Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

“Hyperglycemic Memory”: Observational Evidence to Experimental Inference

In Press, (this is not the final "Version of Record"). Available online 25 January, 2024
Author(s): Mohsen Ahmadi, Soudeh Ghafouri-Fard, Parisa Najari-Hanjani, Firouzeh Morshedzadeh, Tahereh Malakoutian, Mohsen Abbasi, Hounaz Akbari, Mahsa Mohammad Amoli and Negin Saffarzadeh*
Published on: 25 January, 2024

Article ID: e250124226264

DOI: 10.2174/0115733998279869231227091944

Price: $95

Abstract

Several epidemiological studies have appreciated the impact of “duration” and “level” of hyperglycemia on the initiation and development of chronic complications of diabetes. However, glycemic profiles could not fully explain the presence/absence and severity of diabetic complications. Genetic issues and concepts of “hyperglycemic memory” have been introduced as additional influential factors involved in the pathobiology of late complications of diabetes. In the extended phase of significant diabetes randomized, controlled clinical trials, including DCCT/EDIC and UKPDS, studies have concluded that the quality of glycemic or metabolic control at the early time around the diabetes onset could maintain its protective or detrimental impact throughout the following diabetes course. There is no reliable indication of the mechanism by which the transient exposure to a given glucose concentration level could evoke a consistent cellular response at target tissues at the molecular levels. Some biological phenomena, such as the production and the concentration of advanced glycation end products (AGEs), reactive oxygen species (ROS) and protein kinase C (PKC) pathway activations, epigenetic changes, and finally, the miRNAs-mediated pathways, may be accountable for the development of hyperglycemic memory. This work summarizes evidence from previous experiments that may substantiate the hyperglycemic memory soundness by its justification in molecular terms.

[1]
Edgar L, Akbar N, Braithwaite AT, et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 2021; 144(12): 961-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046464] [PMID: 34255973]
[2]
Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977-86.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[3]
Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989; 320(18): 1161-5.
[http://dx.doi.org/10.1056/NEJM198905043201801] [PMID: 2710189]
[4]
Tavakkoly-Bazzaz J, Amiri P, Tajmir-Riahi M, et al. RANTES gene mRNA expression and its −403 G/A promoter polymorphism in coronary artery disease. Gene 2011; 487(1): 103-6.
[http://dx.doi.org/10.1016/j.gene.2011.07.019] [PMID: 21839152]
[5]
Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Diabetes Res 2015; 2015: 1-17.
[http://dx.doi.org/10.1155/2015/436879] [PMID: 26106624]
[6]
Reversal of the renal hyperglycemic memory by targeting sustained tubular 21.bioRxiv https://www.biorxiv.org/content/10.1101/2021.07.05.450846v1 Internet
[7]
Inouye BM, Hughes FM Jr, Jin H, et al. Diabetic bladder dysfunction is associated with bladder inflammation triggered through hyperglycemia, not polyuria. Res Rep Urol 2018; 10: 219-25.
[http://dx.doi.org/10.2147/RRU.S177633] [PMID: 30533402]
[8]
Backeström A, Papadopoulos K, Eriksson S, et al. Acute hyperglycaemia leads to altered frontal lobe brain activity and reduced working memory in type 2 diabetes. PLoS One 2021; 16(3): e0247753.
[http://dx.doi.org/10.1371/journal.pone.0247753] [PMID: 33739980]
[9]
Marden JR, Mayeda ER, Tchetgen Tchetgen EJ, Kawachi I, Glymour MM. High hemoglobin A1c and diabetes predict memory decline in the health and retirement study. Alzheimer Dis Assoc Disord 2017; 31(1): 48-54.
[http://dx.doi.org/10.1097/WAD.0000000000000182] [PMID: 28225507]
[10]
Jana B, Agnies M, Georg A. Glycilated hemoglobin and cognitive impairment. Int J Neurol Neurother 2017; 4(2)
[http://dx.doi.org/10.23937/2378-3001/1410069]
[11]
Haghighatpanah M, Nejad ASM, Haghighatpanah M, Thunga G, Mallayasamy S. Factors that correlate with poor glycemic control in type 2 diabetes mellitus patients with complications. Osong Public Health Res Perspect 2018; 9(4): 167-74.
[http://dx.doi.org/10.24171/j.phrp.2018.9.4.05] [PMID: 30159222]
[12]
Zhao W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and coronary heart disease risk among diabetic patients. Diabetes Care 2014; 37(2): 428-35.
[http://dx.doi.org/10.2337/dc13-1525] [PMID: 24130365]
[13]
Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643-53.
[http://dx.doi.org/10.1056/NEJMoa052187] [PMID: 16371630]
[14]
Mazarello Paes V, Barrett JK, Taylor-Robinson DC, et al. Effect of early glycemic control on HbA1c tracking and development of vascular complications after 5 years of childhood onset type 1 diabetes: Systematic review and meta‐analysis. Pediatr Diabetes 2019; 20(5): pedi.12850.
[http://dx.doi.org/10.1111/pedi.12850] [PMID: 30932298]
[15]
Laiteerapong N, Ham SA, Gao Y, et al. The legacy effect in type 2 diabetes: Impact of early glycemic control on future complications (The Diabetes & Aging Study). Diabetes Care 2019; 42(3): 416-26.
[http://dx.doi.org/10.2337/dc17-1144] [PMID: 30104301]
[16]
Bazzaz JT, Amoli MM, Taheri Z, Larijani B, Pravica V, Hutchinson IV IV. TGF-β1 and IGF-I gene variations in type 1 diabetes microangiopathic complications. J Diabetes Metab Disord 2014; 13(1): 45.
[http://dx.doi.org/10.1186/2251-6581-13-45] [PMID: 24690397]
[17]
Mobbs CV. Glucose-induced transcriptional hysteresis: Role in obesity, metabolic memory, diabetes, and aging. Front Endocrinol 2018; 9: 232.
[http://dx.doi.org/10.3389/fendo.2018.00232] [PMID: 29892261]
[18]
Song G, Lin D, Bao L, et al. Effects of high glucose on the expression of LAMA1 and biological behavior of choroid retinal endothelial cells. J Diabetes Res 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/7504614] [PMID: 29967796]
[19]
Hudspeth B. The burden of cardiovascular disease in patients with diabetes. Am J Manag Care 2018; 24(S13): S268-72.
[PMID: 30160393]
[20]
Tecce N, Masulli M, Lupoli R, et al. Evaluation of cardiovascular risk in adults with type 1 diabetes: Poor concordance between the 2019 ESC risk classification and 10-year cardiovascular risk prediction according to the Steno Type 1 Risk Engine. Cardiovasc Diabetol 2020; 19(1): 166.
[http://dx.doi.org/10.1186/s12933-020-01137-x] [PMID: 33010807]
[21]
Colom C, Rull A, Sanchez-Quesada JL, Pérez A. Cardiovascular disease in type 1 diabetes mellitus: Epidemiology and management of cardiovascular risk. J Clin Med 2021; 10(8): 1798.
[http://dx.doi.org/10.3390/jcm10081798] [PMID: 33924265]
[22]
Raghavan S, Vassy JL, Ho YL, et al. Diabetes mellitus–related all‐cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc 2019; 8(4): e011295.
[http://dx.doi.org/10.1161/JAHA.118.011295] [PMID: 30776949]
[23]
Tavakkoly-Bazzaz J, Mahsa MA, Vera P. VEGF gene polymorphism association with diabetic neuropathy. Mol Biol Rep 2010; 37(7): 3625-30.
[24]
Dokken BB. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectr 2008; 21(3): 160-5.
[http://dx.doi.org/10.2337/diaspect.21.3.160]
[25]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the study of Diabetes (EASD). Diabetes Care 2018; 41(12): 2669-701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106]
[26]
Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE. Management of diabetes and hyperglycaemia in the hospital. Lancet Diabetes Endocrinol 2021; 9(3): 174-88.
[http://dx.doi.org/10.1016/S2213-8587(20)30381-8] [PMID: 33515493]
[27]
Braffett BH, Dagogo-Jack S, Bebu I, et al. Association of insulin dose, cardiometabolic risk factors, and cardiovascular disease in type 1 diabetes during 30 years of follow-up in the DCCT/EDIC study. Diabetes Care 2019; 42(4): 657-64.
[http://dx.doi.org/10.2337/dc18-1574] [PMID: 30728218]
[28]
Ding Q, Spatz ES, Lipska KJ, et al. Newly diagnosed diabetes and outcomes after acute myocardial infarction in young adults. Heart 2021; 107(8): 657-66.
[http://dx.doi.org/10.1136/heartjnl-2020-317101] [PMID: 33082173]
[29]
The absence of a glycemic threshold for the development of long-term complications: The perspective of the Diabetes Control and Complications Trial. Diabetes 1996; 45(10): 1289-98.
[http://dx.doi.org/10.2337/diab.45.10.1289] [PMID: 8826962]
[30]
Jarrett RJ, McCartney P, Keen H. The bedford survey: Ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 1982; 22(2): 79-84.
[http://dx.doi.org/10.1007/BF00254833] [PMID: 7060853]
[31]
Kabootari M, Hasheminia M, Azizi F, Mirbolouk M, Hadaegh F. Change in glucose intolerance status and risk of incident cardiovascular disease: Tehran Lipid and Glucose Study. Cardiovasc Diabetol 2020; 19(1): 41.
[http://dx.doi.org/10.1186/s12933-020-01017-4] [PMID: 32228577]
[32]
Khan R, Chua Z, Tan J, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: Diagnosis, treatments and translational research. Medicina 2019; 55(9): 546.
[http://dx.doi.org/10.3390/medicina55090546] [PMID: 31470636]
[33]
Exploration the Standard diagnosis and treatment in patients with type 2 diabetes in a tertiary first-class hospital in Fujian Province. medRxiv 2010.
[34]
Hainsworth DP, Bebu I, Aiello LP, et al. Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study. Diabetes Care 2019; 42(5): 875-82.
[http://dx.doi.org/10.2337/dc18-2308] [PMID: 30833368]
[35]
de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011; 305(24): 2532-9.
[http://dx.doi.org/10.1001/jama.2011.861] [PMID: 21693741]
[36]
White NH, Sun W, Cleary PA, et al. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol 2008; 126(12): 1707-15.
[http://dx.doi.org/10.1001/archopht.126.12.1707] [PMID: 19064853]
[37]
Rury RH, Sanjoy KP, Bethel MA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-89.
[38]
Lind M, Imberg H, Coleman RL, Nerman O, Holman RR. Historical HbA1c values may explain the type 2 diabetes legacy effect: UKPDS 88. Diabetes Care 2021; 44(10): 2231-7.
[http://dx.doi.org/10.2337/dc20-2439] [PMID: 34244332]
[39]
Zhou JJ, Schwenke DC, Bahn G, Reaven P. Glycemic variation and cardiovascular risk in the veterans affairs diabetes trial. Diabetes Care 2018; 41(10): 2187-94.
[http://dx.doi.org/10.2337/dc18-0548] [PMID: 30082325]
[40]
Hirakawa Y, Arima H, Zoungas S, et al. Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: The ADVANCE trial. Diabetes Care 2014; 37(8): 2359-65.
[http://dx.doi.org/10.2337/dc14-0199] [PMID: 24812434]
[41]
Haffner SM. The scandinavian simvastatin survival study (4S) subgroup analysis of diabetic subjects: Implications for the prevention of coronary heart disease. Diabetes Care 1997; 20(4): 469-71.
[http://dx.doi.org/10.2337/diacare.20.4.469] [PMID: 9096961]
[42]
Jermendy G, Wittmann I, Nagy L, et al. Persistence of initial oral antidiabetic treatment in patients with type 2 diabetes mellitus. Med Sci Monit 2012; 18(2): CR72-7.
[http://dx.doi.org/10.12659/MSM.882459] [PMID: 22293880]
[43]
Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 1995; 102(4): 647-61.
[http://dx.doi.org/10.1016/S0161-6420(95)30973-6] [PMID: 7724182]
[44]
McMillan DE. Development of vascular complications in diabetes. Vasc Med 1997; 2(2): 132-42.
[http://dx.doi.org/10.1177/1358863X9700200209] [PMID: 9546955]
[45]
Epstein FH, Merimee TJ. Diabetic retinopathy. N Engl J Med 1990; 322(14): 978-83.
[http://dx.doi.org/10.1056/NEJM199004053221406] [PMID: 2179725]
[46]
Krolewski M, Eggers PW, Warram JH. Magnitude of end-stage renal disease in IDDM: A 35 year follow-up study. Kidney Int 1996; 50(6): 2041-6.
[http://dx.doi.org/10.1038/ki.1996.527] [PMID: 8943488]
[47]
Skupien J, Smiles AM, Valo E, et al. Variations in risk of end-stage renal disease and risk of mortality in an international study of patients with type 1 diabetes and advanced nephropathy. Diabetes Care 2019; 42(1): 93-101.
[http://dx.doi.org/10.2337/dc18-1369] [PMID: 30455333]
[48]
Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20: 247-60.
[http://dx.doi.org/10.1016/j.redox.2018.09.025] [PMID: 30384259]
[49]
Lien CF, Chen SJ, Tsai MC, Lin CS. Potential role of protein kinase C in the pathophysiology of diabetes-associated atherosclerosis. Front Pharmacol 2021; 12: 716332.
[http://dx.doi.org/10.3389/fphar.2021.716332] [PMID: 34276388]
[50]
Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[51]
Deragon MA, McCaig WD, Patel PS, et al. Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. Cell Death Discov 2020; 6(1): 132.
[http://dx.doi.org/10.1038/s41420-020-00370-3] [PMID: 33298902]
[52]
Root-Bernstein R, Busik J, Henry DN. Are diabetic neuropathy, retinopathy and nephropathy caused by hyperglycemic exclusion of dehydroascorbate uptake by glucose transporters? J Theor Biol 2002; 216(3): 345-59.
[http://dx.doi.org/10.1006/jtbi.2002.2535] [PMID: 12183123]
[53]
Ways DK, Sheetz MJ. The role of protein kinase C in the development of the complications of diabetes. Vitam Horm 2000; 60: 149-93.
[http://dx.doi.org/10.1016/S0083-6729(00)60019-5] [PMID: 11037624]
[54]
Flier JS, Underhill LH, Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318(20): 1315-21.
[http://dx.doi.org/10.1056/NEJM198805193182007] [PMID: 3283558]
[55]
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108: 656-62.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]
[56]
Sho-Ichi Y, Takanori M, Shin-Ichiro U, Kazuo N, Tsutomu I. Advanced glycation end products (AGEs) and cardiovascular disease (CVD) in diabetes. Cardiovasc Hematol Agents Med Chem 2007; 5(3): 236-40.
[http://dx.doi.org/10.2174/187152507781058681] [PMID: 17630950]
[57]
Kopytek M, Ząbczyk M, Mazur P, Undas A, Natorska J. Accumulation of advanced glycation end products (AGEs) is associated with the severity of aortic stenosis in patients with concomitant type 2 diabetes. Cardiovasc Diabetol 2020; 19(1): 92.
[http://dx.doi.org/10.1186/s12933-020-01068-7] [PMID: 32552684]
[58]
Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87(2): 432-8.
[http://dx.doi.org/10.1172/JCI115014] [PMID: 1991829]
[59]
Rhee SY, Kim YS. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J 2018; 42(3): 188-95.
[http://dx.doi.org/10.4093/dmj.2017.0105] [PMID: 29885110]
[60]
Indyk D, Bronowicka-Szydełko A, Gamian A, Kuzan A. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes. Sci Rep 2021; 11(1): 13264.
[http://dx.doi.org/10.1038/s41598-021-92630-0] [PMID: 34168187]
[61]
Simó-Servat O, Planas A, Ciudin A, Simó R, Hernández C. Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinología, Diabetes y Nutrición 2018; 65(9): 540-5.
[http://dx.doi.org/10.1016/j.endien.2018.06.003] [PMID: 30077632]
[62]
Dyer DG, Blackledge JA, Thorpe SR, Baynes JW. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem 1991; 266(18): 11654-60.
[http://dx.doi.org/10.1016/S0021-9258(18)99007-1] [PMID: 1904867]
[63]
Simard E, Söllradl T, Maltais JS, Boucher J, D’Orléans-Juste P, Grandbois M. Receptor for advanced glycation end-products signaling interferes with the vascular smooth muscle cell contractile phenotype and function. PLoS One 2015; 10(8): e0128881.
[http://dx.doi.org/10.1371/journal.pone.0128881] [PMID: 26248341]
[64]
Calviño J, Cigarran S, Gonzalez-Tabares L, et al. Advanced glycation end products (AGEs) estimated by skin autofluorescence are related with cardiovascular risk in renal transplant. PLoS One 2018; 13(8): e0201118.
[http://dx.doi.org/10.1371/journal.pone.0201118] [PMID: 30067789]
[65]
Shen CY, Lu CH, Wu CH, et al. The development of maillard reaction, and advanced glycation end product (AGE)-Receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with age-related diseases. Molecules 2020; 25(23): 5591.
[http://dx.doi.org/10.3390/molecules25235591] [PMID: 33261212]
[66]
Ihnat MA, Thorpe JE, Ceriello A. Hypothesis: the ‘metabolic memory’, the new challenge of diabetes. Diabet Med 2007; 24(6): 582-6.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02138.x] [PMID: 17490424]
[67]
Nishikawa T, Edelstein D, Brownlee M. The missing link: A single unifying mechanism for diabetic complications. Kidney Int 2000; 58: S26-30.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07705.x] [PMID: 10997687]
[68]
Bazzaz JT, Amoli MM, Pravica V, et al. eNOS gene polymorphism association with retinopathy in type 1 diabetes. Ophthalmic Genet 2010; 31(3): 103-7.
[http://dx.doi.org/10.3109/13816810.2010.482553] [PMID: 20565248]
[69]
Jones ML, Buhimschi IA, Zhao G, et al. Acute glucose load, inflammation, oxidative stress, nonenzymatic glycation, and screening for gestational diabetes. Reprod Sci 2020; 27(8): 1587-94.
[http://dx.doi.org/10.1007/s43032-020-00188-5] [PMID: 32430709]
[70]
Patel T, Patel V, Singh R, Jayaraman S. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 2011; 89(5): 640-9.
[http://dx.doi.org/10.1038/icb.2010.144] [PMID: 21321581]
[71]
Kumar S, Pamulapati H, Tikoo K. Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3. Mol Cell Endocrinol 2016; 422: 233-42.
[http://dx.doi.org/10.1016/j.mce.2015.12.019] [PMID: 26747726]
[72]
Vigorelli V, Resta J, Bianchessi V, et al. Abnormal DNA methylation induced by hyperglycemia reduces CXCR4 gene expression in CD34 + stem cells. J Am Heart Assoc 2019; 8(9): e010012.
[http://dx.doi.org/10.1161/JAHA.118.010012] [PMID: 31018749]
[73]
Keating ST, Plutzky J, El-Osta A. Epigenetic changes in diabetes and cardiovascular risk. Circ Res 2016; 118(11): 1706-22.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306819] [PMID: 27230637]
[74]
El-Osta A. Glycemic memory. Curr Opin Lipidol 2012; 23(1): 24-9.
[http://dx.doi.org/10.1097/MOL.0b013e32834f319d] [PMID: 22186662]
[75]
Mishra M, Kowluru RA. DNA methylation—a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy. Mol Neurobiol 2019; 56(1): 88-101.
[http://dx.doi.org/10.1007/s12035-018-1086-9] [PMID: 29679259]
[76]
Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes 2011; 60(4): 1304-13.
[http://dx.doi.org/10.2337/db10-0133] [PMID: 21357467]
[77]
Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 2008; 105(26): 9047-52.
[http://dx.doi.org/10.1073/pnas.0803623105] [PMID: 18579779]
[78]
Pirola L, Balcerczyk A, Tothill RW, et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res 2011; 21(10): 1601-15.
[http://dx.doi.org/10.1101/gr.116095.110] [PMID: 21890681]
[79]
Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Diabetol 2013; 12(1): 142.
[http://dx.doi.org/10.1186/1475-2840-12-142] [PMID: 24093550]
[80]
Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020; 12(1): 123.
[http://dx.doi.org/10.1186/s13148-020-00913-6] [PMID: 32787975]
[81]
Liu CC, Hu J, Tsai CW, et al. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain. J Neurosci 2015; 35(14): 5851-9.
[http://dx.doi.org/10.1523/JNEUROSCI.5180-14.2015] [PMID: 25855193]
[82]
Zhao M, Wang S, Zuo A, et al. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell Mol Biol Lett 2021; 26(1): 40.
[http://dx.doi.org/10.1186/s11658-021-00283-8]
[83]
Dai J, Shen J, Chai Y, Chen H. IL-1β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway. Mediators Inflamm 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/6645766] [PMID: 34054346]
[84]
Zhang J, Yang P, Liu D, et al. c-Myc upregulated by high glucose inhibits HaCaT differentiation by S100A6 transcriptional activation. Front Endocrinol 2021; 12: 676403.
[http://dx.doi.org/10.3389/fendo.2021.676403] [PMID: 34060533]
[85]
Zhang CH, Lv X, Du W, et al. The Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in diabetic peripheral neuropathy. Exp Cell Res 2019; 383(1): 111502.
[http://dx.doi.org/10.1016/j.yexcr.2019.111502] [PMID: 31323191]
[86]
Takematsu E, Spencer A, Auster J, et al. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15(2): e0225267.
[http://dx.doi.org/10.1371/journal.pone.0225267] [PMID: 32084158]
[87]
Corbi SCT, Bastos AS, Nepomuceno R, et al. Expression profile of genes potentially associated with adequate glycemic control in patients with type 2 diabetes mellitus. J Diabetes Res 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/2180819] [PMID: 28812028]
[88]
Muller YL, Hanson RL, Bian L, et al. Functional variants in MBL2 are associated with type 2 diabetes and pre-diabetes traits in Pima Indians and the old order Amish. Diabetes 2010; 59(8): 2080-5.
[http://dx.doi.org/10.2337/db09-1593] [PMID: 20522590]
[89]
Das UN, Rao AA. Gene expression profile in obesity and type 2 diabetes mellitus. Lipids Health Dis 2007; 6(1): 35.
[http://dx.doi.org/10.1186/1476-511X-6-35] [PMID: 18078524]
[90]
Ramírez-Alarcón K, Victoriano M, Mardones L, et al. Phytochemicals as potential epidrugs in type 2 diabetes mellitus. Front Endocrinol 2021; 12: 656978.
[http://dx.doi.org/10.3389/fendo.2021.656978] [PMID: 34140928]
[91]
Rosen ED, Kaestner KH, Natarajan R, et al. Epigenetics and epigenomics: Implications for diabetes and obesity. Diabetes 2018; 67(10): 1923-31.
[http://dx.doi.org/10.2337/db18-0537] [PMID: 30237160]
[92]
Yang DM, Mengyin C, Pradeep B, et al. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int 2016; 89(2): 342-53.
[93]
Perrone L, Devi TS, Hosoya K, Terasaki T, Singh LP. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 2009; 221(1): 262-72.
[http://dx.doi.org/10.1002/jcp.21852] [PMID: 19562690]
[94]
Perrone L, Devi TS, Hosoya K-I, Terasaki T, Singh LP. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis 2010; 1(8): e65.
[http://dx.doi.org/10.1038/cddis.2010.42] [PMID: 21364670]
[95]
Fiorentino T, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013; 19(32): 5695-703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[96]
Matsumoto N, Omagari D, Ushikoshi-Nakayama R, Yamazaki T, Inoue H, Saito I. Hyperglycemia induces generation of reactive oxygen species and accelerates apoptotic cell death in salivary gland cells. Pathobiology 2021; 88(3): 234-41.
[http://dx.doi.org/10.1159/000512639] [PMID: 33556940]
[97]
Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62(6): 1800-7.
[http://dx.doi.org/10.2337/db12-1648] [PMID: 23704521]
[98]
El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205(10): 2409-17.
[http://dx.doi.org/10.1084/jem.20081188] [PMID: 18809715]
[99]
Zhou S, Chen HZ, Wan Y, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 2011; 109(6): 639-48.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243592] [PMID: 21778425]
[100]
Wang Q, Song F, Dong J, Qiao L. Transient exposure to elevated glucose levels causes persistent changes in dermal microvascular endothelial cell responses to injury. Ann Transl Med 2021; 9(9): 758-8.
[http://dx.doi.org/10.21037/atm-20-7617] [PMID: 34268371]
[101]
Kong YW, Cannell IG, de Moor CH, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci USA 2008; 105(26): 8866-71.
[http://dx.doi.org/10.1073/pnas.0800650105] [PMID: 18579786]
[102]
Mendell JT. MicroRNAs: Critical regulators of development, cellular physiology and malignancy. Cell Cycle 2005; 4(9): 1179-84.
[http://dx.doi.org/10.4161/cc.4.9.2032] [PMID: 16096373]
[103]
Feng B, Chen S, McArthur K, et al. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 2011; 60(11): 2975-84.
[http://dx.doi.org/10.2337/db11-0478] [PMID: 21885871]
[104]
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol 2011; 48(1): 61-9.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[105]
Hoffmann A, Leung TH, Baltimore D. Genetic analysis of NF- B/Rel transcription factors defines functional specificities. EMBO J 2003; 22(20): 5530-9.
[http://dx.doi.org/10.1093/emboj/cdg534] [PMID: 14532125]
[106]
Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58(5): 1229-36.
[http://dx.doi.org/10.2337/db08-1666] [PMID: 19208907]
[107]
Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RCT. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 ( TNFAIP3, A20 ). Proc Natl Acad Sci 2012; 109(20): 7865-70.
[http://dx.doi.org/10.1073/pnas.1200081109] [PMID: 22550173]
[108]
Huang J-F, Cheng K-P, Wang S-J, Huang H-M, Wang Z-J. MicroRNA-125b protects hyperglycemia-induced, human retinal pigment epithelial cells (RPE) from death by targeting hexokinase 2. Int J Clin Exp Pathol 2018; 11(6): 3111-8.
[PMID: 31938439]
[109]
Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene 2008; 27(42): 5643-7.
[http://dx.doi.org/10.1038/onc.2008.171] [PMID: 18504431]
[110]
Zhong X, Liao Y, Chen L, et al. The MicroRNAs in the pathogenesis of metabolic memory. Endocrinology 2015; 156(9): 3157-68.
[http://dx.doi.org/10.1210/en.2015-1063] [PMID: 26083874]
[111]
Luo A, Yan H, Liang J, et al. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1. Gene 2017; 627: 194-201.
[http://dx.doi.org/10.1016/j.gene.2017.06.024] [PMID: 28627440]
[112]
Lin X, Qin Y, Jia J, et al. MiR-155 enhances insulin sensitivity by coordinated regulation of multiple genes in mice. PLoS Genet 2016; 12(10): e1006308.
[http://dx.doi.org/10.1371/journal.pgen.1006308] [PMID: 27711113]
[113]
Eliasson L. The small RNA miR-375 – a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 2017; 456: 95-101.
[http://dx.doi.org/10.1016/j.mce.2017.02.043] [PMID: 28254488]
[114]
Sadeghzadeh S, Dehghani Ashkezari M, Seifati SM, et al. Circulating miR-15a and miR-222 as potential biomarkers of type 2 diabetes. Diabetes Metab Syndr Obes 2020; 13: 3461-9.
[http://dx.doi.org/10.2147/DMSO.S263883] [PMID: 33061506]
[115]
Zhang T, Lv C, Li L, et al. Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. BioMed Res Int 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/761617] [PMID: 24455723]
[116]
Wu X, Li Y, Man B, Li D. Assessing MicroRNA-375 levels in type 2 diabetes mellitus (T2DM) patients and their first-degree relatives with T2DM. Diabetes Metab Syndr Obes 2021; 14: 1445-51.
[http://dx.doi.org/10.2147/DMSO.S298735] [PMID: 33824598]
[117]
Lin W, Tang Y, Zhao Y, et al. MiR-144-3p targets FoxO1 to reduce its regulation of adiponectin and promote adipogenesis. Front Genet 2020; 11: 603144.
[http://dx.doi.org/10.3389/fgene.2020.603144] [PMID: 33381152]
[118]
Xu G, Thielen LA, Chen J, et al. Serum miR-204 is an early biomarker of type 1 diabetes-associated pancreatic beta-cell loss. Am J Physiol Endocrinol Metab 2019; 317(4): E723-30.
[http://dx.doi.org/10.1152/ajpendo.00122.2019] [PMID: 31408375]
[119]
Yang Z, Chen H, Si H, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51(5): 823-31.
[http://dx.doi.org/10.1007/s00592-014-0617-8] [PMID: 24981880]
[120]
Xu X, Chen B, Zhu S, et al. Hyperglycemia promotes Snail-induced epithelial–mesenchymal transition of gastric cancer via activating ENO1 expression. Cancer Cell Int 2019; 19(1): 344.
[http://dx.doi.org/10.1186/s12935-019-1075-8] [PMID: 31889896]
[121]
Ballotari P, Vicentini M, Manicardi V, et al. Diabetes and risk of cancer incidence: Results from a population-based cohort study in northern Italy. BMC Cancer 2017; 17(1): 703.
[http://dx.doi.org/10.1186/s12885-017-3696-4] [PMID: 29070034]
[122]
Shlomai G, Neel B, LeRoith D, Gallagher EJ. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy. J Clin Oncol 2016; 34(35): 4261-9.
[http://dx.doi.org/10.1200/JCO.2016.67.4044] [PMID: 27903154]
[123]
Wang M, Hu RY, Wu HB, et al. Cancer risk among patients with type 2 diabetes mellitus: a population-based prospective study in China. Sci Rep 2015; 5(1): 11503.
[http://dx.doi.org/10.1038/srep11503] [PMID: 26082067]
[124]
Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality. Cancers 2019; 11(9): 1402.
[http://dx.doi.org/10.3390/cancers11091402] [PMID: 31546918]
[125]
Luo J, Xiang Y, Xu X, et al. High glucose-induced ros production stimulates proliferation of pancreatic cancer via inactivating the JNK pathway. Oxid Med Cell Longev 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/6917206] [PMID: 30584464]
[126]
Sada K, Nishikawa T, Kukidome D, et al. Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS One 2016; 11(7): e0158619.
[http://dx.doi.org/10.1371/journal.pone.0158619] [PMID: 27383386]
[127]
Zhang D, Lv F-L, Wang G-H. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur Rev Med Pharmacol Sci 2018; 22(16): 5071-6.
[PMID: 30178824]
[128]
Zhao W, Chen R, Zhao M, Li L, Fan L, Che XM. High glucose promotes gastric cancer chemoresistance in vivo and in vitro. Mol Med Rep 2015; 12(1): 843-50.
[http://dx.doi.org/10.3892/mmr.2015.3522] [PMID: 25815791]
[129]
Lin CY, Lee CH, Huang CC, Lee ST, Guo HR, Su SB. Impact of high glucose on metastasis of colon cancer cells. World J Gastroenterol 2015; 21(7): 2047-57.
[http://dx.doi.org/10.3748/wjg.v21.i7.2047] [PMID: 25717237]
[130]
Flores-López LA, Martínez-Hernández MG, Viedma-Rodríguez R, Díaz-Flores M, Baiza-Gutman LA. High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol 2016; 39(4): 365-78.
[http://dx.doi.org/10.1007/s13402-016-0282-8] [PMID: 27106722]
[131]
Carey IM, Critchley JA, DeWilde S, Harris T, Hosking FJ, Cook DG. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes Care 2018; 41(3): 513-21.
[http://dx.doi.org/10.2337/dc17-2131] [PMID: 29330152]
[132]
Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, et al. Susceptibility for some infectious diseases in patients with diabetes: The key role of glycemia. Front Public Health 2021; 9: 559595.
[http://dx.doi.org/10.3389/fpubh.2021.559595] [PMID: 33665182]
[133]
Xiong X, Wei L, Xiao Y, et al. Family history of diabetes is associated with diabetic foot complications in type 2 diabetes. Sci Rep 2020; 10(1): 17056.
[http://dx.doi.org/10.1038/s41598-020-74071-3] [PMID: 33051498]
[134]
Vuorlaakso M, Kiiski J, Salonen T, Karppelin M, Helminen M, Kaartinen I. Major amputation profoundly increases mortality in patients with diabetic foot infection. Front Surg 2021; 8: 655902.
[http://dx.doi.org/10.3389/fsurg.2021.655902] [PMID: 33996886]
[135]
Baker EH, Wood DM, Brennan AL, Clark N, Baines DL, Philips BJ. Hyperglycaemia and pulmonary infection. Proc Nutr Soc 2006; 65(3): 227-35.
[http://dx.doi.org/10.1079/PNS2006499] [PMID: 16923307]
[136]
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging 2020; 12(10): 9959-81.
[http://dx.doi.org/10.18632/aging.103344] [PMID: 32470948]
[137]
Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[138]
Sethumadhavan DV, Jabeena CA, Govindaraju G, Soman A, Rajavelu A. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. Current Research in Microbial Sciences 2021; 2: 100079.
[http://dx.doi.org/10.1016/j.crmicr.2021.100079] [PMID: 34725650]
[139]
Deravi N, Fathi M, Vakili K, et al. SARS-CoV-2 infection in patients with diabetes mellitus and hypertension: A systematic review. Rev Cardiovasc Med 2020; 21(3): 385-97.
[http://dx.doi.org/10.31083/j.rcm.2020.03.78] [PMID: 33070543]
[140]
Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract 2020; 162: 108132.
[http://dx.doi.org/10.1016/j.diabres.2020.108132] [PMID: 32234504]
[141]
Mendonca P, Soliman KFA. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the prevention and modulation of SARS-CoV-2 infection severity. Antioxidants 2020; 9(8): 659.
[http://dx.doi.org/10.3390/antiox9080659] [PMID: 32722164]
[142]
Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol 2020; 127: 104354.
[http://dx.doi.org/10.1016/j.jcv.2020.104354] [PMID: 32305882]
[143]
Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in diabetes and COVID-19: Therapeutic targets for cardiovascular complications? Front Pharmacol 2020; 11: 1161.
[http://dx.doi.org/10.3389/fphar.2020.01161] [PMID: 32848769]
[144]
Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020; 43: 1399-407.
[145]
Strollo R, Pozzilli P. DPP4 inhibition: Preventing SARS‐COV‐2 infection and/or progression of COVID-19? Diabetes Metab Res Rev 2020; 36(8): e3330.
[http://dx.doi.org/10.1002/dmrr.3330] [PMID: 32336007]
[146]
Yang Y, Cai Z, Zhang J. Insulin treatment may increase adverse outcomes in patients with COVID-19 and diabetes: A systematic review and meta-analysis. Front Endocrinol 2021; 12: 696087.
[http://dx.doi.org/10.3389/fendo.2021.696087] [PMID: 34367067]
[147]
Pal R, Bhadada SK, Misra A. COVID-19 vaccination in patients with diabetes mellitus: Current concepts, uncertainties and challenges. Diabetes Metab Syndr 2021; 15(2): 505-8.
[http://dx.doi.org/10.1016/j.dsx.2021.02.026] [PMID: 33662837]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy