Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Impact of Radiation Therapy on Serum Humanin and MOTS-c Levels in Patients with Lung or Breast Cancer

Author(s): Ayse Gülbin Kavak, Ihsan Karslioglu, Ahmet Saracaloglu, Seniz Demiryürek and Abdullah Tuncay Demiryürek*

Volume 17, Issue 3, 2024

Published on: 16 January, 2024

Page: [229 - 237] Pages: 9

DOI: 10.2174/0118744710254730231114181358

Price: $65

Abstract

Background: Lung and breast cancer are the most frequent causes of death from cancer globally. The objectives of this research were to evaluate the serum mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) and humanin levels in lung or breast cancer patients, and investigate the impacts of radiation therapy on the circulating levels of these peptides.

Methods: 35 lung cancer patients, 34 breast cancer patients, and healthy volunteers as a control group were recruited in this prospective observatory research. Lung cancer patients with stage IIIA/IIIB were treated with paclitaxel-based chemotherapy plus radiotherapy (2 Gy per day, 30 times, 60 Gy total dose). Breast cancer stage IIA/IIB patients were treated with postoperative locoregional radiation therapy (2 Gy per day, 25 times, 50 Gy total dose). The ELISA method was used to detect serum humanin and MOTS-c levels during, before, and after radiotherapy.

Results: We observed marked elevations in circulating MOTS-c, but not humanin levels in patients with lung cancer (P < 0.001). Radiation therapy led to a marked augmentation in MOTS-c levels in these patients (P < 0.001). On the other hand, there was a marked decline in humanin, but not MOTS-c, levels in breast cancer patients (P < 0.001).

Conclusion: Our research has shown, for the first time, that increased MOTS-c and decreased humanin levels play a role in lung cancer and breast cancer, respectively. Additionally, radiotherapy modifies MOTS-c levels in patients with lung, but not breast cancer.

Graphical Abstract

[1]
Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet, 2021, 398(10299), 535-554.
[http://dx.doi.org/10.1016/S0140-6736(21)00312-3] [PMID: 34273294]
[2]
Riley, P.A. Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol., 1994, 65(1), 27-33.
[http://dx.doi.org/10.1080/09553009414550041] [PMID: 7905906]
[3]
Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin., 2022, 72(6), 524-541.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[4]
Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol., 2016, 37(4), 4281-4291.
[http://dx.doi.org/10.1007/s13277-016-4873-9] [PMID: 26815507]
[5]
van der Vliet, A.; Janssen-Heininger, Y.M.W.; Anathy, V. Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol. Aspects Med., 2018, 63, 59-69.
[http://dx.doi.org/10.1016/j.mam.2018.08.001] [PMID: 30098327]
[6]
Yoshida, T.; Goto, S.; Kawakatsu, M.; Urata, Y.; Li, T. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic. Res., 2012, 46(2), 147-153.
[http://dx.doi.org/10.3109/10715762.2011.645207] [PMID: 22126415]
[7]
Rochette, L.; Meloux, A.; Zeller, M.; Cottin, Y.; Vergely, C. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders. Arch. Cardiovasc. Dis., 2020, 113(8-9), 564-571.
[http://dx.doi.org/10.1016/j.acvd.2020.03.020] [PMID: 32680738]
[8]
Hashimoto, Y.; Ito, Y.; Niikura, T.; Shao, Z.; Hata, M.; Oyama, F.; Nishimoto, I. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem. Biophys. Res. Commun., 2001, 283(2), 460-468.
[http://dx.doi.org/10.1006/bbrc.2001.4765] [PMID: 11327724]
[9]
Rochette, L.; Rigal, E.; Dogon, G.; Malka, G.; Zeller, M.; Vergely, C.; Cottin, Y. Mitochondrial-derived peptides: New markers for cardiometabolic dysfunction. Arch. Cardiovasc. Dis., 2022, 115(1), 48-56.
[http://dx.doi.org/10.1016/j.acvd.2021.10.013] [PMID: 34972639]
[10]
Kim, S.J.; Miller, B.; Kumagai, H.; Silverstein, A.R.; Flores, M.; Yen, K. Mitochondrial-derived peptides in aging and age-related diseases. Geroscience, 2021, 43(3), 1113-1121.
[http://dx.doi.org/10.1007/s11357-020-00262-5] [PMID: 32910336]
[11]
Zuccato, C.F.; Asad, A.S.; Nicola Candia, A.J.; Gottardo, M.F.; Moreno Ayala, M.A.; Theas, M.S.; Seilicovich, A.; Candolfi, M. Mitochondrial-derived peptide humanin as therapeutic target in cancer and degenerative diseases. Expert Opin. Ther. Targets, 2019, 23(2), 117-126.
[http://dx.doi.org/10.1080/14728222.2019.1559300] [PMID: 30582721]
[12]
Hazafa, A.; Batool, A.; Ahmad, S.; Amjad, M.; Chaudhry, S.N.; Asad, J.; Ghuman, H.F.; Khan, H.M.; Naeem, M.; Ghani, U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci., 2021, 264, 118679.
[http://dx.doi.org/10.1016/j.lfs.2020.118679] [PMID: 33130077]
[13]
Kim, S.J.; Devgan, A.; Miller, B.; Lee, S.M.; Kumagai, H.; Wilson, K.A.; Wassef, G.; Wong, R.; Mehta, H.H.; Cohen, P.; Yen, K. Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(1), 130017.
[http://dx.doi.org/10.1016/j.bbagen.2021.130017] [PMID: 34624450]
[14]
Voigt, A.; Jelinek, H.F. Humanin: A mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress. Physiol. Rep., 2016, 4(9), e12796.
[http://dx.doi.org/10.14814/phy2.12796] [PMID: 27173674]
[15]
Ramanjaneya, M.; Bettahi, I.; Jerobin, J.; Chandra, P.; Abi Khalil, C.; Skarulis, M.; Atkin, S.L.; Abou-Samra, A.B. Mitochondrial-derived peptides are down regulated in diabetes subjects. Front. Endocrinol., 2019, 10, 331.
[http://dx.doi.org/10.3389/fendo.2019.00331] [PMID: 31214116]
[16]
Widmer, R.J.; Flammer, A.J.; Herrmann, J.; Rodriguez-Porcel, M.; Wan, J.; Cohen, P.; Lerman, L.O.; Lerman, A. Circulating humanin levels are associated with preserved coronary endothelial function. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(3), H393-H397.
[http://dx.doi.org/10.1152/ajpheart.00765.2012] [PMID: 23220334]
[17]
Lee, C.; Zeng, J.; Drew, B.G.; Sallam, T.; Martin-Montalvo, A.; Wan, J.; Kim, S.J.; Mehta, H.; Hevener, A.L.; de Cabo, R.; Cohen, P. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab., 2015, 21(3), 443-454.
[http://dx.doi.org/10.1016/j.cmet.2015.02.009] [PMID: 25738459]
[18]
D’Souza, R.F.; Woodhead, J.S.T.; Hedges, C.P.; Zeng, N.; Wan, J.; Kumagai, H.; Lee, C.; Cohen, P.; Cameron-Smith, D.; Mitchell, C.J.; Merry, T.L. Increased expression of the mitochondrial derived peptide, MOTS-c, in skeletal muscle of healthy aging men is associated with myofiber composition. Aging, 2020, 12(6), 5244-5258.
[http://dx.doi.org/10.18632/aging.102944] [PMID: 32182209]
[19]
García-Benlloch, S.; Revert-Ros, F.; Blesa, J.R.; Alis, R. MOTS-c promotes muscle differentiation in vitro. Peptides, 2022, 155, 170840.
[http://dx.doi.org/10.1016/j.peptides.2022.170840] [PMID: 35842023]
[20]
Cataldo, L.R.; Fernández-Verdejo, R.; Santos, J.L.; Galgani, J.E. Plasma MOTS-c levels are associated with insulin sensitivity in lean but not in obese individuals. J. Investig. Med., 2018, 66(6), 1019-1022.
[http://dx.doi.org/10.1136/jim-2017-000681] [PMID: 29593067]
[21]
Qin, Q.; Delrio, S.; Wan, J.; Jay Widmer, R.; Cohen, P.; Lerman, L.O.; Lerman, A. Downregulation of circulating MOTS-c levels in patients with coronary endothelial dysfunction. Int. J. Cardiol., 2018, 254, 23-27.
[http://dx.doi.org/10.1016/j.ijcard.2017.12.001] [PMID: 29242099]
[22]
Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; Yamanaka, T.; Bozonnat, M.C.; Uitterhoeve, A.; Wang, X.; Stewart, L.; Arriagada, R.; Burdett, S.; Pignon, J.P. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(13), 2181-2190.
[http://dx.doi.org/10.1200/JCO.2009.26.2543] [PMID: 20351327]
[23]
He, J.; Huang, Y.; Chen, Y.; Shi, S.; Ye, L.; Hu, Y.; Zhang, J.; Zeng, Z. Feasibility and efficacy of helical intensity-modulated radiotherapy for stage III non-small cell lung cancer in comparison with conventionally fractionated 3D-CRT. J. Thorac. Dis., 2016, 8(5), 862-871.
[http://dx.doi.org/10.21037/jtd.2016.03.46] [PMID: 27162660]
[24]
Machtay, M.; Paulus, R.; Moughan, J.; Komaki, R.; Bradley, J.; Choy, H.; Albain, K.; Movsas, B.; Sause, W.T.; Curran, W.J. Defining local-regional control and its importance in locally advanced non-small cell lung carcinoma. J. Thorac. Oncol., 2012, 7(4), 716-722.
[http://dx.doi.org/10.1097/JTO.0b013e3182429682] [PMID: 22425920]
[25]
Li, X.A.; Tai, A.; Arthur, D.W.; Buchholz, T.A.; Macdonald, S.; Marks, L.B.; Moran, J.M.; Pierce, L.J.; Rabinovitch, R.; Taghian, A.; Vicini, F.; Woodward, W.; White, J.R. Variability of target and normal structure delineation for breast cancer radiotherapy: An RTOG Multi-Institutional and Multiobserver Study. Int. J. Radiat. Oncol. Biol. Phys., 2009, 73(3), 944-951.
[http://dx.doi.org/10.1016/j.ijrobp.2008.10.034] [PMID: 19215827]
[26]
Whelan, T.J.; Pignol, J.P.; Levine, M.N.; Julian, J.A.; MacKenzie, R.; Parpia, S.; Shelley, W.; Grimard, L.; Bowen, J.; Lukka, H.; Perera, F.; Fyles, A.; Schneider, K.; Gulavita, S.; Freeman, C. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med., 2010, 362(6), 513-520.
[http://dx.doi.org/10.1056/NEJMoa0906260] [PMID: 20147717]
[27]
Saracaloglu, A.; Mete, A.Ö.; Ucar, D.F.; Demiryürek, S.; Erbagcı, E.; Demiryürek, A.T. Evaluation of serum humanin and MOTS-c peptide levels in patients with COVID-19 and healthy subjects. Curr. Protein Pept. Sci., 2023, 24(3), 277-283.
[http://dx.doi.org/10.2174/1389203724666230217101202] [PMID: 36799414]
[28]
Cuyàs, E.; Verdura, S.; Martin-Castillo, B.; Menendez, J.A. Circulating levels of MOTS-c in patients with breast cancer treated with metformin. Aging, 2022, 15(4), 892-897.
[http://dx.doi.org/10.18632/aging.204423] [PMID: 36490309]
[29]
Szczepaniak, P.; Siedlinski, M.; Hodorowicz-Zaniewska, D.; Nosalski, R.; Mikolajczyk, T.P.; Dobosz, A.M.; Dikalova, A.; Dikalov, S.; Streb, J.; Gara, K.; Basta, P.; Krolczyk, J.; Sulicka-Grodzicka, J.; Jozefczuk, E.; Dziewulska, A.; Saju, B.; Laksa, I.; Chen, W.; Dormer, J.; Tomaszewski, M.; Maffia, P.; Czesnikiewicz-Guzik, M.; Crea, F.; Dobrzyn, A.; Moslehi, J.; Grodzicki, T.; Harrison, D.G.; Guzik, T.J. Breast cancer chemotherapy induces vascular dysfunction and hypertension through a NOX4-dependent mechanism. J. Clin. Invest., 2022, 132(13), e149117.
[http://dx.doi.org/10.1172/JCI149117] [PMID: 35617030]
[30]
Banister, H.R.; Hammond, S.T.; Parr, S.K.; Sutterfield, S.L.; Turpin, V.R.G.; Treinen, S.; Bell, M.J.; Ade, C.J. Lower endothelium-dependent microvascular function in adult breast cancer patients receiving radiation therapy. Cardiooncology, 2021, 7(1), 18.
[http://dx.doi.org/10.1186/s40959-021-00104-z] [PMID: 33985593]
[31]
Yang, Y.; Gao, H.; Zhou, H.; Liu, Q.; Qi, Z.; Zhang, Y.; Zhang, J. The role of mitochondria-derived peptides in cardiovascular disease: Recent updates. Biomed. Pharmacother., 2019, 117, 109075.
[http://dx.doi.org/10.1016/j.biopha.2019.109075] [PMID: 31185388]
[32]
Ma, Z.; Liu, D. Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins. Acta Pharmacol. Sin., 2018, 39(6), 1012-1021.
[http://dx.doi.org/10.1038/aps.2017.169] [PMID: 29265109]
[33]
Li, W.; Zhang, D.; Yuan, W.; Wang, C.; Huang, Q.; Luo, J. Humanin ameliorates free fatty acid-induced endothelial inflammation by suppressing the NLRP3 inflammasome. ACS Omega, 2020, 5(35), 22039-22045.
[http://dx.doi.org/10.1021/acsomega.0c01778] [PMID: 32923762]
[34]
Minasyan, L.; Sreekumar, P.G.; Hinton, D.R.; Kannan, R. Protective mechanisms of the mitochondrial-derived peptide humanin in oxidative and endoplasmic reticulum stress in RPE cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/1675230] [PMID: 28814984]
[35]
Hinton, D.R.; Sreekumar, P.G.; Kannan, R. Endoplasmic reticulum-mitochondrial crosstalk: A novel role for the mitochondrial peptide humanin. Neural Regen. Res., 2017, 12(1), 35-38.
[http://dx.doi.org/10.4103/1673-5374.198970] [PMID: 28250736]
[36]
Yen, K.; Lee, C.; Mehta, H.; Cohen, P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J. Mol. Endocrinol., 2013, 50(1), R11-R19.
[http://dx.doi.org/10.1530/JME-12-0203] [PMID: 23239898]
[37]
Surampudi, P.; Chang, I.; Lue, Y.; Doumit, T.; Jia, Y.; Atienza, V.; Liu, P.Y.; Swerdloff, R.S.; Wang, C. Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats. Andrology, 2015, 3(3), 582-589.
[http://dx.doi.org/10.1111/andr.12036] [PMID: 25891800]
[38]
Jia, Y.; Ohanyan, A.; Lue, Y.H.; Swerdloff, R.S.; Liu, P.Y.; Cohen, P.; Wang, C. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs. Apoptosis, 2015, 20(4), 551-561.
[http://dx.doi.org/10.1007/s10495-015-1105-5] [PMID: 25666707]
[39]
Moreno Ayala, M.A.; Gottardo, M.F.; Zuccato, C.F.; Pidre, M.L.; Nicola Candia, A.J.; Asad, A.S.; Imsen, M.; Romanowski, V.; Creton, A.; Isla Larrain, M.; Seilicovich, A.; Candolfi, M. Humanin promotes tumor progression in experimental triple negative breast cancer. Sci. Rep., 2020, 10(1), 8542.
[http://dx.doi.org/10.1038/s41598-020-65381-7] [PMID: 32444831]
[40]
Wang, S.F.; Chen, S.; Tseng, L.M.; Lee, H.C. Role of the mitochondrial stress response in human cancer progression. Exp. Biol. Med., 2020, 245(10), 861-878.
[http://dx.doi.org/10.1177/1535370220920558] [PMID: 32326760]
[41]
Merry, T.L.; Chan, A.; Woodhead, J.S.T.; Reynolds, J.C.; Kumagai, H.; Kim, S.J.; Lee, C. Mitochondrial-derived peptides in energy metabolism. Am. J. Physiol. Endocrinol. Metab., 2020, 319(4), E659-E666.
[http://dx.doi.org/10.1152/ajpendo.00249.2020] [PMID: 32776825]
[42]
Yang, B.; Yu, Q.; Chang, B.; Guo, Q.; Xu, S.; Yi, X.; Cao, S. MOTS-c interacts synergistically with exercise intervention to regulate PGC-1α expression, attenuate insulin resistance and enhance glucose metabolism in mice via AMPK signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(6), 166126.
[http://dx.doi.org/10.1016/j.bbadis.2021.166126] [PMID: 33722744]
[43]
Han, S.Y.; Jeong, Y.J.; Choi, Y.; Hwang, S.K.; Bae, Y.S.; Chang, Y.C. Mitochondrial dysfunction induces the invasive phenotype, and cell migration and invasion, through the induction of AKT and AMPK pathways in lung cancer cells. Int. J. Mol. Med., 2018, 42(3), 1644-1652.
[http://dx.doi.org/10.3892/ijmm.2018.3733] [PMID: 29916527]
[44]
Li, H.; Ren, K.; Jiang, T.; Zhao, G.J. MOTS-c attenuates endothelial dysfunction via suppressing the MAPK/NF-κB pathway. Int. J. Cardiol., 2018, 268, 40.
[http://dx.doi.org/10.1016/j.ijcard.2018.03.031] [PMID: 30041797]
[45]
Shen, C.; Wang, J.; Feng, M.; Peng, J.; Du, X.; Chu, H.; Chen, X. The mitochondrial-derived peptide MOTS-c attenuates oxidative stress injury and the inflammatory response of H9c2 cells through the Nrf2/ARE and NF-κB pathways. Cardiovasc. Eng. Technol., 2022, 13(5), 651-661.
[http://dx.doi.org/10.1007/s13239-021-00589-w] [PMID: 34859377]
[46]
Ashrafizadeh, M.; Mirzaei, S.; Hushmandi, K.; Rahmanian, V.; Zabolian, A.; Raei, M.; Farahani, M.V.; Goharrizi, M.A.S.B.; Khan, H.; Zarrabi, A.; Samarghandian, S. Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci., 2021, 278, 119649.
[http://dx.doi.org/10.1016/j.lfs.2021.119649] [PMID: 34043989]
[47]
Lu, T.; Li, M.; Zhao, M.; Huang, Y.; Bi, G.; Liang, J.; Chen, Z.; Zheng, Y.; Xi, J.; Lin, Z.; Zhan, C.; Jiang, W.; Wang, Q.; Tan, L. Metformin inhibits human non-small cell lung cancer by regulating AMPK–CEBPB–PDL1 signaling pathway. Cancer Immunol. Immunother., 2022, 71(7), 1733-1746.
[http://dx.doi.org/10.1007/s00262-021-03116-x] [PMID: 34837101]
[48]
Huang, S.; He, T.; Yang, S.; Sheng, H.; Tang, X.; Bao, F.; Wang, Y.; Lin, X.; Yu, W.; Cheng, F.; Lv, W.; Hu, J. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl. Lung Cancer Res., 2020, 9(6), 2337-2355.
[http://dx.doi.org/10.21037/tlcr-20-1072] [PMID: 33489797]
[49]
Luo, Z.; Chen, W.; Wu, W.; Luo, W.; Zhu, T.; Guo, G.; Zhang, L.; Wang, C.; Li, M.; Shi, S. Metformin promotes survivin degradation through AMPK/PKA/GSK‐3β‐axis in non–small cell lung cancer. J. Cell. Biochem., 2019, 120(7), 11890-11899.
[http://dx.doi.org/10.1002/jcb.28470] [PMID: 30793366]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy