Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Recent Advancements in Applications of Alginates in Drug Delivery, Tissue Engineering, and Biomedical Field

Author(s): Saurabh Morparia and Vasanti Suvarna*

Volume 14, Issue 9, 2024

Published on: 25 January, 2024

Article ID: e260124226231 Pages: 18

DOI: 10.2174/0122103155284365240103063024

Price: $65

Abstract

Alginates, originating from the cell walls of brown algae, constitute a class of biopolymers known for their linear, unbranched architecture. Comprising both homopolymeric and heteropolymeric blocks, these polymers are constructed through glycosidic bonds linking β-D mannuronic acid and α-L-guluronic acid units in a 1-4 configuration. The specific arrangement of these monomers, whether in alternate, sequential, or random configurations, imparts distinct physical and chemical properties to the polysaccharide. The composition and organization of alginates play a pivotal role in dictating their performance and potential applications, particularly within the realm of biomedicine. A comprehensive understanding of their intricate chemistry and characterization is imperative for effective utilization. This knowledge serves as the cornerstone for designing tailored delivery systems and strategies to leverage the unique attributes of alginates for therapeutic and diagnostic purposes. Commercially, alginates are offered in diverse forms and hues, encompassing sodium, potassium, or ammonium salts. Alginates show commendable biocompatibility and biodegradability and exhibit a marked absence of antigenicity and toxicity. In addition, their ability to form chelates with divalent cations and to facilitate the creation of pH-responsive gels through crosslinking with calcium and magnesium significantly enhances their versatility. Alginates possess a molecular weight range of from 60,000 to 700,000 Da, a parameter capable of adjusting to align with specific applications. This inherent versatility positions them as valuable assets across a spectrum of fields, including pharmaceuticals, tissue regeneration scaffolds, drug delivery systems, and imaging agents. The review article provides a comprehensive exploration of the diverse applications of alginates in tissue engineering, drug delivery, and various domains within biomedicine. By delving into the nuanced characteristics and behaviors of alginates, we aspire to unlock their full potential in advancing therapeutic and diagnostic interventions.

Graphical Abstract

[1]
Draget, K.I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll., 2011, 25(2), 251-256.
[http://dx.doi.org/10.1016/j.foodhyd.2009.10.007]
[2]
Ter Horst, B.; Moiemen, N.S.; Grover, L.M. Natural polymers. In: Biomaterials for Skin Repair and Regeneration; Elsevier, 2019; pp. 151-192. Internet
[http://dx.doi.org/10.1016/B978-0-08-102546-8.00006-6]
[3]
Draget, K.I.; Skjåk Bræk, G.; Smidsrød, O. Alginic acid gels: The effect of alginate chemical composition and molecular weight. Carbohydr. Polym., 1994, 25(1), 31-38.
[http://dx.doi.org/10.1016/0144-8617(94)90159-7]
[4]
Aljohani, W. wenchao; Ullah, M.W.; Zhang, X.; Yang, G. Application of sodium alginate hydrogel. IOSR J. Biotechnol. Biochem., 2017, 3(3), 19-31.
[http://dx.doi.org/10.9790/264X-03031931]
[5]
Orive, G.; Carcaboso, A.M.; Hernández, R.M.; Gascón, A.R.; Pedraz, J.L. Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules, 2005, 6(2), 927-931.
[http://dx.doi.org/10.1021/bm049380x] [PMID: 15762661]
[6]
Kurowiak, J.; Kaczmarek-Pawelska, A.; Mackiewicz, A.G.; Bedzinski, R. Analysis of the degradation process of alginate-based hydrogels in artificial urine for use as a bioresorbable material in the treatment of urethral injuries. Processes, 2020, 8(3), 304.
[http://dx.doi.org/10.3390/pr8030304]
[7]
Urtuvia, V.; Maturana, N.; Acevedo, F.; Peña, C.; Díaz-Barrera, A. Bacterial alginate production: An overview of its biosynthesis and potential industrial production. World J. Microbiol. Biotechnol., 2017, 33(11), 198.
[http://dx.doi.org/10.1007/s11274-017-2363-x] [PMID: 28988302]
[8]
Rhein-Knudsen, N.; Ale, M.T.; Ajalloueian, F.; Meyer, A.S. Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll., 2017, 71, 236-244.
[http://dx.doi.org/10.1016/j.foodhyd.2017.05.016]
[9]
Satheeshababu, B.K.; Mohamed, I. Synthesis and characterization of sodium alginate conjugate and study of effect of conjugation on drug release from matrix tablet. Indian J. Pharm. Sci., 2015, 77(5), 579-585.
[http://dx.doi.org/10.4103/0250-474X.169045] [PMID: 26798173]
[10]
Giridhar Reddy, S. Alginates - A Seaweed Product: Its Properties and Applications Properties and Applications of Alginates 2022. Available from: https://www.intechopen.com/chapters/78207[cited 2023 Sep 16].
[11]
Jain, D.; Bar-Shalom, D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm., 2014, 40(12), 1576-1584.
[http://dx.doi.org/10.3109/03639045.2014.917657] [PMID: 25109399]
[12]
Lachowicz, D.; Karabasz, A.; Bzowska, M.; Szuwarzyński, M.; Karewicz, A.; Nowakowska, M. Blood-compatible, stable micelles of sodium alginate – Curcumin bioconjugate for anti-cancer applications. Eur. Polym. J., 2019, 113, 208-219.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.058]
[13]
Deng, Z.; Wang, F.; Zhou, B.; Li, J.; Li, B.; Liang, H. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll., 2019, 89, 691-699.
[http://dx.doi.org/10.1016/j.foodhyd.2018.11.031]
[14]
Bierhalz, A.C.K.; da Silva, M.A.; Kieckbusch, T.G. Natamycin release from alginate/pectin films for food packaging applications. J. Food Eng., 2012, 110(1), 18-25.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.12.016]
[15]
Kamalaldin, N.A.; Yahya, B.H.; Nurazreena, A. Cell evaluation on alginate/hydroxyapatite block for biomedical application. Procedia Chem., 2016, 19, 297-303.
[http://dx.doi.org/10.1016/j.proche.2016.03.012]
[16]
Naghieh, S.; Sarker, M.D.; Abelseth, E.; Chen, X. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J. Mech. Behav. Biomed. Mater., 2019, 93, 183-193.
[http://dx.doi.org/10.1016/j.jmbbm.2019.02.014] [PMID: 30802775]
[17]
Kazi, G.A.S.; Yamamoto, O. Effectiveness of the sodium alginate as surgical sealant materials. Wound Medicine, 2019, 24(1), 18-23.
[http://dx.doi.org/10.1016/j.wndm.2019.02.001]
[18]
Suarez-Arnedo, A.; Narváez, D.M.; Sarmiento, P.; Bocanegra, L.; Salcedo, F.; Muñoz-Camargo, C.; Groot, H.; Cruz, J.C. Tridimensional alginate disks of tunable topologies for mammalian cell encapsulation. Anal. Biochem., 2019, 574, 31-33.
[http://dx.doi.org/10.1016/j.ab.2019.03.008] [PMID: 30905690]
[19]
Sen, O.; Manna, S.; Nandi, G.; Jana, S.; Jana, S. Recent advances in alginate based gastroretentive technologies for drug delivery applications. Med. Nov. Technol. Devices., 2023, 18, 100236.
[http://dx.doi.org/10.1016/j.medntd.2023.100236]
[20]
Bae, S.B.; Nam, H.C.; Park, W.H. Electrospraying of environmentally sustainable alginate microbeads for cosmetic additives. Int. J. Biol. Macromol., 2019, 133, 278-283.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.058] [PMID: 30981780]
[21]
Spicer, C.D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem., 2020, 11(2), 184-219.
[http://dx.doi.org/10.1039/C9PY01021A]
[22]
Bouhadir, K.H.; Lee, K.Y.; Alsberg, E.; Damm, K.L.; Anderson, K.W.; Mooney, D.J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog., 2001, 17(5), 945-950.
[http://dx.doi.org/10.1021/bp010070p] [PMID: 11587588]
[23]
Boni, R.; Ali, A.; Shavandi, A.; Clarkson, A.N. Current and novel polymeric biomaterials for neural tissue engineering. J. Biomed. Sci., 2018, 25(1), 90.
[http://dx.doi.org/10.1186/s12929-018-0491-8] [PMID: 30572957]
[24]
Aderibigbe, B.; Buyana, B. Alginate in wound dressings. Pharmaceutics, 2018, 10(2), 42.
[http://dx.doi.org/10.3390/pharmaceutics10020042] [PMID: 29614804]
[25]
Bigliardi, P.; Langer, S.; Cruz, J.J.; Kim, S.W.; Nair, H.; Srisawasdi, G. An asian perspective on povidone iodine in wound healing. Dermatology, 2017, 233(2-3), 223-233.
[http://dx.doi.org/10.1159/000479150] [PMID: 28848111]
[26]
Kanagalingam, J.; Feliciano, R.; Hah, J.H.; Labib, H.; Le, T.A.; Lin, J.C. Practical use of povidone‐iodine antiseptic in the maintenance of oral health and in the prevention and treatment of common oropharyngeal infections. Int. J. Clin. Pract., 2015, 69(11), 1247-1256.
[http://dx.doi.org/10.1111/ijcp.12707] [PMID: 26249761]
[27]
Jamal Mohamed, A; Perinbam, K; Vahitha, V; Devanesan, S; Janakiraman, K K Povidone iodine loaded film-forming topical gel and evaluation of its chemical stability. ijrps, 2020, 11(1), 148-153.
[28]
Işıklan, N.; İnal, M.; Yiğitoğlu, M. Synthesis and characterization of poly(N ‐vinyl‐2‐pyrrolidone) grafted sodium alginate hydrogel beads for the controlled release of indomethacin. J. Appl. Polym. Sci., 2008, 110(1), 481-493.
[http://dx.doi.org/10.1002/app.28577]
[29]
Summa, M.; Russo, D.; Penna, I.; Margaroli, N.; Bayer, I.S.; Bandiera, T.; Athanassiou, A.; Bertorelli, R. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur. J. Pharm. Biopharm., 2018, 122, 17-24.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.004] [PMID: 29017952]
[30]
Zahedi, P.; Rezaeian, I.; Ranaei-Siadat, S.O.; Jafari, S.H.; Supaphol, P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol., 2010, 21(2), 77-95.
[http://dx.doi.org/10.1002/pat.1625]
[31]
Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials, 2013, 6(4), 1285-1309.
[http://dx.doi.org/10.3390/ma6041285] [PMID: 28809210]
[32]
Mirzaei, B.; Etemadian, S.; Goli, H.R.; Bahonar, S.; Gholami, S.A.; Karami, P.; Farhadi, M.; Tavakoli, R. Construction and analysis of alginate-based honey hydrogel as an ointment to heal of rat burn wound related infections. Int. J. Burns Trauma, 2018, 8(4), 88-97.
[PMID: 30245913]
[33]
Peng, W.; Li, D.; Dai, K.; Wang, Y.; Song, P.; Li, H.; Tang, P.; Zhang, Z.; Li, Z.; Zhou, Y.; Zhou, C. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int. J. Biol. Macromol., 2022, 208, 400-408.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.002] [PMID: 35248609]
[34]
Chattopadhyay, S.; Raines, R.T. Collagen‐based biomaterials for wound healing. Biopolymers, 2014, 101(8), 821-833.
[http://dx.doi.org/10.1002/bip.22486] [PMID: 24633807]
[35]
Pereira, L. Seaweeds as source of bioactive substances and skin care therapy—cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics, 2018, 5(4), 68.
[http://dx.doi.org/10.3390/cosmetics5040068]
[36]
Rieger, S.; Zhao, H.; Martin, P.; Abe, K.; Lisse, T.S. The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochem. Funct., 2015, 33(1), 1-13.
[http://dx.doi.org/10.1002/cbf.3086] [PMID: 25529612]
[37]
Saarai, A.; Kasparkova, V.; Sedlacek, T.; Saha, P. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels. J. Mech. Behav. Biomed. Mater., 2013, 18, 152-166.
[http://dx.doi.org/10.1016/j.jmbbm.2012.11.010] [PMID: 23274732]
[38]
Sahoo, D.R.; Biswal, T. Alginate and its application to tissue engineering. SN Applied Sciences, 2021, 3(1), 30.
[http://dx.doi.org/10.1007/s42452-020-04096-w]
[39]
Dai, H.; Ou, S.; Huang, Y.; Liu, Z.; Huang, H. Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose, 2018, 25(1), 593-606.
[http://dx.doi.org/10.1007/s10570-017-1557-6]
[40]
Yuan, L.; Wu, Y.; Fang, J.; Wei, X.; Gu, Q.; El-Hamshary, H.; Al-Deyab, S.S.; Morsi, Y.; Mo, X. Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 76-83.
[http://dx.doi.org/10.3109/21691401.2015.1129622] [PMID: 26855181]
[41]
Diniz, F.; Maia, R.; de Andrade, L.R.; Andrade, L.; Vinicius Chaud, M.; da Silva, C.; Corrêa, C.; de Albuquerque, Junior, R.; Pereira da Costa, L.; Shin, S.; Hassan, S.; Sanchez-Lopez, E.; Souto, E.; Severino, P. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials, 2020, 10(2), 390.
[http://dx.doi.org/10.3390/nano10020390] [PMID: 32102229]
[42]
Boateng, J.; Burgos-Amador, R.; Okeke, O.; Pawar, H. Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int. J. Biol. Macromol., 2015, 79, 63-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.048] [PMID: 25936500]
[43]
Klein, T.J.; Malda, J.; Sah, R.L.; Hutmacher, D.W. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B Rev., 2009, 15(2), 143-157.
[http://dx.doi.org/10.1089/ten.teb.2008.0563] [PMID: 19203206]
[44]
Singh, Y.P.; Moses, J.C.; Bhardwaj, N.; Mandal, B.B. Injectable hydrogels: A new paradigm for osteochondral tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(35), 5499-5529.
[http://dx.doi.org/10.1039/C8TB01430B] [PMID: 32254962]
[45]
Venkatesan, J.; Nithya, R.; Sudha, P.N.; Kim, S.K. Role of alginate in bone tissue engineering. In: Advances in Food and Nutrition Research; Elsevier, 2014; pp. 45-57.
[46]
Shakya, A.K.; Kandalam, U. Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br. J. Oral Maxillofac. Surg., 2017, 55(9), 875-891.
[http://dx.doi.org/10.1016/j.bjoms.2017.09.007] [PMID: 29056355]
[47]
Ma, F.; Pang, X.; Tang, B. Alginate/chondroitin sulfate based hybrid hydrogel with different molecular weight and its capacity to regulate chondrocytes activity. Carbohydr. Polym., 2019, 206, 229-237.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.109] [PMID: 30553317]
[48]
Caetano, L.; Almeida, A.; Gonçalves, L. Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar. Drugs, 2016, 14(5), 90.
[http://dx.doi.org/10.3390/md14050090] [PMID: 27187418]
[49]
Tsujimoto, T.; Sudo, H.; Todoh, M.; Yamada, K.; Iwasaki, K.; Ohnishi, T.; Hirohama, N.; Nonoyama, T.; Ukeba, D.; Ura, K.; Ito, Y.M.; Iwasaki, N. An acellular bioresorbable ultra-purified alginate gel promotes intervertebral disc repair: A preclinical proof-of-concept study. EBioMedicine, 2018, 37, 521-534.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.055] [PMID: 30389504]
[50]
Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res., 2017, 5(1), 17059.
[http://dx.doi.org/10.1038/boneres.2017.59] [PMID: 29285402]
[51]
Hao, Y.; Zhao, W.; Zhang, L.; Zeng, X.; Sun, Z.; Zhang, D.; Shen, P.; Li, Z.; Han, Y.; Li, P.; Zhou, Q. Bio-multifunctional alginate/chitosan/fucoidan sponges with enhanced angiogenesis and hair follicle regeneration for promoting full-thickness wound healing. Mater. Des., 2020, 193, 108863.
[http://dx.doi.org/10.1016/j.matdes.2020.108863]
[52]
Venkatesan, J.; Bhatnagar, I.; Kim, S.K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs, 2014, 12(1), 300-316.
[http://dx.doi.org/10.3390/md12010300] [PMID: 24441614]
[53]
Venkatesan, J.; Anil, S.; Kim, S.K.; Shim, M. Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery. Polymers, 2016, 8(2), 30.
[http://dx.doi.org/10.3390/polym8020030] [PMID: 30979124]
[54]
Mørch, Ý.A.; Donati, I.; Strand, B.L.; Skjåk-Bræk, G. Effect of Ca 2+, Ba 2+, and Sr 2+ on alginate microbeads. Biomacromolecules, 2006, 7(5), 1471-1480.
[http://dx.doi.org/10.1021/bm060010d] [PMID: 16677028]
[55]
Leslie, S.K.; Nicolini, A.M.; Sundaresan, G.; Zweit, J.; Boyan, B.D.; Schwartz, Z. Development of a cell delivery system using alginate microbeads for tissue regeneration. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(20), 3515-3525.
[http://dx.doi.org/10.1039/C6TB00035E] [PMID: 32263385]
[56]
Kim, G.; Ahn, S.; Kim, Y.; Cho, Y.; Chun, W. Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J. Mater. Chem., 2011, 21(17), 6165.
[http://dx.doi.org/10.1039/c0jm03452e]
[57]
Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[58]
Eiselt, P.; Yeh, J.; Latvala, R.K.; Shea, L.D.; Mooney, D.J. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000, 21(19), 1921-1927.
[http://dx.doi.org/10.1016/S0142-9612(00)00033-8] [PMID: 10941913]
[59]
Lee, C.S.D.; Moyer, H.R.; Gittens, I.R.A.; Williams, J.K.; Boskey, A.L.; Boyan, B.D.; Schwartz, Z. Regulating in vivo calcification of alginate microbeads. Biomaterials, 2010, 31(18), 4926-4934.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.001] [PMID: 20363022]
[60]
Campbell, K.T.; Stilhano, R.S.; Silva, E.A. Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials, 2018, 179, 109-121.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.038] [PMID: 29980073]
[61]
Miao, T.; Wang, J.; Zeng, Y.; Liu, G.; Chen, X. Polysaccharide‐based controlled release systems for therapeutics delivery and tissue engineering: From bench to bedside. Adv. Sci., 2018, 5(4), 1700513.
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[62]
Nahar, K.; Hossain, K.; Khan, T.A. Alginate and its versatile application in drug delivery. J. Pharm. Sci., 2017, 9.
[63]
Kothale, D.; Verma, U.; Dewangan, N.; Jana, P.; Jain, A.; Jain, D. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv., 2020, 17(9), 755-775.
[http://dx.doi.org/10.2174/1567201817666200810110226] [PMID: 32778024]
[64]
Buket Basmanav, F.; Kose, G.T.; Hasirci, V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials, 2008, 29(31), 4195-4204.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.017] [PMID: 18691753]
[65]
Dashtdar, H.; Rothan, H.A.; Tay, T.; Ahmad, R.E.; Ali, R.; Tay, L.X.; Chong, P.P.; Kamarul, T. A preliminary study comparing the use of allogenic chondrogenic pre‐differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J. Orthop. Res., 2011, 29(9), 1336-1342.
[http://dx.doi.org/10.1002/jor.21413] [PMID: 21445989]
[66]
Tuan, R.S.; Boland, G.; Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res., 2003, 5(1), 32-45.
[http://dx.doi.org/10.1186/ar614] [PMID: 12716446]
[67]
Borselli, C.; Storrie, H.; Benesch-Lee, F.; Shvartsman, D.; Cezar, C.; Lichtman, J.W.; Vandenburgh, H.H.; Mooney, D.J. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3287-3292.
[http://dx.doi.org/10.1073/pnas.0903875106] [PMID: 19966309]
[68]
Prang, P.; Müller, R.; Eljaouhari, A.; Heckmann, K.; Kunz, W.; Weber, T.; Faber, C.; Vroemen, M.; Bogdahn, U.; Weidner, N. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials, 2006, 27(19), 3560-3569.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.053] [PMID: 16500703]
[69]
Lee, K.Y.; Peters, M.C.; Mooney, D.J. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J. Control. Release, 2003, 87(1-3), 49-56.
[http://dx.doi.org/10.1016/S0168-3659(02)00349-8] [PMID: 12618022]
[70]
Calafiore, R. Alginate microcapsules for pancreatic islet cell graft immunoprotection: Struggle and progress towards the final cure for type 1 diabetes mellitus. Expert Opin. Biol. Ther., 2003, 3(2), 201-205.
[http://dx.doi.org/10.1517/14712598.3.2.201] [PMID: 12662135]
[71]
Lacy, P.E.; Hegre, O.D.; Gerasimidi-Vazeou, A.; Gentile, F.T.; Dionne, K.E. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science, 1991, 254(5039), 1782-1784.
[http://dx.doi.org/10.1126/science.1763328] [PMID: 1763328]
[72]
Levenberg, S.; Rouwkema, J.; Macdonald, M.; Garfein, E.S.; Kohane, D.S.; Darland, D.C.; Marini, R.; van Blitterswijk, C.A.; Mulligan, R.C.; D’Amore, P.A.; Langer, R. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol., 2005, 23(7), 879-884.
[http://dx.doi.org/10.1038/nbt1109] [PMID: 15965465]
[73]
Hong, N.; Yang, G.H.; Lee, J.; Kim, G. 3D bioprinting and its in vivo applications. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(1), 444-459.
[http://dx.doi.org/10.1002/jbm.b.33826] [PMID: 28106947]
[74]
Ong, C.S.; Yesantharao, P.; Huang, C.Y.; Mattson, G.; Boktor, J.; Fukunishi, T.; Zhang, H.; Hibino, N. 3D bioprinting using stem cells. Pediatr. Res., 2018, 83(1-2), 223-231.
[http://dx.doi.org/10.1038/pr.2017.252] [PMID: 28985202]
[75]
Müller, M.; Öztürk, E.; Arlov, Ø.; Gatenholm, P.; Zenobi-Wong, M. Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng., 2017, 45(1), 210-223.
[http://dx.doi.org/10.1007/s10439-016-1704-5] [PMID: 27503606]
[76]
Zhang, R.; Lei, L.; Song, Q.; Li, X. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release. Colloids Surf. B Biointerfaces, 2019, 175, 569-575.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.083] [PMID: 30580147]
[77]
Araujo, V.; Gamboa, A.; Caro, N.; Abugoch, L.; Gotteland, M.; Valenzuela, F.; Merchant, H.A.; Basit, A.W.; Tapia, C. Release of prednisolone and inulin from a new calcium-alginate chitosan-coated matrix system for colonic delivery. J. Pharm. Sci., 2013, 102(8), 2748-2759.
[http://dx.doi.org/10.1002/jps.23656] [PMID: 23839971]
[78]
Samanta, H.S.; Ray, S.K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr. Polym., 2014, 99, 666-678.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.004] [PMID: 24274557]
[79]
Pavan Rudhrabatla, V.S.A.; Jalababu, R.; Krishna Rao, K.S.V.; Suresh Reddy, K.V.N. Fabrication and characterisation of curcumin loaded pH dependent sodium alginate-g-poly(acryloyl phenylalanine)-cl-ethylene glycol vinyl ether-co- hydroxyethyl acrylate hydrogels and their in-vitro, in-vivo and toxicological evaluation studies. J. Drug Deliv. Sci. Technol., 2019, 51, 438-453.
[http://dx.doi.org/10.1016/j.jddst.2019.03.020]
[80]
Seo, Y.; Lee, H.; Lee, J.W.; Lee, K.Y. Hyaluronate-alginate hybrid hydrogels prepared with various linkers for chondrocyte encapsulation. Carbohydr. Polym., 2019, 218, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.067] [PMID: 31221310]
[81]
Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, Ö. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur. J. Pharm. Biopharm., 2007, 67(2), 491-497.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.003] [PMID: 17451926]
[82]
Gennari, C.G.M.; Sperandeo, P.; Polissi, A.; Minghetti, P.; Cilurzo, F. Lysozyme mucoadhesive tablets obtained by freeze-drying. J. Pharm. Sci., 2019, 108(11), 3667-3674.
[http://dx.doi.org/10.1016/j.xphs.2019.08.011] [PMID: 31446146]
[83]
Mandal, S.; Basu, S.K.; Sa, B. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr. Polym., 2010, 82(3), 867-873.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.009]
[84]
de Matos, E.F.; Scopel, B.S.; Dettmer, A. Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. J. Environ. Chem. Eng., 2018, 6(2), 1989-1994.
[http://dx.doi.org/10.1016/j.jece.2018.03.002]
[85]
Vaziri, A.S.; Alemzadeh, I.; Vossoughi, M.; Khorasani, A.C. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr. Polym., 2018, 199, 266-275.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.002] [PMID: 30143129]
[86]
Boggione, D.M.G.; Batalha, L.S.; Gontijo, M.T.P.; Lopez, M.E.S.; Teixeira, A.V.N.C.; Santos, I.J.B.; Mendonça, R.C.S. Evaluation of microencapsulation of the UFV-AREG1 bacteriophage in alginate-Ca microcapsules using microfluidic devices. Colloids Surf. B Biointerfaces, 2017, 158, 182-189.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.045] [PMID: 28692873]
[87]
Nabavinia, M.; Khoshfetrat, A.B.; Naderi-Meshkin, H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater. Sci. Eng. C, 2019, 97, 67-77.
[http://dx.doi.org/10.1016/j.msec.2018.12.033] [PMID: 30678955]
[88]
Lou, R.; Yu, W.; Song, Y.; Ren, Y.; Zheng, H.; Guo, X.; Lin, Y.; Pan, G.; Wang, X.; Ma, X. Fabrication of stable galactosylated alginate microcapsules via covalent coupling onto hydroxyl groups for hepatocytes applications. Carbohydr. Polym., 2017, 155, 456-465.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.098] [PMID: 27702535]
[89]
Prakash, J.; Kumar, T.S.; Venkataprasanna, K.S.; Niranjan, R.; Kaushik, M.; Samal, D.B.; Venkatasubbu, G.D. PVA/alginate/hydroxyapatite films for controlled release of amoxicillin for the treatment of periodontal defects. Appl. Surf. Sci., 2019, 495, 143543.
[http://dx.doi.org/10.1016/j.apsusc.2019.143543]
[90]
Xing, L.; Ma, Y.; Tan, H.; Yuan, G.; Li, S.; Li, J.; Jia, Y.; Zhou, T.; Niu, X.; Hu, X. Alginate membrane dressing toughened by chitosan floccule to load antibacterial drugs for wound healing. Polym. Test., 2019, 79, 106039.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106039]
[91]
Bera, H.; Ippagunta, S.R.; Kumar, S.; Vangala, P. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery. Mater. Sci. Eng. C, 2017, 76, 715-726.
[http://dx.doi.org/10.1016/j.msec.2017.03.074] [PMID: 28482582]
[92]
Santos, E.L.I.; Rostro-Alanís, M.; Parra-Saldívar, R.; Alvarez, A.J. A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresour. Technol., 2018, 247, 165-173.
[http://dx.doi.org/10.1016/j.biortech.2017.09.091] [PMID: 28950123]
[93]
García-González, C.A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym., 2015, 117, 797-806.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.045] [PMID: 25498702]
[94]
Pal, D.; Nayak, A.K. Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: In vitro in vivo evaluation. Drug Deliv., 2012, 19(3), 123-131.
[http://dx.doi.org/10.3109/10717544.2012.657717] [PMID: 22352984]
[95]
Soni, M.L.; Kumar, M.; Namdeo, K.P. Sodium alginate microspheres for extending drug release: Formulation and in vitro evaluation. Int. J. Drug Deliv., 2010, 2(1), 64-68.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02013]
[96]
Wang, Y.; Zhou, J.; Qiu, L.; Wang, X.; Chen, L.; Liu, T.; Di, W. Cisplatin–alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials, 2014, 35(14), 4297-4309.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.035] [PMID: 24565522]
[97]
Martínez, A.; Benito-Miguel, M.; Iglesias, I.; Teijón, J.M.; Blanco, M.D. Tamoxifen‐loaded thiolated alginate‐albumin nanoparticles as antitumoral drug delivery systems. J. Biomed. Mater. Res. A, 2012, 100A(6), 1467-1476.
[http://dx.doi.org/10.1002/jbm.a.34051] [PMID: 22396108]
[98]
Manuja, A.; Kumar, S.; Dilbaghi, N.; Bhanjana, G.; Chopra, M.; Kaur, H.; Kumar, R.; Manuja, B.K.; Singh, S.K.; Yadav, S.C. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine, 2014, 9(11), 1625-1634.
[http://dx.doi.org/10.2217/nnm.13.148] [PMID: 24405513]
[99]
Almeida, H.; Amaral, M.H.; Lobão, P.; Silva, A.C.; Loboa, J.M.S. Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: Present and future considerations. J. Pharm. Pharm. Sci., 2014, 17(3), 278-293.
[http://dx.doi.org/10.18433/J3DP43] [PMID: 25224343]
[100]
Guo, H.; Hong, Z.; Yi, R. Core‐shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. J. Food Sci., 2015, 80(7), N1595-N1601.
[http://dx.doi.org/10.1111/1750-3841.12912] [PMID: 25990921]
[101]
Raguvaran, R.; Manuja, B.K.; Chopra, M.; Thakur, R.; Anand, T.; Kalia, A.; Manuja, A. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int. J. Biol. Macromol., 2017, 96, 185-191.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.009] [PMID: 27939272]
[102]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[103]
Veronica, N.; Heng, P.W.S.; Liew, C.V. Alginate-based matrix tablets for drug delivery. Expert Opin. Drug Deliv., 2023, 20(1), 115-130.
[http://dx.doi.org/10.1080/17425247.2023.2158183] [PMID: 36503355]
[104]
Draget, K.I.; Gåserød, O.; Aune, I.; Andersen, P.O.; Storbakken, B.; Stokke, B.T.; Smidsrød, O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocoll., 2001, 15(4-6), 485-490.
[http://dx.doi.org/10.1016/S0268-005X(01)00046-7]
[105]
Jain, A.; Prajapati, S.K.; Kumari, A.; Mody, N.; Bajpai, M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol., 2020, 57, 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[106]
Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: An insight. Chem. Phys. Lipids, 2016, 201, 28-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.005] [PMID: 27983957]
[107]
Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery. Biol. Pharm. Bull., 1994, 17(5), 745-747.
[http://dx.doi.org/10.1248/bpb.17.745] [PMID: 7920448]
[108]
Katayama, H.; Nishimura, T.; Ochi, S.; Tsuruta, Y.; Yamazaki, Y.; Shibata, K.; Yoshitomi, H. Sustained release liquid preparation using sodium alginate for eradication of Helicobacter pyroli. Biol. Pharm. Bull., 1999, 22(1), 55-60.
[http://dx.doi.org/10.1248/bpb.22.55] [PMID: 9989662]
[109]
Smidsrød, O.; Skjakbrk, G. Alginate as immobilization matrix for cells. Trends Biotechnol., 1990, 8(3), 71-78.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
[110]
Adebisi, A.O.; Laity, P.R.; Conway, B.R. Formulation and evaluation of floating mucoadhesive alginate beads for targeting H elicobacter pylori. J. Pharm. Pharmacol., 2015, 67(4), 511-524.
[http://dx.doi.org/10.1111/jphp.12345] [PMID: 25496042]
[111]
Li, J.; Zhou, Y.; Lu, W. Enhancement of haskap vacuum freeze-drying efficiency and quality attributes using cold plasma pretreatment; Food Bioproc Tech, 2023.
[http://dx.doi.org/10.1007/s11947-023-03186-y]
[112]
Chong, K.Y.; Stefanova, R.; Zhang, J.; Brooks, M.S.L. Extraction of bioactive compounds from haskap leaves (lonicera caerulea) using salt/ethanol aqueous two-phase flotation. Food Bioprocess Technol., 2020, 13(12), 2131-2144.
[http://dx.doi.org/10.1007/s11947-020-02553-3]
[113]
Celli, G.B.; Ghanem, A.; Brooks, M.S. Development and evaluation of floating alginate microspheres for oral delivery of anthocyanins – A preliminary investigation. Food Sci. Nutr., 2017, 5(3), 713-721.
[http://dx.doi.org/10.1002/fsn3.451] [PMID: 28572961]
[114]
Mahant, S.; Sharma, A.K.; Gandhi, H.; Wadhwa, R.; Dua, K.; Kapoor, D.N. Emerging trends and potential prospects in vaginal drug delivery. Curr. Drug Deliv., 2023, 20(6), 730-751.
[http://dx.doi.org/10.2174/1567201819666220413131243] [PMID: 35422213]
[115]
Dukovski, B.J.; Plantić, I.; Čunčić, I.; Krtalić, I.; Juretić, M.; Pepić, I.; Lovrić, J.; Hafner, A. Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. Int. J. Pharm., 2017, 533(2), 480-487.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.065] [PMID: 28577969]
[116]
Manna, S.; Nandi, G.; Jana, S. Alginate-based carriers for transdermal drug delivery. In: Biomaterials Science Series; Jana, S.; Jana, S.; Domb, A.J., Eds.; Royal Society of Chemistry: Cambridge, 2022; pp. 69-89.http://ebook.rsc.org/?DOI=10.1039/9781839166235-00069
[117]
Lefnaoui, S.; Moulai-Mostefa, N.; Yahoum, M.M.; Gasmi, S.N. Design of antihistaminic transdermal films based on alginate–chitosan polyelectrolyte complexes: Characterization and permeation studies. Drug Dev. Ind. Pharm., 2018, 44(3), 432-443.
[http://dx.doi.org/10.1080/03639045.2017.1395461] [PMID: 29098871]
[118]
Shuddhodana, J.Z.; Judeh, Z. Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. J. Drug Deliv. Sci. Technol., 2019, 52, 27-36.
[http://dx.doi.org/10.1016/j.jddst.2019.04.020]
[119]
Ganesh, M.; Jeon, U.J.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Peng, M.M.; Jang, H.T. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac. Int. J. Biol. Macromol., 2015, 74, 310-317.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.038] [PMID: 25557368]
[120]
Guan, J.; Liu, Q.; Liu, J.; Cui, Z.; Zhang, X.; Mao, S. Elucidation of alginate-drug miscibility on its crystal growth inhibition effect in supersaturated drug delivery system. Carbohydr. Polym., 2020, 230, 115601.
[http://dx.doi.org/10.1016/j.carbpol.2019.115601] [PMID: 31887891]
[121]
Sharma, P.K.; Chauhan, M.K. Optimization and evaluation of encapsulated brimonidine tartrate-loaded nanoparticles incorporation in situ gel for efficient intraocular pressure reduction. J. Sol-Gel Sci. Technol., 2020, 95(1), 190-201.
[http://dx.doi.org/10.1007/s10971-020-05305-z]
[122]
Hariyadi, D.M.; Ma, Y.; Wang, Y.; Bostrom, T.; Malouf, J.; Turner, M.S.; Bhandari, B.; Coombes, A.G.A. The potential for production of freeze-dried oral vaccines using alginate hydrogel microspheres as protein carriers. J. Drug Deliv. Sci. Technol., 2014, 24(2), 178-184.
[http://dx.doi.org/10.1016/S1773-2247(14)50029-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy