthin and phyltetralin. Sci. Rep., 2020, 10(1), 10668.
[http://dx.doi.org/10.1038/s41598-020-67637-8] [PMID: 32606305]
[59]
Stevens, P.F. Angiosperm phylogeny website, version 14. 2001. Available from: http://www.mobot.org/MOBOT/research/APweb/
[60]
WFO The World Flora Online., Available from: https://wfoplantlist.org/plant-list/
[61]
Santiago, L.J.M.; Louro, R.P.; Emmerich, M. Phylloclade anatomy in Phyllanthus section Choretropsis (Phyllanthaceae). Bot. J. Linn. Soc., 2008, 157(1), 91-102.
[http://dx.doi.org/10.1111/j.1095-8339.2008.00780.x]
[62]
Denardi, L.; Trevisan, R.; Perrando, E.R.; Sutili, F.J.; Baldin, T.; Marchiori, J.N.C. Anatomia da madeira de Phyllanthus sellowianus Müll. Arg. (Phyllanthaceae). Cienc. Florest., 2013, 23(2), 503-509.
[http://dx.doi.org/10.5902/198050989294]
[63]
Gagliardi, K.B.; de Souza, L.A.; Albiero, A.L.M. Comparative fruit development in some Euphorbiaceae and Phyllanthaceae. Plant Syst. Evol., 2014, 300(5), 775-782.
[http://dx.doi.org/10.1007/s00606-013-0918-3]
[64]
Azubuike, A.D.; Nyananyo, B.L.; Uka, C.J.; Okeke, C.U. Identification of the genus Phyllanthus (Family Phyllanthaceae) in Southern Nigeria using comparative systematic morphological and anatomical studies of the vegetative organs. J. Plant Sci., 2015, 3(3), 137-149.
[http://dx.doi.org/10.11648/j.jps.20150303.15]
[65]
Poongani, M.; Karpagam, S.; Jayaraman, P. Macroscopic and microscopic studies of Phyllanthus virgatus Forst. (Euphorbiaceae). J. Acad. Ind. Res., 2015, 4(3), 110-116.
[66]
Mehmood, M.D.; Rafique, E.; Anwar, H.; Noreen, S.; Gul, M.; Hussain, S. Antiviral activity and its prospective mechanism of action on newcastle disease virus using crude extract of four medicinal plants. World J. Pharm. Res., 2018, 7(18), 130-141.
[http://dx.doi.org/10.20959/wjpr201818-13444]
[67]
Liang, W.Z.; Chou, C.T.; Cheng, J.S.; Wang, J.L.; Chang, H.T.; Chen, I.S.; Lu, T.; Yeh, J.H.; Kuo, D.H.; Shieh, P.; Chen, F.A.; Kuo, C.C.; Jan, C.R. The effect of the phenol compound ellagic acid on Ca2+ homeostasis and cytotoxicity in liver cells. Eur. J. Pharmacol., 2016, 780, 243-251.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.057] [PMID: 27038520]
[68]
Huang, R.L.; Huang, Y.L.; Ou, J.C.; Chen, C.C.; Hsu, F.L.; Chang, C. Screening of 25 compounds isolated from Phyllanthus species for anti‐human hepatitis B virus in vitro. Phytother. Res., 2003, 17(5), 449-453.
[http://dx.doi.org/10.1002/ptr.1167] [PMID: 12748977]
[69]
Panya, A.; Jantakee, K.; Punwong, S.; Thongyim, S.; Kaewkod, T.; Yenchitsomanus, P.; Tragoolpua, Y.; Pandith, H. Triphala in traditional ayurvedic medicine inhibits dengue virus infection in huh7 hepatoma cells. Pharmaceuticals, 2021, 14(12), 1236.
[http://dx.doi.org/10.3390/ph14121236] [PMID: 34959637]
[70]
Garcia, S.V.; del Barrio Alonso, G.; Gaitén, Y.G.; Díaz, L.M. Evaluación preliminar de la actividad antiviral del extracto acuoso de Phyllanthus orbicularis frente al virus VHS-1. Rev. Cubana Med. Trop., 2003, 55(3), 169-173.
[PMID: 15849921]
[71]
Tan, W.C.; Jaganath, I.B.; Manikam, R.; Sekaran, S.D. Evaluation of antiviral activities of four local Malaysian Phyllanthus species against herpes simplex viruses and possible antiviral target. Int. J. Med. Sci., 2013, 10(13), 1817-1829.
[http://dx.doi.org/10.7150/ijms.6902] [PMID: 24324358]
[72]
Ogata, T.; Higuchi, H.; Mochida, S.; Matsumoto, H.; Kato, A.; Endo, T.; Kaji, A.; Kaji, H. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res. Hum. Retroviruses, 1992, 8(11), 1937-1944.
[http://dx.doi.org/10.1089/aid.1992.8.1937] [PMID: 1283310]
[73]
Wang, Y.F.; Wang, X.Y.; Ren, Z.; Qian, C.W.; Li, Y.C.; Kaio, K.; Wang, Q.D.; Zhang, Y.; Zheng, L.Y.; Jiang, J.H.; Yang, C.R.; Liu, Q.; Zhang, Y.J.; Wang, Y.F.; Phyllaemblicin, B. Phyllaemblicin B inhibits Coxsackie virus B3 induced apoptosis and myocarditis. Antiviral Res., 2009, 84(2), 150-158.
[http://dx.doi.org/10.1016/j.antiviral.2009.08.004] [PMID: 19699238]
[74]
Bhattacharyya, R.; Bhattacharyya, S.; Wenzel-Mathers, M.; Buckwold, V.E. Phyllanthus amarus Root clone with significant activity against bovine viral diarrhoea virus - a surrogate model of hepatitis C virus. Curr. Sci., 2003, 84(4), 529-533.
[75]
Lv, J.J.; Yu, S.; Xin, Y.; Cheng, R.R.; Zhu, H.T.; Wang, D.; Yang, C.R.; Xu, M.; Zhang, Y.J. Anti-viral and cytotoxic norbisabolane sesquiterpenoid glycosides from Phyllanthus emblica and their absolute configurations. Phytochemistry, 2015, 117, 123-134.
[http://dx.doi.org/10.1016/j.phytochem.2015.06.001] [PMID: 26074492]
[76]
B, U.R.; Tandon, H.; Pradhan, M.K.; Adhikesavan, H.; Srinivasan, N.; Das, S.; Jayaraman, N. Potent HCV NS3 Protease Inhibition by a Water-Soluble Phyllanthin Congener. ACS Omega, 2020, 5(20), 11553-11562.
[http://dx.doi.org/10.1021/acsomega.0c00786] [PMID: 32478245]
[77]
Ravikumar, Y.S.; Ray, U.; Nandhitha, M.; Perween, A.; Raja Naika, H.; Khanna, N.; Das, S. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus Res., 2011, 158(1-2), 89-97.
[http://dx.doi.org/10.1016/j.virusres.2011.03.014] [PMID: 21440018]
[78]
Chen Liu, K.C.S.; Lin, M.T.; Lee, S.S.; Chiou, J.F.; Ren, S.; Lien, E.J Antiviral tannins from two Phyllanthus species. Planta Med., 1999, 65(1), 043-046.
[http://dx.doi.org/10.1055/s-1999-13960] [PMID: 10083844]
[79]
Qian-Cutrone, J.; Huang, S.; Trimble, J.; Li, H.; Lin, P.F.; Alam, M.; Klohr, S.E.; Kadow, K.F. Niruriside, a new HIV REV/RRE binding inhibitor from Phyllanthus niruri. J. Nat. Prod., 1996, 59(2), 196-199.
[http://dx.doi.org/10.1021/np9600560] [PMID: 8991954]
[80]
Eldeen, I.M.S.; Seow, E-M.; Abdullah, R.; Sulaiman, S.F. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp. S. Afr. J. Bot., 2011, 77(1), 75-79.
[http://dx.doi.org/10.1016/j.sajb.2010.05.009]
[81]
Fernández Romero, J.A.; del Barrio Alonso, G.; Romeu Álvarez, B.; Gutiérrez, Y.; Valdés, V.S.; Parra, F. In vitro antiviral activity of Phyllanthus orbicularis extracts against herpes simplex virus type 1. Phytother. Res., 2003, 17(8), 980-982.
[http://dx.doi.org/10.1002/ptr.1300] [PMID: 13680841]
[82]
Cheng, H.Y.; Yang, C.M.; Lin, T.C.; Lin, L.T.; Chiang, L.C.; Lin, C.C. Excoecarianin, isolated from Phyllanthus urinaria linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-10.
[http://dx.doi.org/10.1093/ecam/nep157] [PMID: 19808846]
[83]
Arjin, C.; Pringproa, K.; Hongsibsong, S.; Ruksiriwanich, W.; Seel-audom, M.; Mekchay, S.; Sringarm, K. In vitro screening antiviral activity of Thai medicinal plants against porcine reproductive and respiratory syndrome virus. BMC Vet. Res., 2020, 16(1), 102.
[http://dx.doi.org/10.1186/s12917-020-02320-8] [PMID: 32228582]
[84]
Chojnacka, K.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Szopa, D.; Witek-Krowiak, A. Antiviral properties of polyphenols from plants. Foods, 2021, 10(10), 2277.
[http://dx.doi.org/10.3390/foods10102277]
[85]
González González, R.L.; Roque Quintero, A.; Morier Díaz, L. Rodríguez Lay, Lde.L. Evaluación de la actividad antiviral de plantas medicinales frente al virus de la hepatitis B (VHB) en células PLC/PRF/5. Rev. Cubana Med. Trop., 2006, 58(2), 103-108.
[PMID: 23427427]
[86]
Lee, N.Y.S.; Khoo, W.K.S.; Adnan, M.A.; Mahalingam, T.P.; Fernandez, A.R.; Jeevaratnam, K. The pharmacological potential of Phyllanthus niruri. J. Pharm. Pharmacol., 2016, 68(8), 953-969.
[http://dx.doi.org/10.1111/jphp.12565] [PMID: 27283048]
[87]
Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An Insight Into the Modulatory Effects and Mechanisms of Action of Phyllanthus Species and Their Bioactive Metabolites on the Immune System. Front. Pharmacol., 2019, 10, 878.
[http://dx.doi.org/10.3389/fphar.2019.00878] [PMID: 31440162]
[88]
ICTV. International Committee on Taxonomy of Viruses. Available from: https://ictv.global/taxonomy/ (Accessed on: December 07, 2023).
[89]
Chung, C.Y.; Liu, C.H.; Burnouf, T.; Wang, G.H.; Chang, S.P.; Jassey, A.; Tai, C.J.; Tai, C.J.; Huang, C.J.; Richardson, C.D.; Yen, M.H.; Lin, C.C.; Lin, L.T. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res., 2016, 130, 58-68.
[http://dx.doi.org/10.1016/j.antiviral.2016.03.012] [PMID: 27012176]
[90]
Venkateswaran, P.S.; Millman, I.; Blumberg, B.S. Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: In vitro and in vivo studies. Proc. Natl. Acad. Sci., 1987, 84(1), 274-278.
[http://dx.doi.org/10.1073/pnas.84.1.274] [PMID: 3467354]
[91]
Wahyuni, T.S.; Permanasari, A.A.; Aty Widyawaruyanti, W.; Hotta, H.; Aoki-Utsubo, C.; Hafid, A.F. Antiviral activity of indonesian medicinal plants against hepatitis B virus. Pharmacogn. J., 2020, 12(5), 1108-1114.
[http://dx.doi.org/10.5530/pj.2020.12.157]
[92]
Jung, J.; Kim, N.K.; Park, S.; Shin, H.J.; Hwang, S.G.; Kim, K. Inhibitory effect of Phyllanthus urinaria L. extract on the replication of lamivudine-resistant hepatitis B virus in vitro. BMC Complement. Altern. Med., 2015, 15(1), 255.
[http://dx.doi.org/10.1186/s12906-015-0792-3] [PMID: 26220282]
[93]
Li, Y.; Jiang, M.; Li, M.; Chen, Y.; Wei, C.; Peng, L.; Liu, X.; Liu, Z.; Tong, G.; Zhou, D.; He, J. Compound Phyllanthus urinaria L Inhibits HBV-Related HCC through HBx-SHH Pathway Axis Inactivation. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/1635837] [PMID: 31019539]
[94]
Roque Quintero, A.; Salazar Gutiérrez, I.; Morier Díaz, L.; del Barrio Alonso, G. Effect of Phyllanthus orbicularis on Cell Viability and Hepatitis B Surface Antigen in PLC/PRF/5 Cells. Rev. Cuba. Farm., 2011, 45(4), 536-544.
[95]
Xia, Y.; Luo, H.; Liu, J.P.; Gluud, C. Phyllanthus species for chronic hepatitis B virus infection. Cochrane Libr., 2011, (4), CD008960.
[http://dx.doi.org/10.1002/14651858.CD008960.pub2] [PMID: 21491412]
[96]
Xiang, Y.; Pei, Y.; Qu, C.; Lai, Z.; Ren, Z.; Yang, K.; Xiong, S.; Zhang, Y.; Yang, C.; Wang, D.; Liu, Q.; Kitazato, K.; Wang, Y. In vitro anti ‐ herpes simplex virus activity of Phyllanthus emblica L. (Euphorbiaceae). Phytother. Res., 2011, 25, 975-982.
[http://dx.doi.org/10.1002/ptr.3368] [PMID: 21213355]
[97]
Álvarez, Á.L.; del Barrio, G.; Kourí, V.; Martínez, P.A.; Suárez, B.; Parra, F. In vitro anti-herpetic activity of an aqueous extract from the plant Phyllanthus orbicularis. Phytomedicine, 2009, 16(10), 960-966.
[http://dx.doi.org/10.1016/j.phymed.2009.03.023] [PMID: 19423312]
[98]
Liu, Q.; Wang, Y.F.; Chen, R.J.; Zhang, M.Y.; Wang, Y.F.; Yang, C.R.; Zhang, Y.J. Anti-coxsackie virus B3 norsesquiterpenoids from the roots of Phyllanthus emblica. J. Nat. Prod., 2009, 72(5), 969-972.
[http://dx.doi.org/10.1021/np800792d] [PMID: 19374435]
[99]
Bothiraja, C.; Shinde Mukesh, B.; Rajalakshmi, S.; Pawar, A.P. In vitro anti-HIV-type 1 and antioxidant activity of Emblica officinalis. Res J Pharm Technol, 2009, 2(3), 556-558.
[100]
Hnatyszyn, O.; Broussalis, A.; Herrera, G.; Muschietti, L.; Coussio, J.; Martino, V.; Ferraro, G.; Font, M.; Monge, A.; Martínez-Irujo, J.J.; Sanromán, M.; Cuevas, M.T.; Santiago, E.; Lasarte, J.J. Argentine plant extracts active against polymerase and ribonuclease H activities of HIV-1 reverse transcriptase. Phytother. Res., 1999, 13(3), 206-209.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199905)13:3<206::AID-PTR409>3.0.CO;2-D] [PMID: 10353158]
[101]
Tai, B.H.; Nhut, N.D.; Nhiem, N.X.; Quang, T.H.; Thanh Ngan, N.T.; Thuy Luyen, B.T.; Huong, T.T.; Wilson, J.; Beutler, J.A.; Ban, N.K.; Cuong, N.M.; Kim, Y.H. An evaluation of the RNase H inhibitory effects of Vietnamese medicinal plant extracts and natural compounds. Pharm. Biol., 2011, 49(10), 1046-1051.
[http://dx.doi.org/10.3109/13880209.2011.563316] [PMID: 21595586]
[102]
Yeh, S.F.; Hong, C.Y.; Huang, Y.L.; Liu, T.Y.; Choo, K.B.; Chou, C.K. Effect of an extract from Phyllanthus amarus on hepatitis B surface antigen gene expression in human hepatoma cells. Antiviral Res., 1993, 20(3), 185-192.
[http://dx.doi.org/10.1016/0166-3542(93)90019-F] [PMID: 8470882]
[103]
Ott, M.; Thyagarajan, S.P.; Gupta, S. Phyllanthus amarus suppresses hepatitis B virus by interrupting interactions between HBV enhancer I and cellular transcription factors. Eur. J. Clin. Invest., 1997, 27(11), 908-915.
[http://dx.doi.org/10.1046/j.1365-2362.1997.2020749.x] [PMID: 9395786]
[104]
Lv, J.J.; Yu, S.; Wang, Y.F.; Wang, D.; Zhu, H.T.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J.; Anti-Hepatitis, B. Anti-hepatitis B virus norbisabolane sesquiterpenoids from Phyllanthus acidus and the establishment of their absolute configurations using theoretical calculations. J. Org. Chem., 2014, 79(12), 5432-5447.
[http://dx.doi.org/10.1021/jo5004604] [PMID: 24824117]
[105]
Shin, M.; Kang, E.; Lee, Y. A flavonoid from medicinal plants blocks hepatitis B virus-e antigen secretion in HBV-infected hepatocytes. Antiviral Res., 2005, 67(3), 163-168.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.005] [PMID: 16118024]
[106]
Wu, Y.; Lu, Y.; Li, S.; Song, Y.; Hao, Y.; Wang, Q. Extract from Phyllanthus urinaria L. inhibits hepatitis B virus replication and expression in hepatitis B virus transfection model in vitro. Chin. J. Integr. Med., 2015, 21(12), 938-943.
[http://dx.doi.org/10.1007/s11655-015-2076-7] [PMID: 25869593]
[107]
Liang, Q.P.; Wu, C.; Xu, T.Q.; Jiang, X.Y.; Tong, G.D.; Wei, C.S.; Zhou, G.X. Phenolic constituents with antioxidant and antiviral activities from Phyllanthus urinaria linnea. Indian J. Pharm. Sci., 2019, 81(3), 424-430.
[http://dx.doi.org/10.36468/pharmaceutical-sciences.526]
[108]
Lam, W.Y.; Leung, K.T.; Law, P.T.W.; Lee, S.M.Y.; Chan, H.L.Y.; Fung, K.P.; Ooi, V.E.C.; Waye, M.M.Y. Antiviral effect of Phyllanthus nanus ethanolic extract against hepatitis B virus (HBV) by expression microarray analysis. J. Cell. Biochem., 2006, 97(4), 795-812.
[http://dx.doi.org/10.1002/jcb.20611] [PMID: 16237706]
[109]
Wei, W.; Li, X.; Wang, K.; Zheng, Z.; Zhou, M. Lignans with anti-hepatitis B virus activities from Phyllanthus niruri L. Phytother. Res., 2012, 26(7), 964-968.
[http://dx.doi.org/10.1002/ptr.3663] [PMID: 22131154]
[110]
Liu, S.; Wei, W.; Shi, K.; Cao, X.; Zhou, M.; Liu, Z. In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. J. Ethnopharmacol., 2014, 155(2), 1061-1067.
[http://dx.doi.org/10.1016/j.jep.2014.05.064] [PMID: 25009077]
[111]
Liu, S.; Wei, W.; Li, Y.; Lin, X.; Shi, K.; Cao, X.; Zhou, M. In vitro and in vivo anti-hepatitis B virus activities of the lignan nirtetralin B isolated from Phyllanthus niruri L. J. Ethnopharmacol., 2014, 157, 62-68.
[http://dx.doi.org/10.1016/j.jep.2014.09.019] [PMID: 25260580]
[112]
Suresh, V.; Sojan, J.; Krishna Radhika, N.; Asha, V.V. Anti-HBV activity of the different extracts from Phyllanthus rheedei Wight in cell culture based assay systems. J. Ethnopharmacol., 2014, 156, 309-315.
[http://dx.doi.org/10.1016/j.jep.2014.08.028] [PMID: 25219604]
[113]
Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol., 2007, 110(3), 555-558.
[http://dx.doi.org/10.1016/j.jep.2006.09.039] [PMID: 17113739]
[114]
del Barrio, G.; Parra, F. Evaluation of the antiviral activity of an aqueous extract from Phyllanthus orbicularis. J. Ethnopharmacol., 2000, 72(1-2), 317-322.
[http://dx.doi.org/10.1016/S0378-8741(00)00228-2] [PMID: 10967489]
[115]
Álvarez, Á.L.; Dalton, K.P.; Nicieza, I.; Diñeiro, Y.; Picinelli, A.; Melón, S.; Roque, A.; Suárez, B.; Parra, F. Bioactivity-guided fractionation of Phyllanthus orbicularis and identification of the principal anti HSV-2 compounds. Phytother. Res., 2012, 26(10), 1513-1520.
[http://dx.doi.org/10.1002/ptr.4608] [PMID: 22318977]
[116]
Yang, C.; Cheng, H.; Lin, T.; Chiang, L.; Lin, C. Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro. Antiviral Res., 2005, 67(1), 24-30.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.008] [PMID: 15885815]
[117]
Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. Hippomanin a from acetone extract of Phyllanthus urinaria inhibited HSV‐2 but not HSV‐1 infection in vitro. Phytother. Res., 2007, 21(12), 1182-1186.
[http://dx.doi.org/10.1002/ptr.2232] [PMID: 17661333]
[118]
Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol., 2019, 103(2), 881-891.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[119]
Keith, C.T.; Borisy, A.A.; Stockwell, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov., 2005, 4(1), 71-78.
[http://dx.doi.org/10.1038/nrd1609] [PMID: 15688074]
[120]
Murgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. Technol., 2012, 9(3), e219-e225.
[http://dx.doi.org/10.1016/j.ddtec.2012.07.009] [PMID: 24990575]
[121]
Hiremath, S. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in ayurveda medicine in inhibiting SARS CoV 2. 3 Biotech, 2021, 11(44), 1-18.
[http://dx.doi.org/10.1007/s13205-020-02578-7]
[122]
Sukmanadi, M.; Koestanti, E.; Ananda, T. In silico study: Phyllanthus niruri L as immunomodulator against Covid-19. Indian J. Forensic Med. Toxicol., 2020, 14(4), 3156-3161.
[123]
Yi, F.; Li, L.; Xu, L.; Meng, H.; Dong, Y.; Liu, H.; Xiao, P. In silico approach in reveal traditional medicine plants pharmacological material basis. Chin. Med., 2018, 13(1), 33.
[http://dx.doi.org/10.1186/s13020-018-0190-0] [PMID: 29946351]
[124]
Zybert, I.A.; van der Ende-Metselaar, H.; Wilschut, J.; Smit, J.M. Functional importance of dengue virus maturation: infectious properties of immature virions. J. Gen. Virol., 2008, 89(12), 3047-3051.
[http://dx.doi.org/10.1099/vir.0.2008/002535-0] [PMID: 19008392]
[125]
Abel, S.D.A.; Baird, S.K. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay. Food Chem., 2018, 241, 70-78.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.083] [PMID: 28958561]
[126]
Aslantürk, Ö.S. In vitro cytotoxicity and cell viability assays: Principles, advantages, and disadvantages. In: Genotoxicity A Predictable Risk to Our Actual World; Larramendy, M.; Soloneski, S., Eds.; InTech: London, United Kingdom, 2018; pp. 1-17.
[http://dx.doi.org/10.5772/intechopen.71923]
[127]
Butler, A.W.; Smith, M.A.; Farrar, R.P.; Acosta, D. Ethanol toxicity in primary cultures of rat myocardial cells. Toxicology, 1985, 36(1), 61-70.
[http://dx.doi.org/10.1016/0300-483X(85)90007-1] [PMID: 4024128]
[128]
Tapani, E.; Taavitsainen, M.; Lindros, K.; Vehmas, T.; Lehtonen, E. Toxicity of ethanol in low concentrations. Experimental evaluation in cell culture. Acta Radiol., 1996, 37(6), 923-926.
[http://dx.doi.org/10.3109/02841859609175470] [PMID: 8995467]
[129]
de Abreu, C.L.; Henrique, F.O.M.; dos Santos, M.; Meireles, A.; Gomes de Almeida, V.; de Fátima, P.W.; de Avelar-Freitas, A.B.; Brito-Melo, E.A.G. Dimethyl sulfoxide (DMSO) decreases cell proliferation and TNF-α, IFN-γ, and IL-2 cytokines production in cultures of peripheral blood lymphocytes. Molecules, 2017, 22(11), 1789.
[http://dx.doi.org/10.3390/molecules22111789] [PMID: 29125561]
[130]
Singh, M.; Mckenzie, K.; Ma, X. Effect of dimethyl sulfoxide on in vitro proliferation of skin fibroblast cells. J. Biotech Res., 2017, 8, 78-82.
[131]
Dludla, P.V.; Jack, B.; Viraragavan, A.; Pheiffer, C.; Johnson, R.; Louw, J.; Muller, C.J.F. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol. Rep., 2018, 5, 1014-1020.
[http://dx.doi.org/10.1016/j.toxrep.2018.10.002] [PMID: 30364542]
[132]
Kassuya, C.A.; Leite, D.F.; de Melo, L.V.; Rehder, V.L.; Calixto, J.B. Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med., 2005, 71(8), 721-726.
[http://dx.doi.org/10.1055/s-2005-871258] [PMID: 16142635]
[133]
Tripathi, A.K.; Verma, R.K.; Gupta, A.K.; Gupta, M.M.; Khanuja, S.P.S. Quantitative determination of phyllanthin and hypophyllanthin in Phyllanthus species by high-performance thin layer chromatography. Phytochem. Anal., 2006, 17(6), 394-397.
[http://dx.doi.org/10.1002/pca.936] [PMID: 17144246]
[134]
Srivastava, V.; Singh, M.; Malasoni, R.; Shanker, K.; Verma, R.K.; Gupta, M.M.; Gupta, A.K.; Khanuja, S.P.S. Separation and quantification of lignans in Phyllanthus species by a simple chiral densitometric method. J. Sep. Sci., 2008, 31, 47-55.
[http://dx.doi.org/10.1002/jssc.200700282]
[135]
Fang, S.H.; Rao, Y.K.; Tzeng, Y.M. Anti-oxidant and inflammatory mediator’s growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J. Ethnopharmacol., 2008, 116(2), 333-340.
[http://dx.doi.org/10.1016/j.jep.2007.11.040] [PMID: 18187278]
[136]
Zhao, J.Q.; Wang, Y.M.; Zhu, H.T.; Wang, D.; Li, S.H.; Cheng, R.R.; Yang, C.R.; Wang, Y.F.; Xu, M.; Zhang, Y.J. Highly oxygenated limonoids and lignans from Phyllanthus flexuosus. Nat. Prod. Bioprospect., 2014, 4(4), 233-242.
[http://dx.doi.org/10.1007/s13659-014-0026-2] [PMID: 25089242]
[137]
Wang, C.Y.; Lee, S.S. Analysis and identification of lignans inPhyllanthus urinaria by HPLC-SPE-NMR. Phytochem. Anal., 2005, 16(2), 120-126.
[http://dx.doi.org/10.1002/pca.830] [PMID: 15881120]
[138]
Liu, X.; Cui, C.; Zhao, M.; Wang, J.; Luo, W.; Yang, B.; Jiang, Y. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem., 2008, 109(4), 909-915.
[http://dx.doi.org/10.1016/j.foodchem.2008.01.071] [PMID: 26050007]
[139]
Bansal, V.; Sharma, A.; Ghanshyam, C.; Singla, M.L. Rapid HPLC method development for determination of vitamin C, phenolic acids, hydroxycinnamic acid and flavonoids in Emblica officinalis juice. J. Liq. Chromatogr. Relat. Technol., 2015, 38(5), 619-624.
[http://dx.doi.org/10.1080/10826076.2014.936608]
[140]
Bansal, V.; Sharma, A.; Ghanshyam, C.; Singla, M.L. Coupling of chromatographic analyses with pretreatment for the determination of bioactive compounds in Emblica officinalis juice. Anal. Methods, 2014, 6(2), 410-418.
[http://dx.doi.org/10.1039/C3AY41375F]
[141]
Lv, J.J.; Yu, S.; Xin, Y.; Zhu, H.T.; Wang, D.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Stereochemistry of cleistanthane diterpenoid glucosides from Phyllanthus emblica. RSC Advances, 2015, 5(37), 29098-29107.
[http://dx.doi.org/10.1039/C4RA16624H]
[142]
Ezzat, M.I.; Okba, M.M.; Ahmed, S.H.; El-Banna, H.A.; Prince, A.; Mohamed, S.O.; Ezzat, S.M. In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization. PLoS One, 2020, 15(1), e0226185.
[http://dx.doi.org/10.1371/journal.pone.0226185] [PMID: 31940365]
[143]
Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 2009, 14(6), 2167-2180.
[http://dx.doi.org/10.3390/molecules14062167] [PMID: 19553890]
[144]
Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/8178294]
[145]
Akaike, T. Role of free radicals in viral pathogenesis and mutation. Rev. Med. Virol., 2001, 11(2), 87-101.
[http://dx.doi.org/10.1002/rmv.303] [PMID: 11262528]
[146]
Meghashree, B.M.; Shantha, T.R.; Bhat, S. Pharmacognostical and histochemical analysis of Phyllanthus emblica Linn. Fruit – a dietary rasayana drug. Int. J. Herb. Med., 2017, 5(4), 8-16.
[147]
Santiago, L.; Louro, R.P.; De Oliveira, D.E. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus roxb. and their induction by copper sulphate. Ann. Bot., 2000, 86(5), 1023-1032.
[http://dx.doi.org/10.1006/anbo.2000.1271]
[148]
Conceição, L.O.; Aoyama, E.M. Anatomy and histochemistry of the leaf blade of species known as stonebreakers (Euphorbia prostrata Aiton, Euphorbia hyssopifolia L., Phyllanthus amarus Schumach. & Thonn and Phyllanthus tenellus Roxb.). Rev. Bras. Plantas Med., 2016, 18(S1), 571-581.
[http://dx.doi.org/10.1590/1983-084x/15_226]
[149]
Hering-Rinnert, C.; Aoyama, E.M.; Furlan, M.R.; Hering-Rinnert, C. Anatomy and histochemistry of the stem of species known as stonebreakers from the families Euphorbiaceae and Phyllanthaceae. Acta Biológica Catarinense, 2021, 7(4), 65-80.
[http://dx.doi.org/10.21726/abc.v7i4.22]
[150]
Edeoga, H.O.; Omosun, G.; Awomukwu, D.A. Tannins and calcium oxalate crystals in lamina of some Phyllanthus species. Int. J. Mol. Med. Adv. Sci., 2006, 2(3), 326-329.
[151]
Dinesh, S.; Sudharsana, S.; Mohanapriya, A.; Itami, T.; Sudhakaran, R. Molecular docking and simulation studies of Phyllanthus amarus phytocompounds against structural and nucleocapsid proteins of white spot syndrome virus. 3 Biotech, 2017, 7, 353.
[http://dx.doi.org/10.1007/s13205-017-0938-8]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy