Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

The Prospective Applications of Arising Nanostructured Dielectric Materials in Storage of Energy: A Comprehensive Review

Author(s): Suryakanta Swain, Himansu Bhusan Samal, Santosh Satpathy, Bikash Ranjan Jena*, Gurudutta Pattnaik, Sheerin Bashar and Sonu Barad

Volume 16, Issue 1, 2024

Published on: 25 January, 2024

Page: [2 - 20] Pages: 19

DOI: 10.2174/0118764029277532231231100117

Price: $65

Abstract

Background: The manufacture and study of innovative materials that enable the availability of relevant technologies are vital in light of the energy demands of various human activities and the need for a substantial shift in the energy matrix.

Objective: A strategy based on the creation of enhanced applications for batteries has been devised to reduce the conversion, storage, and feeding of renewable energy like fuel cells and electrochemical capacitors.

Methods: Conductive polymers (CP) can be utilised instead of traditional inorganic chemicals. Electrochemical energy storage devices with similar capabilities can be built using approaches based on the production of composite materials and nanostructures.

Results: CP's nanostructuring is notable for its concentration on synergistic coupling with other materials, which sets it apart from other nanostructures that have been developed in the preceding two decades. This is due to the fact that, when paired with other materials, their distinctive morphology and adaptability significantly enhance performance in areas like the suppression of ionic diffusion trajectories, electronic transport and the improvement of ion penetrability and intercalation spaces.

Conclusion: The present study forecasts the wide-ranging modern applications of diverse nanostructured dielectric materials along with its future prospectives. The potential contributions of nanostructured carbon nanotubes to the development of innovative materials for energy storage devices are also critically discussed in this context, which delivers a summary of the present state of information on this emerging topic.

Graphical Abstract

[1]
Elsaid K, Sayed ET, Abdelkareem MA, Baroutaji A, Olabi AG. Environmental impact of desalination processes: Mitigation and control strategies. Sci Total Environ 2020; 740: 140125.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140125] [PMID: 32927546]
[2]
Elsaid K, Sayed ET, Abdelkareem MA, Mahmoud MS, Ramadan M, Olabi AG. Environmental impact of emerging desalination technologies: A preliminary evaluation. J Environ Chem Eng 2020; 8(5): 104099.
[http://dx.doi.org/10.1016/j.jece.2020.104099]
[3]
Elsaid K, Taha SE, Yousef BAA, Kamal HRM, Ali AM, Olabi AG. Recent progress on the utilization of waste heat for desalination: A review. Energy Convers Manage 2020; 221: 113105.
[http://dx.doi.org/10.1016/j.enconman.2020.113105]
[4]
Sarjenat WJ, Zirnheld J, Macdougall FW. Capacitors IEEE Trans Plasma Sci 1998; 26(5): 1368-92.
[http://dx.doi.org/10.1109/27.736020]
[5]
Love GR. Energy storage in ceramic dielectrics. J Am Ceram Soc 1990; 73(2): 323-8.
[http://dx.doi.org/10.1111/j.1151-2916.1990.tb06513.x]
[6]
Kong X, Yang L, Cheng Z, Zhang S. Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3 lead-free ceramics and potential for high-temperature capacitors. Materials 2020; 13: 180.
[7]
Fletcher NH, Hilton AD, Ricketts BW. Optimization of energy storage density in ceramic capacitors. J Phys D Appl Phys 1996; 29(1): 253-8.
[http://dx.doi.org/10.1088/0022-3727/29/1/037]
[8]
Deka B, Cho KH. BiFeO3-based relaxor ferroelectrics for energy storage: Progress and prospects. Materials 2021; 14(23): 7188.
[http://dx.doi.org/10.3390/ma14237188] [PMID: 34885340]
[9]
Wei XK, Dunin-Borkowski RE, Mayer J. Structural phase transition and in-situ energy storage pathway in nonpolar materials: A review. Materials 2021; 14(24): 7854.
[http://dx.doi.org/10.3390/ma14247854] [PMID: 34947446]
[10]
Aramberri H, Fedorova NS, Íñiguez J. Ferroelectric/paraelectric superlattices for energy storage. Sci Adv 2022; 8(31): eabn4880.
[http://dx.doi.org/10.1126/sciadv.abn4880] [PMID: 35921413]
[11]
Pradhan DK, Kumari S, Vasudevan RK, et al. Exploring the magnetoelectric coupling at the composite interfaces of FE/FM/FE heterostructures. Sci Rep 2018; 8(1): 17381.
[http://dx.doi.org/10.1038/s41598-018-35648-1] [PMID: 30478356]
[12]
Fu Z, Chen X, Li Z, et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat Commun 2020; 11(1): 3809.
[http://dx.doi.org/10.1038/s41467-020-17664-w] [PMID: 32732868]
[13]
Wang H, Liu Y, Yang T, Zhang S. Ultrahigh energy‐storage density in antiferroelectric ceramics with field‐induced multiphase transitions. Adv Funct Mater 2019; 29(7): 1807321.
[http://dx.doi.org/10.1002/adfm.201807321]
[14]
Zhang LL, Huang YN. Theory of relaxor-ferroelectricity. Sci Rep 2020; 10(1): 5060.
[http://dx.doi.org/10.1038/s41598-020-61911-5] [PMID: 32193443]
[15]
Zhang C, Tong X, Liu Z, et al. Enhancement of energy storage performance of PMMA/PVDF composites by changing the crystalline phase through heat treatment. Polymers 2023; 15(11): 2486.
[http://dx.doi.org/10.3390/polym15112486] [PMID: 37299285]
[16]
Hu G, Shen Y, Fan Q, et al. Improved leakage behavior at high temperature via engineering of ferroelectric sandwich structures. Materials 2023; 16(2): 712.
[http://dx.doi.org/10.3390/ma16020712] [PMID: 36676449]
[17]
Supriya S, Kumar S, Kar M. Electrical properties and dipole relaxation behavior of zinc-substituted cobalt ferrite. J Electron Mater 2017; 46(12): 6884-94.
[http://dx.doi.org/10.1007/s11664-017-5729-9]
[18]
Mohammad AM, Ridha SMA, Mubarak TH. Dielectric properties of Cr-substituted cobalt ferrite nanoparticles synthesis by citrate-gel auto combustion method. Int J Appl Eng Res 2018; 13: 6026-35.
[19]
Prasad BBVSV, Ramesh KV, Srinivas A. Structural and magnetic studies on Co-Zn nanoferrite synthesized via sol-gel and combustion methods. Mater Sci Pol 2019; 37(1): 39-54.
[http://dx.doi.org/10.2478/msp-2019-0013]
[20]
Anu K, Hemalatha J. Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. J Mol Liq 2019; 284: 445-53.
[http://dx.doi.org/10.1016/j.molliq.2019.04.018]
[21]
Hadi M, Batoo KM, Chauhan A, Aldossary OM, Verma R, Yang Y. Tuning of structural, dielectric, and electronic properties of Cu doped Co–Zn ferrite nanoparticles for multilayer inductor chip applications. Magnetochemistry 2021; 7(4): 53.
[http://dx.doi.org/10.3390/magnetochemistry7040053]
[22]
Ahsan MZ, Khan FA. Structural and electrical properties of manganese doped cobalt ferrite nanoparticles. Mater Sci Nanotechnol 2018; 2: 1-9.
[23]
Rady KE, Farag EM, El-Shokrofy KM, Elsad RA. Experimental and theoretical investigations of the role of (Co–Ti) in the modification of the functional properties of nanocrystalline Ni–Zn ferrites. Eur Phys J Plus 2022; 137(1): 109.
[http://dx.doi.org/10.1140/epjp/s13360-021-02314-x]
[24]
Masti SA, Sharm AK, Vasambekar PN. Behavior of dielectric constant and dielectric loss tangent in Cd2+ and Cr3+ substituted magnesium ferrites Pelagia Res. Libr 2013; 4(4): 335-9.
[25]
Goodenough JB, Abruna HD, Buchanan MVUS. Department of Energy Office of Scientific and Technical Information. Washington, DC, USA 2007; pp. 2-4.
[26]
Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019; 102: 72-108.
[http://dx.doi.org/10.1016/j.pmatsci.2018.12.005]
[27]
Kusko A, Dedad J. Stored energy - Short-term and long-term energy storage methods. IEEE Ind Appl Mag 2007; 13(4): 66-72.
[http://dx.doi.org/10.1109/MIA.2007.4283511]
[28]
Kui Yao , Shuting Chen , Rahimabady M, et al. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans Ultrason Ferroelectr Freq Control 2011; 58(9): 1968-74.
[http://dx.doi.org/10.1109/TUFFC.2011.2039] [PMID: 21937333]
[29]
Xihong H. A review on the dielectric materials for high energy-storage application J Adv Dielectr. 2013; 3: p. (1)1330001.
[30]
Irvine JTS, Sinclair DC, West AR. Electroceramics: Characterization by impedance spectroscopy. Adv Mater 1990; 2(3): 132-8.
[http://dx.doi.org/10.1002/adma.19900020304]
[31]
Sarjeant WJ, Clelland IW, Price RA. Capacitive components for power electronics. Proc IEEE 2001; 89(6): 846-55.
[http://dx.doi.org/10.1109/5.931475]
[32]
Bell AJ. Ferroelectrics: The role of ceramic science and engineering. J Eur Ceram Soc 2008; 28(7): 1307-17.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2007.12.014]
[33]
Tan Q, Irwin P, Cao Y. Advanced dielectrics for capacitors. IEEJ Trans Fundam Mater 2006; 126(11): 1153-9.
[http://dx.doi.org/10.1541/ieejfms.126.1153]
[34]
Chu B, Zhou X, Ren K, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006; 313(5785): 334-6.
[http://dx.doi.org/10.1126/science.1127798] [PMID: 16857935]
[35]
Li Q, Han K, Gadinski MR, Zhang G, Wang Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 2014; 26(36): 6244-9.
[http://dx.doi.org/10.1002/adma.201402106] [PMID: 25043901]
[36]
Ravindran P, Vidya R, Kjekshus A, Fjellvåg H, Eriksson O. Theoretical investigation of magnetoelectric behavior in Bi Fe O 3. Phys Rev B Condens Matter Mater Phys 2006; 74(22): 224412.
[http://dx.doi.org/10.1103/PhysRevB.74.224412]
[37]
Peddigari M, Palneedi H, Hwang GT, Ryu J. Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J Korean Ceram Soc 2019; 56(1): 1-23.
[http://dx.doi.org/10.4191/kcers.2019.56.1.02]
[38]
Zhou HY, Liu XQ, Zhu XL, Chen XM. CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J Am Ceram Soc 2018; 101(5): 1999-2008.
[http://dx.doi.org/10.1111/jace.15371]
[39]
Zhang MH, Wang K, Du YJ, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J Am Chem Soc 2017; 139(10): 3889-95.
[http://dx.doi.org/10.1021/jacs.7b00520] [PMID: 28233999]
[40]
Cheng X, Shen M. Enhanced spontaneous polarization in Sr and Ca co-doped BaTiO3 ceramics. Solid State Commun 2007; 141(11): 587-90.
[http://dx.doi.org/10.1016/j.ssc.2007.01.009]
[41]
Chou X, Zhai J, Jiang H, Yao X. Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J Appl Phys 2007; 102(8): 084106.
[http://dx.doi.org/10.1063/1.2799081]
[42]
Liu S, Zhang L, Wang J, Zhao Y, Wang X. Abnormal Curie temperature behavior and enhanced strain property by controlling substitution site of Ce ions in BaTiO3 ceramics. Ceram Int 2017; 43(14): 10683-90.
[http://dx.doi.org/10.1016/j.ceramint.2017.04.164]
[43]
Gao J, Wang Y, He Z, et al. Laminated modulation of tricritical ferroelectrics exhibiting highly enhanced dielectric permittivity and temperature stability. Adv Funct Mater 2019; 29(17): 1807162.
[http://dx.doi.org/10.1002/adfm.201807162]
[44]
Zhang Y, Huang J, Ma T, Wang X, Deng C, Dai X. Sintering temperature dependence of energy-storage properties in (Ba,Sr)TiO3 glass-ceramics. J Am Ceram Soc 2011; 94(6): 1805-10.
[http://dx.doi.org/10.1111/j.1551-2916.2010.04301.x]
[45]
Han DF, Zhang QM, Luo J, Tang Q, Du J. Optimization of energy storage density in ANb2O6 NaNbO3 SiO2 (A=[(1−x)Pb, xSr]) nanostructured glass–ceramic dielectrics. Ceram Int 2012; 38(8): 6903-6.
[http://dx.doi.org/10.1016/j.ceramint.2012.04.087]
[46]
Davis SE, Ide MS, Davis RJ. Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem 2013; 15(1): 17-45.
[http://dx.doi.org/10.1039/C2GC36441G]
[47]
Siwal S, Devi N, Perla V, Barik R, Ghosh S, Mallick K. The influencing role of oxophilicity and surface area of the catalyst for electrochemical methanol oxidation reaction: A case study. Mater Res Innov 2019; 23(7): 440-7.
[http://dx.doi.org/10.1080/14328917.2018.1533268]
[48]
Lei H, Li X, Sun C, Zeng J, Siwal SS, Zhang Q. Galvanic replacement–mediated synthesis of ni‐supported pd nanoparticles with strong metal–support interaction for methanol electro‐oxidation. Small 2019; 15(11): 1804722.
[http://dx.doi.org/10.1002/smll.201804722]
[49]
Li Y, Ye D. Elsevier. The Netherlands: Amsterdam 2018; pp. 537-57.
[50]
Abbasi H, Antunes M, Velasco JI. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci 2019; 103: 319-73.
[http://dx.doi.org/10.1016/j.pmatsci.2019.02.003]
[51]
Dang ZM, Yuan JK, Yao SH, Liao RJ. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 2013; 25(44): 6334-65.
[http://dx.doi.org/10.1002/adma.201301752] [PMID: 24038139]
[52]
Devi N, Ghosh S, Perla VK, Pal T, Mallick K. Laboratory based synthesis of the pure form of gananite (BiF3) nanoparticles: A potential material for electrochemical supercapacitor application. New J Chem 2019; 43(46): 18369-76.
[http://dx.doi.org/10.1039/C9NJ04573B]
[53]
Al-Saleh MH. Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Mater Des 2015; 85: 76-81.
[http://dx.doi.org/10.1016/j.matdes.2015.06.162]
[54]
Tang H, Chen GX, Li Q. Epoxy-based high-k composites with low dielectric loss caused by reactive core-shell-structured carbon nanotube hybrids. Mater Lett 2016; 184: 143-7.
[http://dx.doi.org/10.1016/j.matlet.2016.08.036]
[55]
Lin B, Li ZT, Yang Y, et al. Enhanced dielectric permittivity in surfacemodified graphene/PVDF composites prepared by an electrospinning-hot pressing method. Compos Sci Technol 2019; 172: 58-65.
[http://dx.doi.org/10.1016/j.compscitech.2019.01.003]
[56]
Mohanapriya MK, Deshmukh K, Chidambaram K, et al. Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device applications. J Mater Sci Mater Electron 2017; 28(8): 6099-111.
[http://dx.doi.org/10.1007/s10854-016-6287-2]
[57]
Hossain S, Hoque M. Elsevier. The Netherlands: Amsterdam 2018; pp. 239-82.
[58]
Rolison DR, Long JW, Lytle JC, et al. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 2009; 38(1): 226-52.
[http://dx.doi.org/10.1039/B801151F] [PMID: 19088976]
[59]
Wang Y, Fu X, Zheng M, Zhong W-H, Cao G. Strategies for building robust traffic networks in advanced energy storage devices: A focus on composite electrodes. Adv Mater 2018; 31: 1700322.
[60]
Qiu Y, Xu P, Guo B, et al. Electrodeposition of manganese dioxide film on activated carbon paper and its application in supercapacitors with high rate capability. RSC Advances 2014; 4(109): 64187-92.
[http://dx.doi.org/10.1039/C4RA11127C]
[61]
Chen Y, Qin WQ, Wang JW, Chen BZ. Fabrication and electrochemical performance of nanoflake MnO2@carbon fiber coaxial nanocables for supercapacitors. J Appl Electrochem 2016; 46(2): 241-9.
[http://dx.doi.org/10.1007/s10800-015-0898-9]
[62]
Hou Y, Cheng Y, Hobson T, Liu J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 2010; 10(7): 2727-33.
[http://dx.doi.org/10.1021/nl101723g] [PMID: 20586479]
[63]
Chen H, Zeng S, Chen M, Zhang Y, Zheng L, Li Q. Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2 hybrid films for high‐performance flexible pseudosupercapacitors. Small 2016; 12(15): 2035-45.
[http://dx.doi.org/10.1002/smll.201503623] [PMID: 26929042]
[64]
Yeo T, Shin D, Shin J, et al. DC-field-driven combustion waves for one-step fabrication of reduced manganese oxide/multi-walled carbon nanotube hybrid nanostructures as high-performance supercapacitor electrodes. J Mater Chem A Mater Energy Sustain 2017; 5(47): 24707-19.
[http://dx.doi.org/10.1039/C7TA07812A]
[65]
Huang G, Zhang Y, Wang L, Sheng P, Peng H. Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon 2017; 125: 595-604.
[http://dx.doi.org/10.1016/j.carbon.2017.09.103]
[66]
Wang L. Huang, M.; Chen, S.; Kang, L.; He, X.; Lei, Z.; Shi, F.; Xu, H.; Liu, Z.H. δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance. J Mater Chem A Mater Energy Sustain 2017; 5(36): 19107-15.
[http://dx.doi.org/10.1039/C7TA04712F]
[67]
Shi P, Li L, Hua L, et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 2017; 11(1): 444-52.
[http://dx.doi.org/10.1021/acsnano.6b06357] [PMID: 28027441]
[68]
Li P, Yang Y, Shi E, et al. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces 2014; 6(7): 5228-34.
[http://dx.doi.org/10.1021/am500579c]
[69]
Higgins TM, McAteer D, Coelho JCM, et al. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. ACS Nano 2014; 8(9): 9567-79.
[http://dx.doi.org/10.1021/nn5038543] [PMID: 25199042]
[70]
Jin Y, Chen H, Chen M, Liu N, Li Q. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 2013; 5(8): 3408-16.
[http://dx.doi.org/10.1021/am400457x] [PMID: 23488813]
[71]
Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 2013; 5(3): 1067-73.
[http://dx.doi.org/10.1039/C2NR33136E] [PMID: 23254316]
[72]
Amade R, Jover E, Caglar B, Mutlu T, Bertran E. Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J Power Sources 2011; 196(13): 5779-83.
[http://dx.doi.org/10.1016/j.jpowsour.2011.02.029]
[73]
Qian J, Jin H, Chen B, et al. Aqueous manganese dioxide ink for paper‐based capacitive energy storage devices. Angew Chem Int Ed 2015; 54(23): 6800-3.
[http://dx.doi.org/10.1002/anie.201501261]
[74]
Liu J, Li F, Li X, He X. Ultrathin MnO2 nanosheets grown on hollow carbon spheres with enhanced capacitive performance. Phys Lett A 2020; 384(22): 126539.
[http://dx.doi.org/10.1016/j.physleta.2020.126539]
[75]
Wang H, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 2011; 11(7): 2644-7.
[http://dx.doi.org/10.1021/nl200658a] [PMID: 21699259]
[76]
Xiao J, Mei D, Li X, et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 2011; 11(11): 5071-8.
[http://dx.doi.org/10.1021/nl203332e] [PMID: 21985448]
[77]
Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011; 332(6037): 1537-41.
[78]
Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015; 347(6217): 1246501.
[http://dx.doi.org/10.1126/science.1246501] [PMID: 25554791]
[79]
Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012; 1(4): 534-51.
[http://dx.doi.org/10.1016/j.nanoen.2012.05.001]
[80]
Zhu J, Yang D, Yin Z, Yan Q, Zhang H. Graphene and graphene-based materials for energy storage applications. Small 2014; 10(17): 3480-98.
[http://dx.doi.org/10.1002/smll.201303202] [PMID: 24431122]
[81]
Han S, Wu D, Li S, Zhang F, Feng X. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 2014; 26(6): 849-64.
[http://dx.doi.org/10.1002/adma.201303115] [PMID: 24347321]
[82]
An Z, Li J, Kikuchi A, Wang Z, Jiang Y, Ono T. Mechanically strengthened graphene-Cu composite with reduced thermal expansion towards interconnect applications. Microsyst Nanoeng 2019; 5(1): 20.
[http://dx.doi.org/10.1038/s41378-019-0059-0] [PMID: 31123594]
[83]
Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 2004; 19(3): 1387-401.
[http://dx.doi.org/10.1109/TPWRS.2004.825981]
[84]
Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 2013; 13(5): 2151-7.
[http://dx.doi.org/10.1021/nl400600x] [PMID: 23590256]
[85]
Jauregui LA, Yue Y, Sidorov AN, et al. Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans 2010; 28(5): 73-83.
[http://dx.doi.org/10.1149/1.3367938]
[86]
Yu W, Xie H, Wang X, Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 2011; 375(10): 1323-8.
[http://dx.doi.org/10.1016/j.physleta.2011.01.040]
[87]
Xie Y, Xu Z, Xu S, et al. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit. Nanoscale 2015; 7(22): 10101-10.
[http://dx.doi.org/10.1039/C5NR02012C] [PMID: 25981826]
[88]
Alofi A, Srivastava GP. Thermal conductivity of graphene and graphite. Phys Rev B Condens Matter Mater Phys 2013; 87(11): 115421.
[http://dx.doi.org/10.1103/PhysRevB.87.115421]
[89]
Kargar F, Barani Z, Balinskiy M, Magana AS, Lewis JS, Balandin AA. Dual‐functional graphene composites for electromagnetic shielding and thermal management. Adv Electron Mater 2019; 5(1): 1800558.
[http://dx.doi.org/10.1002/aelm.201800558]
[90]
Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021; 80: 105567.
[http://dx.doi.org/10.1016/j.nanoen.2020.105567]
[91]
Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat Photonics 2012; 6(11): 749-58.
[http://dx.doi.org/10.1038/nphoton.2012.262]
[92]
Singh R, Kumar D, Tripathi CC. Graphene: Potential material for nanoelectronics applications. Indian J Pure Appl Phy 2015; 53(8): 501-13.
[93]
Bottari G, Herranz MÁ, Wibmer L, et al. Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 2017; 46(15): 4464-500.
[http://dx.doi.org/10.1039/C7CS00229G] [PMID: 28702571]
[94]
Ferreira ADBL, Nóvoa PRO, Marques AT. Multifunctional material systems: A state-of-the-art review. Compos Struct 2016; 151: 3-35.
[http://dx.doi.org/10.1016/j.compstruct.2016.01.028]
[95]
Dehmiwal S, Bahuguna M. Graphene - properties, production and rising applications: A review J. Mater. NanoSci 2021; 8(2): 51-63.
[96]
Mahmood N, Zhang C, Yin H, Hou Y. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A Mater Energy Sustain 2014; 2(1): 15-32.
[http://dx.doi.org/10.1039/C3TA13033A]
[97]
Zhao Y, Song Z, Li X, et al. Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2016; 2: 35-62.
[http://dx.doi.org/10.1016/j.ensm.2015.11.005]
[98]
Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater 2015; 14(3): 271-9.
[http://dx.doi.org/10.1038/nmat4170] [PMID: 25532074]
[99]
Ma X, Ning G, Qi C, Xu C, Gao J. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 2014; 6(16): 14415-22.
[http://dx.doi.org/10.1021/am503692g] [PMID: 25105538]
[100]
Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 2016; 1: 1-17.
[101]
Zhao Y, Li X, Yan B, et al. Recent developments and understanding of novel mixed transitionmetal oxides as anodes in lithium ion batteries. Adv Energy Mater 2016; 6(8): 1502175.
[http://dx.doi.org/10.1002/aenm.201502175]
[102]
Bosubabu D, Sampathkumar R, Karkera G, Ramesha K. Facile approach to prepare multiple heteroatom-doped carbon material from bagasse and its applications toward lithium-ion and lithium–sulfur batteries. Energy Fuels 2021; 35(9): 8286-94.
[http://dx.doi.org/10.1021/acs.energyfuels.0c03887]
[103]
Zhu Y, Wang S, Zhong Y, Cai R, Li L, Shao Z. Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries. J Power Sources 2016; 307: 552-60.
[http://dx.doi.org/10.1016/j.jpowsour.2016.01.014]
[104]
Huang H, Shi H, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials. Adv Funct Mater 2020; 30(41): 1909035.
[http://dx.doi.org/10.1002/adfm.201909035]
[105]
Wang L, Xu S, Wang Z, et al. A nanofiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience 2023; 3(2): 100090.
[http://dx.doi.org/10.1016/j.esci.2022.100090]
[106]
Meng Z, Qiu Z, Shi Y, et al. Micro/nano metal–organic frameworks meet energy chemistry: A review of materials synthesis and applications. eScience 2023; 3(2): 100092.
[http://dx.doi.org/10.1016/j.esci.2023.100092]
[107]
Yun S, Yu J, Lee W, Lee H, Yoon WS. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Mater Horiz 2023; 10(3): 829-41.
[http://dx.doi.org/10.1039/D2MH01254E] [PMID: 36597945]
[108]
Zheng J, Xia R, Sun C, et al. Fast and durable lithium storage enabled by tuning entropy in Wadsley–Roth phase titanium niobium oxides, small. Small 2023; 19(30): 2301967.
[http://dx.doi.org/10.1002/smll.202301967] [PMID: 37029454]
[109]
Fan Linggang, Zhang S, Dong W, et al. Germany: Science China Press and Springer-Verlag GmbH. Part of Springer Nature 2022.
[110]
Dong W, Lin T, Huang J, et al. Electrodes with electrodeposited water-excluding polymer coating enable high-voltage aqueous supercapacitors. Research 2020; 2020: 2020/4178179.
[http://dx.doi.org/10.34133/2020/4178179] [PMID: 33103117]
[111]
Sun YK, Kamat PV. Advances in solid-state batteries, a virtual issue. ACS Energy Lett 2021; 6(6): 2356-8.
[http://dx.doi.org/10.1021/acsenergylett.1c01079]
[112]
Ma MY, Ke X, Liu YC, et al. A novel electrolytic-manganese-residues-and-serpentine-based composite (S-EMR) for enhanced Cd(II) and Pb(II) adsorption in aquatic environment. Rare Met 2023; 42(1): 346-58.
[http://dx.doi.org/10.1007/s12598-022-02042-w]
[113]
Muhammad A, Jatoi AS, Mazari SA, et al. Recent advances and developments in advanced green porous nanomaterial for sustainable energy storage application. J Porous Mater 2021; 28(6): 1945-60.
[http://dx.doi.org/10.1007/s10934-021-01138-5]
[114]
Dong W, Xie M, Zhao S, Qin Q, Huang F. Materials design and preparation for high energy density and high-power density electrochemical supercapacitor. Mater Sci Eng R 2023; 152: 100713.
[http://dx.doi.org/10.1016/j.mser.2022.100713]
[115]
Dong W, Zhao Y, Cai M, et al. Nanoscale borate coating network stabilized iron oxide anode for high‐energy‐density bipolar lithium‐ion batteries. Small 2023; 19(16): 2207074.
[http://dx.doi.org/10.1002/smll.202207074] [PMID: 36670067]
[116]
Dong W, Ye B, Cai M, et al. Superwettable high-voltage LiCoO2 for low-temperature lithium ion batteries. ACS Energy Lett 2023; 8(2): 881-8.
[http://dx.doi.org/10.1021/acsenergylett.2c02434]
[117]
Dong WJ, Le JB, Jin Y, et al. Metal organophosphates: Electronic structure tuning from inert materials to universal alkali-metal-ion battery cathodes. Rare Met 2023; 42(1): 122-33.
[http://dx.doi.org/10.1007/s12598-022-02097-9]
[118]
Dong W, Huang F. Understanding the influence of crystal packing density on electrochemical energy storage materials. eScience 2023; 100158.
[http://dx.doi.org/10.1016/j.esci.2023.100158]
[119]
Wang Y, Yang X, Zhang Z, et al. Electrolyte design for rechargeable anion shuttle batteries. eScience 2022; 2: 573-90.
[120]
Ou X, Gong D, Han C, Liu Z, Tang Y. Advances and prospects of dual-ion batteries. Adv Energy Mater 2021; 11(46): 2102498.
[http://dx.doi.org/10.1002/aenm.202102498]
[121]
Liu Q, Wang Y, Yang X, et al. Rechargeable anion-shuttle batteries for low-cost energy storage. Chem 2021; 7(8): 1993-2021.
[http://dx.doi.org/10.1016/j.chempr.2021.02.004]
[122]
Park M, Zhang X, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources 2010; 195(24): 7904-29.
[http://dx.doi.org/10.1016/j.jpowsour.2010.06.060]
[123]
Raj R, Verma R, Singh J. Nanomaterials for energy storage applications. In: Srivastava M, Srivastava N, Singh R, Eds. Bioenergy Research: Integrative Solution for Existing Roadblock Clean Energy Production Technologies. Singapore: Springer 2021.
[http://dx.doi.org/10.1007/978-981-16-1888-8_7]
[124]
Gogotsi, Yury What nano can do for energy storage. CS Nano 2014; 8(6): 5369-71.
[http://dx.doi.org/10.1021/nn503164x]
[125]
An KH, Kim WS, Park YS, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 2001; 11(5): 387-92.
[http://dx.doi.org/10.1002/1616-3028(200110)11:5<387:AID-ADFM387>3.0.CO;2-G]
[126]
Pasquini L. Nanostructured materials for energy storage and conversion. Nanomaterials 2022; 12(9): 1583.
[http://dx.doi.org/10.3390/nano12091583] [PMID: 35564292]
[127]
Azib T, Thaury C, Cuevas F, et al. Impact of surface chemistry of silicon nanoparticles on the structural and electrochemical properties of Si/Ni3.4Sn4 composite anode for li-ion batteries. Nanomaterials 2020; 11(1): 18.
[http://dx.doi.org/10.3390/nano11010018] [PMID: 33374174]
[128]
Xu D, Li Z, Li L, Wang J. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. A Functional Mater 2020; 30(47): 2000712.
[129]
Yadav RS, Kuřitka I, Vilcakova J, et al. NiFe2O4 nanoparticles synthesized by dextrin from corn-mediated sol–gel combustion method and its polypropylene nanocomposites engineered with reduced graphene oxide for the reduction of electromagnetic pollution. ACS Omega 2019; 4(26): 22069-81.
[130]
Xie W, Song Y, Li S, et al. Single‐atomic‐Co electrocatalysts with self‐supported architecture toward oxygen‐involved reaction. A Functional Mater 2019; 29(50): 1906477.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy