Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Radiation-induced Testicular Damage in Mice: Protective Effects of Apigenin Revealed by Histopathological Evaluation

Author(s): Rasool Azmoonfar*, Fatemeh Mirzaei*, Masoud Najafi, Maryam Varkeshi, Karim Ghazikhanlousani, Sara Momeni and Korosh Saber

Volume 17, Issue 3, 2024

Published on: 25 January, 2024

Page: [238 - 246] Pages: 9

DOI: 10.2174/0118744710271290231226105727

Price: $65

Abstract

Background: Radiation exposure poses a significant threat to reproductive health, particularly the male reproductive system. The testes, being highly sensitive to radiation, are susceptible to damage that can impair fertility and overall reproductive function. The study aims to investigate the radioprotective effects of apigenin on the testis through histopathological evaluation.

Materials and Methods: This research involved utilizing a total of 40 mice, which were randomly divided into eight groups of five mice each. The groups were categorized as follows: A) negative control group, B, C, and D) administration of apigenin at three different doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) respectively, E) irradiation group, and F, H, and I) administration of apigenin at three different doses (0.3 mg/kg, 0.6 mg/kg, and 1.2 mg/kg) in combination with irradiation. The irradiation procedure involved exposing the mice to a 2Gy X-ray throughout their entire bodies. Subsequently, histopathological assessments were conducted seven days after the irradiation process.

Results: The findings indicated that radiation exposure significantly impacted the spermatogenesis system. This research provides evidence that administering apigenin to mice before ionizing radiation effectively mitigated the harmful effects on the testes. Apigenin demonstrated radioprotective properties, positively influencing various parameters, including the spermatogenesis process and the presence of inflammatory cells within the tubular spaces.

Conclusion: Apigenin can provide effective protection for spermatogenesis, minimize the adverse effects of ionizing radiation, and safeguard normal tissues.

Graphical Abstract

[1]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[2]
Abshire, D.; Lang, M.K. The evolution of radiation therapy in treating cancer. Semin. Oncol. Nurs., 2018, 34(2), 151-157.
[http://dx.doi.org/10.1016/j.soncn.2018.03.006] [PMID: 29606538]
[3]
Wang, K.; Tepper, J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin., 2021, 71(5), 437-454.
[http://dx.doi.org/10.3322/caac.21689] [PMID: 34255347]
[4]
Dil, E.; Tumkaya, L.; Mercantepe, T.; Rakici, S.; Yilmaz, A.; Celik Samanci, T.; Yazici, Z.A. Radioprotective effects of dexmedetomidine on X-ray-induced testicular damage. Eur. Rev. Med. Pharmacol. Sci., 2023, 27(2), 673-680.
[PMID: 36734735]
[5]
Ehghaghi, A.; Zokaei, E.; Modarressi, M.H.; Tavoosidana, G.; Ghafouri-Fard, S.; Khanali, F.; Motevaseli, E.; Noroozi, Z. Antioxidant and anti-apoptotic effects of selenium nanoparticles and Lactobacillus casei on mice testis after X-ray. Andrologia, 2022, 54(11), e14591.
[http://dx.doi.org/10.1111/and.14591] [PMID: 36266770]
[6]
Grewenig, A.; Schuler, N.; Rübe, C.E. Persistent DNA damage in spermatogonial stem cells after fractionated low-Dose irradiation of testicular tissue. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 1123-1131.
[http://dx.doi.org/10.1016/j.ijrobp.2015.04.033] [PMID: 26059351]
[7]
Howell, S.J.; Shalet, S.M. Spermatogenesis after cancer treatment: Damage and recovery. J. Natl. Cancer Inst. Monogr., 2005, 2005(34), 12-17.
[http://dx.doi.org/10.1093/jncimonographs/lgi003] [PMID: 15784814]
[8]
Xiong, M.; Yin, L.; Gui, Y.; Lv, C.; Ma, X.; Guo, S.; Wu, Y.; Feng, S.; Fan, X.; Zhou, S.; Wang, L.; Wen, Y.; Wang, X.; Xie, Q.; Namekawa, S.H.; Yuan, S. ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis. J. Cell Biol., 2023, 222(5), e202206067.
[http://dx.doi.org/10.1083/jcb.202206067] [PMID: 36930220]
[9]
Ekici, K.; Temelli, O.; Parlakpinar, H.; Samdanci, E.; Polat, A.; Beytur, A.; Tanbek, K.; Ekici, C.; Dursun, I.H. Beneficial effects of aminoguanidine on radiotherapy-induced kidney and testis injury. Andrologia, 2016, 48(6), 683-692.
[http://dx.doi.org/10.1111/and.12500] [PMID: 26610736]
[10]
Ding, J.; Wang, H.; Wu, Z.B.; Zhao, J.; Zhang, S.; Li, W. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biol. Reprod., 2015, 92(1), 6.
[http://dx.doi.org/10.1095/biolreprod.114.122333] [PMID: 25395675]
[11]
Haeri, S.A.; Rajabi, H.; Fazelipour, S.; Hosseinimehr, S.J. Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice. Andrologia, 2014, 46(9), 1041-1046.
[http://dx.doi.org/10.1111/and.12193] [PMID: 24215656]
[12]
Hermann, R.M.; Henkel, K.; Christiansen, H.; Vorwerk, H.; Hille, A.; Hess, C.F.; Schmidberger, H. Testicular dose and hormonal changes after radiotherapy of rectal cancer. Radiother. Oncol., 2005, 75(1), 83-88.
[http://dx.doi.org/10.1016/j.radonc.2004.12.017] [PMID: 15878105]
[13]
Marzban, M.; Anjamshoa, M.; Jafari, P.; Masoumi, H.; Ahadi, R.; Fatehi, D. Effects of gamma rays on rat testis tissue according to the morphological parameters and immunohistochemistry: Radioprotective role of silymarin. Electron. Physician, 2017, 9(6), 4524-4532.
[http://dx.doi.org/10.19082/4524] [PMID: 28848626]
[14]
Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S.; Hussain, S.M. Radioprotective role of natural polyphenols: From sources to mechanisms. Anticancer. Agents Med. Chem., 2022, 22(1), 30-39.
[PMID: 33874875]
[15]
Wasserman, T.H.; Brizel, D.M. The role of amifostine as a radioprotector. Oncology, 2001, 15(10), 1349-1354.
[PMID: 11702962]
[16]
Dobrzyńska, M.M. Resveratrol as promising natural radioprotector. A review. Rocz. Panstw. Zakl. Hig., 2013, 64(4), 255-262.
[PMID: 24693709]
[17]
Yilmaz, H.; Karakoc, Y.; Tumkaya, L.; Mercantepe, T.; Sevinc, H.; Yilmaz, A.; Yılmaz Rakıcı, S. The protective effects of red ginseng and amifostine against renal damage caused by ionizing radiation. Hum. Exp. Toxicol., 2022, 41, 9603271221193029.
[http://dx.doi.org/10.1177/09603271221143029] [PMID: 36455263]
[18]
Evans, A.C.; Martin, K.A.; Saxena, M.; Bicher, S.; Wheeler, E.; Cordova, E.J.; Porada, C.D.; Almeida-Porada, G.; Kato, T.A.; Wilson, P.F.; Coleman, M.A. Curcumin nanodiscs improve solubility and serve as radiological protectants against ionizing radiation exposures in a cell-cycle dependent manner. Nanomaterials, 2022, 12(20), 3619.
[http://dx.doi.org/10.3390/nano12203619] [PMID: 36296810]
[19]
Yahyapour, R.; Shabeeb, D.; Cheki, M.; Musa, A.E.; Farhood, B.; Rezaeyan, A.; Amini, P.; Fallah, H.; Najafi, M. Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr. Mol. Pharmacol., 2018, 11(4), 285-304.
[http://dx.doi.org/10.2174/1874467211666180619125653] [PMID: 29921213]
[20]
Rostami, A.; Moosavi, S.A.; Changizi, V.; Abbasian Ardakani, A. Radioprotective effects of selenium and vitamin-E against 6MV X-rays in human blood lymphocytes by micronucleus assay. Med. J. Islam. Repub. Iran, 2016, 30, 367.
[PMID: 27493911]
[21]
Azmoonfar, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Khodamoradi, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Celecoxib a selective COX-2 inhibitor mitigates fibrosis but not pneumonitis following lung irradiation: A histopathological study. Curr. Drug Ther., 2020, 15(4), 351-357.
[http://dx.doi.org/10.2174/1574885514666191119124739]
[22]
Azmoonfar, R.; Khosravi, H.; Rafieemehr, H.; Mirzaei, F.; Dastan, D.; Ghiasvand, M.R.; Khorshidi, L.; Pashaki, A.S. Radioprotective effect of Malva sylvestris L. against radiation-induced liver, kidney and intestine damages in rat: A histopathological study. Biochem. Biophys. Rep., 2023, 34, 101455.
[http://dx.doi.org/10.1016/j.bbrep.2023.101455] [PMID: 36969320]
[23]
Fischer, N.; Seo, E.J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine, 2018, 47, 192-200.
[http://dx.doi.org/10.1016/j.phymed.2017.11.005] [PMID: 30166104]
[24]
Wang, Q.; Xie, C.; Xi, S.; Qian, F.; Peng, X.; Huang, J.; Tang, F. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules, 2020, 25(23), 5719.
[http://dx.doi.org/10.3390/molecules25235719] [PMID: 33287417]
[25]
Abou-Zeid, S.M.; EL-bialy, B.E.; EL-borai, N.B.; AbuBakr, H.O.; Elhadary, A.M.A. Radioprotective effect of Date syrup on radiation- induced damage in Rats. Sci. Rep., 2018, 8(1), 7423.
[http://dx.doi.org/10.1038/s41598-018-25586-3] [PMID: 29743497]
[26]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Mirtavoos-mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol., 2019, 21(3), 268-279.
[http://dx.doi.org/10.1007/s12094-018-1934-0] [PMID: 30136132]
[27]
Torabizadeh, S.A.; Moshafi, M-H.; Mohamadnezhad, F.; Jomehzadeh, A.; Khodaei, M.; Fekri, H.S. Ferulago angulata as a good radioprotector against genotoxicity. Curr. Radiopharm., 2022, 15(2), 110-116.
[http://dx.doi.org/10.2174/1874471014666210426111806] [PMID: 33902426]
[28]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[29]
Rithidech, K.N.; Tungjai, M.; Whorton, E.B. Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2005, 585(1-2), 96-104.
[http://dx.doi.org/10.1016/j.mrgentox.2005.04.003] [PMID: 15886050]
[30]
Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 323-330.
[http://dx.doi.org/10.1080/17425255.2017.1251903] [PMID: 27766890]
[31]
Xu, L.; Zaky, M.Y.; Yousuf, W.; Ullah, A.; Abdelbaset, G.R.; Zhang, Y.; Ahmed, O.M.; Liu, S.; Liu, H. The Anticancer potential of apigenin via immunoregulation. Curr. Pharm. Des., 2021, 27(4), 479-489.
[http://dx.doi.org/10.2174/18734286MTA4iMTMqy] [PMID: 32660399]
[32]
Seyedpour, N.; motevaseli, E.; Taeb, S.; Nowrouzi, A.; Mirzaei, F.; Bahri, M.; Dehghan-Manshadi, H.R.; Zhale, M.; Rashidi, K.; Azmoonfar, R.; Yahyapour, R.; Najafi, M. Protective effects of alpha-lipoic acid, resveratrol, and apigenin against oxidative damages, histopathological changes, and mortality induced by lung irradiation in rats. Curr. Radiopharm., 2023, 17.
[http://dx.doi.org/10.2174/0118744710244357231018070313] [PMID: 37909433]
[33]
Hsu, M.C.; Guo, B.C.; Hu, P-A.; Chen, C.H.; Lee, T.S. Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway. Yao Wu Shi Pin Fen Xi, 2021, 29(2), 240-254.
[http://dx.doi.org/10.38212/2224-6614.3269] [PMID: 35696209]
[34]
Zhang, K.; Song, W.; Li, D.; Jin, X. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp. Ther. Med., 2017, 13(5), 1719-1724.
[http://dx.doi.org/10.3892/etm.2017.4165] [PMID: 28565758]
[35]
Shi, Y.; Bai, J.; Dang, Y.; Bai, Q.; Zheng, R.; Chen, J.; Li, Z. Protection of apigenin against acrylonitrile-induced sperm and testis injury in rats: involvement of activation of ASK1-JNK/p38 signaling pathway. Toxicol. Res., 2021, 10(2), 159-168.
[http://dx.doi.org/10.1093/toxres/tfab017] [PMID: 33884167]
[36]
Zhao, L.; Wang, J.; Wang, Y.; Fa, X. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res., 2013, 1492, 33-45.
[http://dx.doi.org/10.1016/j.brainres.2012.11.019] [PMID: 23178511]
[37]
Tajabadi, E.; Javadi, A.; Ahmadi Azar, N.; Najafi, M.; Shirazi, A.; Shabeeb, D.; Eleojo Musa, A. Radioprotective effect of a combination of melatonin and metformin on mice spermatogenesis: A histological study. Int. J. Reprod. Biomed., 2020, 18(12), 1073-1080.
[http://dx.doi.org/10.18502/ijrm.v18i12.8029] [PMID: 33426418]
[38]
Du, Z.; Xu, S.; Hu, S.; Yang, H.; Zhou, Z.; Sidhu, K.; Miao, Y.; Liu, Z.; Shen, W.; Reiter, R.J.; Hua, J.; Peng, S. Melatonin attenuates detrimental effects of diabetes on the niche of mouse spermatogonial stem cells by maintaining Leydig cells. Cell Death Dis., 2018, 9(10), 968.
[http://dx.doi.org/10.1038/s41419-018-0956-4] [PMID: 30237484]
[39]
Fatehi, D.; Mohammadi, M.; Shekarchi, B.; Shabani, A.; Seify, M.; Rostamzadeh, A. Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. J. Photochem. Photobiol. B, 2018, 178, 489-495.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.12.004] [PMID: 29232573]
[40]
Najafi, M.; Cheki, M.; Amini, P.; Javad, A.; Shabeeb, D.; Eleojo Musa, A. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. Int. J. Reprod. Biomed., 2019, 17(12), 907-914.
[http://dx.doi.org/10.18502/ijrm.v17i12.5791] [PMID: 31970312]
[41]
Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes Expression. Adv. Pharm. Bull., 2018, 8(4), 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[42]
Azmoonfar, R.; Amini, P.; Yahyapour, R.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(2), 149-157.
[http://dx.doi.org/10.2174/1871523018666190319144020]
[43]
De Felice, F.; Marchetti, C.; Marampon, F.; Cascialli, G.; Muzii, L.; Tombolini, V. Radiation effects on male fertility. Andrology, 2019, 7(1), 2-7.
[http://dx.doi.org/10.1111/andr.12562] [PMID: 30411532]
[44]
Dym, M.; Clermont, Y. Role of spermatogonia in the repair of the seminiferous epithelium following X-irradiation of the rat testis. Am. J. Anat., 1970, 128(3), 265-281.
[http://dx.doi.org/10.1002/aja.1001280302] [PMID: 4193812]
[45]
Ji, H.J.; Wang, D.M.; Wu, Y.P.; Niu, Y.Y.; Jia, L.L.; Liu, B.W.; Feng, Q.J.; Feng, M.L. Wuzi Yanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation. BMC Complement. Altern. Med., 2016, 16(1), 509.
[http://dx.doi.org/10.1186/s12906-016-1481-6] [PMID: 27927244]
[46]
Winther, J.F.; Boice, J.D., Jr; Thomsen, B.L.; Schull, W.J.; Stovall, M.; Olsen, J.H. Sex ratio among offspring of childhood cancer survivors treated with radiotherapy. Br. J. Cancer, 2003, 88(3), 382-387.
[http://dx.doi.org/10.1038/sj.bjc.6600748] [PMID: 12569380]
[47]
Byrne, J.; Rasmussen, S.A.; Steinhorn, S.C.; Connelly, R.R.; Myers, M.H.; Lynch, C.F.; Flannery, J.; Austin, D.F.; Holmes, F.F.; Holmes, G.E.; Strong, L.C.; Mulvihill, J.J. Genetic disease in offspring of long-term survivors of childhood and adolescent cancer. Am. J. Hum. Genet., 1998, 62(1), 45-52.
[http://dx.doi.org/10.1086/301677] [PMID: 9443870]
[48]
Rakici, S.Y.; Guzel, A.I.; Tumkaya, L.; Sevim Nalkiran, H.; Mercantepe, T. Pelvic radiation-induced testicular damage: an experimental study at 1 Gray. Syst Biol Reprod Med, 2020, 66(2), 89-98.
[http://dx.doi.org/10.1080/19396368.2019.1679909] [PMID: 31657243]
[49]
Shivappa, P.; Bernhardt, G. Natural radioprotectors on current and future perspectives: A mini-review. J. Pharm. Bioallied Sci., 2022, 14(2), 57-71.
[http://dx.doi.org/10.4103/jpbs.jpbs_502_21] [PMID: 36034486]
[50]
Prasad, N.R.; Thayalan, K.; Begum, N. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(1), 45-52.
[http://dx.doi.org/10.4103/2231-0738.93134]
[51]
Arul Anantha Kumar, A; Sonwani, S; Bakkiam, D. Gamma radiation induced enhancement in the antioxidant and radioprotective activities of flavonoids. In: Indian association for radiation protection; India, 2018.
[52]
Hansen, P.V.; Trykker, H.; Svennekjæ, I.L.; Hvolby, J. Long-term recovery of spermatogenesis after radiotherapy in patients with testicular cancer. Radiother. Oncol., 1990, 18(2), 117-125.
[http://dx.doi.org/10.1016/0167-8140(90)90137-L] [PMID: 2164240]
[53]
Yau, I.; Vuong, T.; Garant, A.; Ducruet, T.; Doran, P.; Faria, S. Risk of hypogonadism from scatter radiation during pelvic radiation in male patients with rectal cancer. Int. J. Radiat. Oncol. Biol. Phys., 2009, 74(5), 1481-1486.
[http://dx.doi.org/10.1016/j.ijrobp.2008.10.011]
[54]
Samanta, N.; Kannan, K.; Bala, M.; Goel, H.C. Radioprotective mechanism of Podophyllum hexandrum during spermatogenesis. Mol. Cell. Biochem., 2004, 267(1/2), 167-176.
[http://dx.doi.org/10.1023/B:MCBI.0000049375.34583.65] [PMID: 15663198]
[55]
Khan, S.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Radioprotective potential of melatonin against 60Co γ-ray-induced testicular injury in male C57BL/6 mice. J. Biomed. Sci., 2015, 22(1), 61.
[http://dx.doi.org/10.1186/s12929-015-0156-9] [PMID: 26205951]
[56]
Morel, K.L.; Ormsby, R.J.; Klebe, S.; Sweeney, C.J.; Sykes, P.J. DMAPT is an effective radioprotector from long-term radiation-induced damage to normal mouse tissues in vivo. Radiat. Res., 2019, 192(2), 231-239.
[http://dx.doi.org/10.1667/RR15404.1] [PMID: 31095445]
[57]
Liu, D.; Peng, R.; Chen, Z.; Yu, H.; Wang, S.; Dong, S.; Li, W.; Shao, W.; Dai, J.; Li, F.; Jiang, Q.; Sun, W. The Protective Effects of apigenin against radiation-induced intestinal injury. Dose Response, 2022, 20(3), 15593258221113791.
[http://dx.doi.org/10.1177/15593258221113791] [PMID: 35859853]
[58]
Begum, N.; Rajendra Prasad, N.; Kanimozhi, G.; Agilan, B. Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators. Nat. Prod. Res., 2022, 36(6), 1631-1635.
[http://dx.doi.org/10.1080/14786419.2021.1893316] [PMID: 33673794]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy