Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Laboratory Analogs of Thermally Processed Ices Containing H2O, N2, NH3, CO2, and C2H3N Relevant to Astrophysical Environments

Author(s): Douglas W. White*

Volume 1, 2024

Published on: 25 January, 2024

Article ID: e250124226270 Pages: 10

DOI: 10.2174/0127723348285603231228110017

Price: $65

Abstract

Introduction: Laboratory simulations can benefit ground- and space-based observations of icy bodies in outer space. It is well-known that NH3 and CO2 can interact, forming ammonium carbamate (CH6N2O2).

Method: This study examines NH3 and CO2 in thermally processed H2O-rich ices in the laboratory via mid-infrared absorption spectroscopy. In particular, the presence of CO2 in NH3-ice mixtures thermally annealed at 150 K for more than four hours in systematic experiments suggested that ammonium carbamate could potentially trap volatiles within the ice matrix.

Result: Additional studies with acetonitrile (C2H3N) in ice mixtures containing H2O, CO2, and NH3 were also performed. Absorption peak position changes were recorded when the temperature was slowly increased (≤ 5K/min) and also annealed at temperatures up to 150 K.

Conclusion: These studies will hopefully be useful in interpreting pre-biotic chemistry in the Solar System.

[1]
Davies, J.K.; Barrera, L.H. The first decadal review of the Edgeworth-Kuiper Belt., 2004. Available from: https://link.springer.com/book/10.1007/978-94-017-3321-2
[http://dx.doi.org/10.1007/978-94-017-3321-2]
[2]
He, J.; Acharyya, K.; Vidali, G. Sticking of molecules on nonporous amorphous water ice. Astrophys. J., 2016, 823(1), 56.
[http://dx.doi.org/10.3847/0004-637X/823/1/56]
[3]
Cook, J.C.; Desch, S.J.; Roush, T.L. Near infrared spectroscopy of kuiper belt objects: More than just water ice. In: In: AAS/Division for Planetary Sciences Meeting; , 2007; p. 49.
[4]
Bauer, J.; Roush, T.L.; Geballe, T.R.; Meech, K.J.; Owen, T.C.; Vacca, W.D.; Rayner, J.T.; Jim, K.T.C. The near infrared spectrum of miranda evidence of crystalline water ice. Icarus, 2002, 158(1), 178-190.
[http://dx.doi.org/10.1006/icar.2002.6876]
[5]
Jewitt, D.C.; Luu, J. Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature, 2004, 432(7018), 731-733.
[http://dx.doi.org/10.1038/nature03111] [PMID: 15592406]
[6]
James, R.L.; Ioppolo, S.; Hoffmann, S.V.; Jones, N.C.; Mason, N.J.; Dawes, A. Systematic investigation of CO 2: NH 3 ice mixtures using mid-IR and VUV spectroscopy – part 1: thermal processing. RSC Advances, 2020, 10(61), 37515-37528.
[http://dx.doi.org/10.1039/D0RA05826B] [PMID: 35521284]
[7]
Woon, D.E. Icy grain mantle surface astrochemistry of MgNC: The emergence of metal ion catalysis studied via model ice cluster calculations. J. Phys. Chem. A, 2022, 126(31), 5186-5194.
[http://dx.doi.org/10.1021/acs.jpca.2c01739] [PMID: 35895034]
[8]
Clarke, D.W.; Ferris, J.P. Chemical evolution on titan: Comparisons to the prebiotic earth. Orig. Life Evol. Biosph., 1997, 27(1/3), 225-248.
[http://dx.doi.org/10.1023/A:1006582416293] [PMID: 9150575]
[9]
de Barros, A.L.F.; Bergantini, A.; Domaracka, A.; Rothard, H.; Boduch, P.; da Silveira, E.F. Radiolysis of NH3:CO ice mixtures – implications for Solar system and interstellar ices. Mon. Not. R. Astron. Soc., 2020, 499(2), 2162-2172.
[http://dx.doi.org/10.1093/mnras/staa2865]
[10]
Muñoz Caro, G.M.; Meierhenrich, U.J.; Schutte, W.A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W.H.P.; Brack, A.; Greenberg, J.M. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 2002, 416(6879), 403-406.
[http://dx.doi.org/10.1038/416403a] [PMID: 11919624]
[11]
Hudson, R.L.; Moore, M.H.; Dworkin, J.P.; Martin, M.P.; Pozun, Z.D. Amino acids from ion-irradiated nitrile-containing ices. Astrobiology, 2008, 8(4), 771-779.
[http://dx.doi.org/10.1089/ast.2007.0131] [PMID: 18752457]
[12]
Lee, C-W.; Kim, J-K.; Moon, E-S.; Minh, Y.C.; Kang, H. Formation of glycine on ultraviolet- irradiated interstellar ice-analog films and implications for interstellar amino acids. Astrophys. J., 2009, 697(1), 428-435.
[http://dx.doi.org/10.1088/0004-637X/697/1/428]
[13]
Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.C.; Le Sergeant d’Hendecourt, L.; Chiavassa, T. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: Reactivity of methanimine (CH 2 NH), ammonia (NH 3), and hydrogen cyanide (HCN). Astron. Astrophys., 2011, 535, A47.
[http://dx.doi.org/10.1051/0004-6361/201117602]
[14]
Martin, C.R.; Binzel, R.P. Ammonia-water freezing as a mechanism for recent cryovolcanism on Pluto. Icarus, 2021, 356, 113763.
[http://dx.doi.org/10.1016/j.icarus.2020.113763]
[15]
He, J.; Perotti, G.; Emtiaz, S.M.; Toriello, F.E.; Boogert, A.; Henning, T.; Vidali, G. Ammonia, carbon dioxide, and the non-detection of the 2152 cm −1 CO band. Astron. Astrophys., 2022, 668, A76.
[http://dx.doi.org/10.1051/0004-6361/202244506]
[16]
Moore, M.H.; Ferrante, R.F.; Hudson, R.L.; Stone, J.N. Ammonia–water ice laboratory studies relevant to outer Solar System surfaces. Icarus, 2007, 190(1), 260-273.
[http://dx.doi.org/10.1016/j.icarus.2007.02.020]
[17]
Bossa, J.B.; Theulé, P.; Duvernay, F.; Borget, F.; Chiavassa, T. Carbamic acid and carbamate formation in NH$_3$:CO$_2$ ices – UV irradiation versus thermal processes. Astron. Astrophys., 2008, 492(3), 719-724.
[http://dx.doi.org/10.1051/0004-6361:200810536]
[18]
Potapov, A.; Jäger, C.; Henning, T. Thermal formation of ammonium carbamate on the surface of laboratory analogs of carbonaceous grains in protostellar envelopes and planet-forming disks. Astrophys. J., 2020, 894(2), 110.
[http://dx.doi.org/10.3847/1538-4357/ab86b5]
[19]
Hudson, R.L.; Moore, M.H. Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles. Icarus, 2004, 172(2), 466-478.
[http://dx.doi.org/10.1016/j.icarus.2004.06.011]
[20]
Sleiman, C.; El Dib, G.; Talbi, D.; Canosa, A. Experimental and theoretical study between CN radical and acetonitrile CH3CN relevant to astrochemical environments. In: In: PCMI AstroRennes; Rennes, France, 2014.
[21]
Bulak, M.; Paardekooper, D.M.; Fedoseev, G.; Linnartz, H. Photolysis of acetonitrile in a water-rich ice as a source of complex organic molecules: CH 3 CN and H 2 O:CH 3 CN ices. Astron. Astrophys., 2021, 647, A82.
[http://dx.doi.org/10.1051/0004-6361/202039695]
[22]
Fagents, S.A.; Lopes, R.M.; Quick, L.C.; Gregg, T.K. Planetary volcanism across the solar system. In: of Comparative Planetology., Eds; Elsevier, 2022; 1, pp. 161-234.
[23]
Carota, E.; Botta, G.; Rotelli, L.; Di Mauro, E.; Saladino, R. Current advances in prebiotic chemistry under space conditions. Curr. Org. Chem., 2015, 19(20), 1963-1979.
[http://dx.doi.org/10.2174/1385272819666150622175143]
[24]
Rocha, W.R.M.; Rachid, M.G.; Olsthoorn, B.; van Dishoeck, E.F.; McClure, M.K.; Linnartz, H. LIDA: The leiden ice database for astrochemistry. Astron. Astrophys., 2022, 668, A63.
[http://dx.doi.org/10.1051/0004-6361/202244032]
[25]
Mifsud, D.V.; Kaňuchová, Z.; Herczku, P.; Ioppolo, S.; Juhász, Z.; Kovács, S.T.S.; Mason, N.J.; McCullough, R.W.; Sulik, B. Sulfur ice astrochemistry: A review of laboratory studies. Space Sci. Rev., 2021, 217(1), 14.
[http://dx.doi.org/10.1007/s11214-021-00792-0]
[26]
Mifsud, D.V.; Hailey, P.A.; Herczku, P.; Juh’asz, Z.; Kov’acs, S.T.S.; Sulik, B.; Ioppolo, S. Laboratory experiments on the radiation astrochemistry of water ice phases. European Physical Journal, 2022, 76, 87.
[27]
Ahrens, C.; Meraviglia, H.; Bennett, C. Geoscientific review on CO and CO2 ices in the outer solar system. Geosciences, 2022, 12(2), 51.
[http://dx.doi.org/10.3390/geosciences12020051]
[28]
Sandford, S.A.; Allamandola, L.J. The physical and infrared spectral properties of CO2 in astrophysical ice analogs. Astrophys. J., 1990, 355(1), 357-372.
[http://dx.doi.org/10.1086/168770] [PMID: 11538691]
[29]
Ehrenfreund, P.; Dartois, E.; Demyk, K.; D’Hendecourt, L. Ice segregation toward massive protostars. Astron. Astrophys., 1998, 339, L17-L20.
[30]
Gerakines, P.A.; Whittet, D.C.B.; Ehrenfreund, P.; Boogert, A.C.A.; Tielens, A.G.G.M.; Schutte, W.A.; Chiar, J.E.; van Dishoeck, E.F.; Prusti, T.; Helmich, F.P.; de Graauw, T. Observations of solid carbon dioxide in molecular clouds with the infrared space observatory. Astrophys. J., 1999, 522(1), 357-377.
[http://dx.doi.org/10.1086/307611]
[31]
Ehrenfreund, P.; Kerkhof, O.; Schutte, W.A.; Boogert, A.C.A.; Gerakines, P.A.; Dartois, E.; D’Hendecourt, L.; Tielens, A.G.G.M.; van Dishoeck, E.F.; Whittet, D.C.B. Astron. Astrophys., 1999, 350, 240-253.
[32]
Dartois, E.; Demyk, K.; d’Hendecourt, L.; Ehrenfreund, P. Carbon dioxide-methanol intermolecular complexes in interstellar grain mantles. Astron. Astrophys., 1999, 351, 1066-1074.
[33]
Moore, M.H.; Hudson, R.L.; Gerakines, P.A. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2001, 57(4), 843-858.
[http://dx.doi.org/10.1016/S1386-1425(00)00448-0] [PMID: 11345258]
[34]
Hudson, R.; Moore, M.H. Note: IR spectra of irradiated cometary ice analogues containing methanol: A new assignment, a reassignment, and a nonassignment. Icarus, 2000, 145(2), 661-663.
[http://dx.doi.org/10.1006/icar.2000.6377]
[35]
Hudson, R.L.; Moore, M.H. Radiation chemical alterations in solar system ices: An overview. J. Geophys. Res., 2001, 106(E12), 33275-33284.
[http://dx.doi.org/10.1029/2000JE001299]
[36]
van Broekhuizen, F.A.; Groot, I.M.N.; Fraser, H.J.; van Dishoeck, E.F.; Schlemmer, S. Infrared spectroscopy of solid CO–CO 2 mixtures and layers. Astron. Astrophys., 2006, 451(2), 723-731.
[http://dx.doi.org/10.1051/0004-6361:20052942]
[37]
Hodyss, R.; Johnson, P.V.; Orzechowska, G.E.; Goguen, J.D.; Kanik, I. Carbon dioxide segregation in 1:4 and 1:9 CO2:H2O ices. Icarus, 2008, 194(2), 836-842.
[http://dx.doi.org/10.1016/j.icarus.2007.10.005]
[38]
White, D.W.; Gerakines, P.A.; Cook, A.M.; Whittet, D.C.B. Whittet, D.C.B. laboratory spectra of the CO2 bending-mode feature in interstellar ice analogues subject to thermal processing. Astrophys. J. Suppl. Ser., 2009, 180(1), 182-191.
[http://dx.doi.org/10.1088/0067-0049/180/1/182]
[39]
White, D.W. Building an astrophysics/astrochemistry laboratory from scratch. Phys. Teach., 2022, 60(5), 362-364.
[http://dx.doi.org/10.1119/10.0010394]
[40]
Öberg, K.I.; Fraser, H.J.; Boogert, A.C.A.; Bisschop, S.E.; Fuchs, G.W.; van Dishoeck, E.F.; Linnartz, H. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices. Astron. Astrophys., 2007, 462(3), 1187-1198.
[http://dx.doi.org/10.1051/0004-6361:20065881]
[41]
Öberg, K.I.; Fayolle, E.C.; Cuppen, H.M.; van Dishoeck, E.F.; Linnartz, H. Quantification of segregation dynamics in ice mixtures. Astron. Astrophys., 2009, 505(1), 183-194.
[http://dx.doi.org/10.1051/0004-6361/200912464]
[42]
White, D.W.; Mastrapa, R.M.E.; Sandford, S.A. Laboratory spectra of CO2 vibrational modes in planetary ice analogs. Icarus, 2012, 221(2), 1032-1042.
[http://dx.doi.org/10.1016/j.icarus.2012.10.024]
[43]
Gerakines, P.A.; Hudson, R.L. First infrared band strengths for amorphous CO2, an overlooked component of interstellar ices. Astrophys. J. Lett., 2015, 808(2), L40.
[http://dx.doi.org/10.1088/2041-8205/808/2/L40]
[44]
Abplanalp, M.J.; Kaiser, R.I. Complex hydrocarbon chemistry in interstellar and solar system ices revealed: A combined infrared spectroscopy and reflectron time-of-flight mass spectrometry analysis of ethane (C2H6) and D6- Ethane (C2D6) Ices Exposed to Ionizing Radiation. Astrophys. J., 2016, 827(2), 132.
[http://dx.doi.org/10.3847/0004-637X/827/2/132]
[45]
Hudgins, D.M.; Sandford, S.A.; Allamandola, L.J.; Tielens, A.G.G.M. Mid- and far-infrared spectroscopy of ices - Optical constants and integrated absorbances. Astrophys. J. Suppl. Ser., 1993, 86, 713-870.
[http://dx.doi.org/10.1086/191796] [PMID: 11539192]
[46]
Gerakines, P.A.; Bray, J.J.; Davis, A.; Richey, C.R. The strengths of near‐infrared absorption features relevant to interstellar and planetary ices. Astrophys. J., 2005, 620(2), 1140-1150.
[http://dx.doi.org/10.1086/427166]
[47]
Bernstein, M.; Cruikshank, D.; Sandford, S. Near-infrared spectra of laboratory H2O–CH4 ice mixtures. Icarus, 2006, 181(1), 302-308.
[http://dx.doi.org/10.1016/j.icarus.2005.10.021]
[48]
Mastrapa, R.; Bernstein, M.; Sandford, S.; Roush, T.; Cruikshank, D.; Ore, C. Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 μm. Icarus, 2008, 197(1), 307-320.
[http://dx.doi.org/10.1016/j.icarus.2008.04.008]
[49]
Westley, M.S.; Baratta, G.A.; Baragiola, R.A. Density and index of refraction of water ice films vapor deposited at low temperatures. J. Chem. Phys., 1998, 108(8), 3321-3326.
[http://dx.doi.org/10.1063/1.475730]
[50]
Dohnálek, Z.; Kimmel, G.A.; Ayotte, P.; Smith, R.S.; Kay, B.D. The deposition angle-dependent density of amorphous solid water films. J. Chem. Phys., 2003, 118(1), 364-372.
[http://dx.doi.org/10.1063/1.1525805]
[51]
Sandford, S.A.; Allamandola, L.J. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. Astrophys. J., 1993, 417(2), 815-825.
[http://dx.doi.org/10.1086/173362] [PMID: 11540092]
[52]
Domingo, M.; Luna, R.; Satorre, M.Á.; Santonja, C.; Millán, C. Lorentz–lorenz coefficient of ice molecules of astrophysical interest: N 2, CO 2, NH 3, CH 4, CH 3 OH, C 2 H 4, and C 2 H 6. Astrophys. J., 2021, 906(2), 81.
[http://dx.doi.org/10.3847/1538-4357/abc5c5]
[53]
Frasco, D.L. Infrared spectra of ammonium carbamate and deuteroammonium carbamate. J. Chem. Phys., 1964, 41(7), 2134-2140.
[http://dx.doi.org/10.1063/1.1726217]
[54]
Potapov, A.; Theulé, P.; Jäger, C.; Henning, T. Evidence of surface catalytic effect on cosmic dust grain analogs: The ammonia and carbon dioxide surface reaction. Astrophys. J. Lett., 2019, 878(1), L20.
[http://dx.doi.org/10.3847/2041-8213/ab2538]
[55]
Potapov, A.; Fulvio, D.; Krasnokutski, S.; Jäger, C.; Henning, T. Formation of complex organic and prebiotic molecules in H 2 O:NH 3:CO 2 ices at temperatures relevant to hot cores, protostellar envelopes, and planet-forming disks. J. Phys. Chem. A, 2022, 126(10), 1627-1639.
[http://dx.doi.org/10.1021/acs.jpca.1c10188] [PMID: 35245052]
[56]
Minissale, M.; Aikawa, Y.; Bergin, E.; Bertin, M.; Brown, W.A.; Cazaux, S.; Charnley, S.B.; Coutens, A.; Cuppen, H.M.; Guzman, V.; Linnartz, H.; McCoustra, M.R.S.; Rimola, A.; Schrauwen, J.G.M.; Toubin, C.; Ugliengo, P.; Watanabe, N.; Wakelam, V.; Dulieu, F. Thermal desorption of interstellar ices: a review on the controlling parameters and their implications from snowlines to chemical complexity. ACS Earth Space Chem., 2022, 6(3), 597-630.
[http://dx.doi.org/10.1021/acsearthspacechem.1c00357]
[57]
White, D.W. Laboratory Studies of Solid Carbon Dioxide in Interstellar Ice Analogs Subject to Thermal Processing; Ph.D. thesis. University of Alabama at Birmingham, 2010.
[58]
Klotz, A.; Ward, T.; Dartois, E. Molecular complexes theoretical computations between methanol and carbon dioxide and their implications in the interstellar ice mantles. Astron. Astrophys., 2004, 416(2), 801-810.
[http://dx.doi.org/10.1051/0004-6361:20034602]
[59]
Russo, N.D.; Khanna, R.K. Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems. Icarus, 1996, 123(2), 366-395.
[http://dx.doi.org/10.1006/icar.1996.0165]
[60]
Abdulgalil, A.G.M.; Marchione, D.; Thrower, J.D.; Collings, M.P.; McCoustra, M.R.S.; Islam, F.; Palumbo, M.E.; Congiu, E.; Dulieu, F. Laboratory studies of electron and ion irradiation of solid acetonitrile (CH 3 CN). Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2013, 371(1994), 20110586-20110586.
[http://dx.doi.org/10.1098/rsta.2011.0586] [PMID: 23734051]
[61]
Dartois, E.; Schmitt, B. Carbon dioxide clathrate hydrate FTIR spectrum. Astron. Astrophys., 2009, 504(3), 869-873.
[http://dx.doi.org/10.1051/0004-6361/200911812]
[62]
Bernstein, M.P.; Sandford, S.A. Variations in the strength of the infrared forbidden 2328.2 cm−1 fundamental of solid N2 in binary mixtures. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1999, 55(12), 2455-2466.
[http://dx.doi.org/10.1016/S1386-1425(99)00038-4] [PMID: 11543545]
[63]
Redaelli, E.; Bizzocchi, L.; Caselli, P.; Pineda, J.E. Nitrogen fractionation in ammonia and its insights into nitrogen chemistry. Astron. Astrophys., 2023, 674, L8.
[http://dx.doi.org/10.1051/0004-6361/202346647]
[64]
Ferrero, S.; Ceccarelli, C.; Ugliengo, P.; Sodupe, M.; Rimola, A. Formation of complex organic molecules on interstellar co ices? insights from computational chemistry simulations. Astrophys. J., 2023, 951(2), 150.
[http://dx.doi.org/10.3847/1538-4357/acd192]
[65]
Molpeceres, G.; Enrique-Romero, J.; Aikawa, Y. Cracking the puzzle of CO 2 formation on interstellar ices. Astron. Astrophys., 2023, 677, A39.
[http://dx.doi.org/10.1051/0004-6361/202347097]
[66]
Takehara, H.; Shoji, D.; Ida, S. Monte Carlo simulation of sugar synthesis on icy dust particles intermittently irradiated by UV in a protoplanetary disk. Astron. Astrophys., 2022, 662, A76.
[http://dx.doi.org/10.1051/0004-6361/202243212]
[67]
Molpeceres, G.; Kästner, J.; Herrero, V.J.; Peláez, R.J.; Maté, B. Desorption of organic molecules from interstellar ices, combining experiments and computer simulations: Acetaldehyde as a case study. Astron. Astrophys., 2022, 664, A169.
[http://dx.doi.org/10.1051/0004-6361/202243489]
[68]
Singh, K.K.; Tandon, P.; Kumar, R.; Misra, A. Formation of aminomethanol in ammonia-water interstellar ice. Mon. Not. R. Astron. Soc., 2021, 506, 2059-2065.
[69]
Redondo, P.; Pauzat, F.; Ellinger, Y.; Markovits, A. Reconstruction of water ice: The neglected process OH + OH → H 2 O + O. Astron. Astrophys., 2020, 638, A125.
[http://dx.doi.org/10.1051/0004-6361/202037771]
[70]
Krijt, S.; Bosman, A.D.; Zhang, K.; Apai, D.; Ciesla, F.J. The CO content of planetary building blocks: Modeling the physical and chemical evolution of protoplanetary disks. Proceedings of the 235th meeting of the American Astronomical Society, Honolulu, HI2020.,
[71]
Ennis, C.; Auchettl, R.; Appadoo, D.R.T.; Robertson, E.G. Density functional theory for prediction of far-infrared vibrational frequencies: molecular crystals of astrophysical interest. Mon. Not. R. Astron. Soc., 2017, 471(4), 4265-4274.
[http://dx.doi.org/10.1093/mnras/stx1736]
[72]
Putz, M.; Tudoran, M.A.; Putz, A.M. Structure properties and chemical-bio/ecological of PAH interactions: from synthesis to cosmic spectral lines, nanochemistry, and lipophilicity-driven reactivity. Curr. Org. Chem., 2013, 17(23), 2845-2871.
[http://dx.doi.org/10.2174/13852728113179990130]
[73]
Baiano, C.; Lupi, J.; Barone, V.; Tasinato, N. Gliding on ice in search of accurate and cost-effective computational methods for astrochemistry on grains: The puzzling case of the HCN isomerization. J. Chem. Theory Comput., 2022, 18(5), 3111-3121.
[http://dx.doi.org/10.1021/acs.jctc.1c01252] [PMID: 35446575]
[74]
Ferrero, S.; Zamirri, L.; Ceccarelli, C.; Witzel, A.; Rimola, A.; Ugliengo, P. Binding energies of interstellar molecules on crystalline and amorphous models of water ice by ab initio calculations. Astrophys. J., 2020, 904(1), 11.
[http://dx.doi.org/10.3847/1538-4357/abb953]
[75]
Perrero, J.; Enrique-Romero, J.; Martínez-Bachs, B.; Ceccarelli, C.; Balucani, N.; Ugliengo, P.; Rimola, A. Non-energetic formation of ethanol via CCH reaction with interstellar H2O Ices. A Computational Chemistry Study, 2022, 3, 496-511.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy