Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Environment-friendly Simple, and Straight forward Approach Towards the C-4 functionalization of (2S)-5-oxoproline Methyl Ester

Author(s): Sharad Kumar Panday* and Munish Kumar

Volume 20, Issue 10, 2024

Published on: 25 January, 2024

Article ID: e260124226225 Pages: 6

DOI: 10.2174/0115734072278257231224171735

Price: $65

Abstract

Background: 4-Substituted- 5-oxo-prolinates (pyroglutamates) are important components in various natural products, e.g. (-)-bulgecinine, (-)-anatoxin, salinosporamide, as well as ACE inhibitors.

Aim: These also act as important intermediates in the synthesis of many of the bioactive molecules. Due to these reasons, the synthesis of 4-substituted-(2S)-5-oxo-prolinates has received much attention over the globe in the last three decades. However, most of the synthetic strategies available in the literature describe either the use of expensive lithium enolate-derived lowtemperature chemistry or the rigorous reaction conditions, and therefore, a simple, environmentfriendly, and cost-effective approach was truly demanding.

Methods: In our ongoing research program, we required different 4-substituted pyroglutamates as intermediates, and with that very basic objective, we were looking for an alternate strategy which should be simple, requiring cheap reagents and consequently, in the process, it was thought to attempt proline catalyzed aldol/alkylation reactions on pyroglutamates, and the idea provided excellent outcome.

Results: Herein we wish to report the L-proline catalyzed asymmetric functionalization at C-4 of (2S)-5-oxoproline methyl ester, which furnished desired products at room temperature at the same time, not requiring expensive reagents and, therefore, in turn, cost-effective.

Conclusion: This new strategy explored for synthesizing 4-substituted pyroglutamates could be useful for researchers across the globe working in the area and requiring substitution at C-4 of pyroglutamates for synthesizing bioactive molecules/natural products.

[1]
Nájera, C.; Yus, M. Pyroglutamic acid: A versatile building block in asymmetric synthesis. Tetrahedron Asymmetry, 1999, 10(12), 2245-2303.
[http://dx.doi.org/10.1016/S0957-4166(99)00213-X]
[2]
Panday, S.K.; Prasad, J.; Dikshit, D.K. Pyroglutamic acid: A unique chiral synthon. Tetrahedron Asymmetry, 2009, 20(14), 1581-1632.
[http://dx.doi.org/10.1016/j.tetasy.2009.06.011]
[3]
Mollica, A.; Stefanucci, A.; Costante, R.; Novellino, E. Pyroglutamic acid derivatives: Building blocks for drug discovery. Heterocycles, 2014, 89(8), 1801-1825.
[http://dx.doi.org/10.3987/REV-14-800]
[4]
Panday, S.K. Pyroglutamic acid and its derivatives: The privileged precursors for the asymmetric synthesis of bioactive natural products. Mini Rev. Org. Chem., 2020, 17(6), 626-646.
[http://dx.doi.org/10.2174/1570193X16666190917142814]
[5]
Thaisrivongs, S.; Pals, D.T.; Turner, S.R.; Kroll, L.T. Conformationally constrained renin inhibitory peptides. gamma.-lactam-bridged dipeptide isostere as conformational restriction. J. Med. Chem., 1988, 31(7), 1369-1376.
[http://dx.doi.org/10.1021/jm00402a021] [PMID: 3290485]
[6]
Roberts, C.J.; Walker, R.J. The actions of L-glutamate and putative glutamate agonists on the central neurons of Limulus polyphemus. Comp. Biochem. Physiol. C Comp. Pharmacol., 1982, 73(1), 167-175.
[http://dx.doi.org/10.1016/0306-4492(82)90186-1]
[7]
Dikshit, D.K.; Maheshwari, A.; Panday, S.K. Self reproduction of chirality in pyroglutamates: Reactions at α- position with electrophiles. Tetrahedron Lett., 1995, 36(34), 6131-6134.
[http://dx.doi.org/10.1016/0040-4039(95)01160-J]
[8]
Cai, C.; Yamada, T.; Tiwari, R.; Hruby, V.J.; Soloshonok, V.A. Application of (S)- and (R)-methyl pyroglutamates as inexpensive, yet highly efficient chiral auxiliaries in the asymmetric Michael addition reactions. Tetrahedron Lett., 2004, 45(37), 6855-6858.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.096]
[9]
Seebach, D.; Boes, M.; Naef, R.; Schweizer, W.B. Alkylation of amino acids without loss of the optical activity: Preparation of. alpha.-substituted proline derivatives. A case of self-reproduction of chirality. J. Am. Chem. Soc., 1983, 105(16), 5390-5398.
[http://dx.doi.org/10.1021/ja00354a034]
[10]
Ma, J.; Zhou, Q.; Song, G.; Song, Y.; Zhao, G.; Ding, K.; Zhao, B. Enantioselective synthesis of pyroglutamic acid esters from glycinate via carbonyl catalysis. Angew. Chem. Int. Ed., 2021, 60(19), 10588-10592.
[http://dx.doi.org/10.1002/anie.202017306] [PMID: 33554429]
[11]
Pincekova, L.; Berkes, D. Synthesis of (2S,3S)-3-aroyl pyroglutamic acid amides. Chem. Proc., 2020, 3(1), 86-96.
[http://dx.doi.org/10.3390/ecsoc-24-08377]
[12]
Mauger, A.B. Diastereoisomers of 3-methylpyroglutamic acid and. beta.-methylglutamic acid. J. Org. Chem., 1981, 46(5), 1032-1035.
[http://dx.doi.org/10.1021/jo00318a042]
[13]
Baldwin, J.E.; Moloney, M.G.; Bo Shim, S. ()-pyroglutamic acid as a chiral starting material for asymmetric synthesis. Tetrahedron Lett., 1991, 32(10), 1379-1380.
[http://dx.doi.org/10.1016/S0040-4039(00)79672-9]
[14]
Herdeis, C.; Kelm, B. A stereoselective synthesis of 3-substituted (S)-pyroglutamic and glutamic acids via OBO ester derivatives. Tetrahedron, 2003, 59(2), 217-229.
[http://dx.doi.org/10.1016/S0040-4020(02)01490-4]
[15]
Shiosaki, K.; Rapoport, H. alpha.-Amino acids as chiral educts for asymmetric products. Chirospecific syntheses of the 5-butyl-2-heptylpyrrolidines from glutamic acid. J. Org. Chem., 1985, 50(8), 1229-1239.
[http://dx.doi.org/10.1021/jo00208a016]
[16]
Koskinen, A.M.P.; Rapoport, H. Synthesis of 4-substituted prolines as conformationally constrained amino acid analogs. J. Org. Chem., 1989, 54(8), 1859-1866.
[http://dx.doi.org/10.1021/jo00269a022]
[17]
Thottathil, J.K.; Moniot, J.L.; Mueller, R.H.; Wong, M.K.Y.; Kissick, T.P. Conversion of L-pyroglutamic acid to 4-alkyl-substituted L-prolines. The synthesis of trans-4-cyclohexyl-L-proline. J. Org. Chem., 1986, 51(16), 3140-3143.
[http://dx.doi.org/10.1021/jo00366a011]
[18]
Bowler, A.N.; Doyle, P.M.; Hitchcock, P.B.; Young, D.W. Synthesis of non-proteinogenic amino acids with three chiral centres. Tetrahedron Lett., 1991, 32(23), 2679-2682.
[http://dx.doi.org/10.1016/S0040-4039(00)78817-4]
[19]
Baldwin, J.E.; Miranda, T.; Moloney, M.; Hokelek, T. Amino acid synthesis using ()-pyroglutamic acid as a chiral starting material. Tetrahedron, 1989, 45(23), 7459-7468.
[http://dx.doi.org/10.1016/S0040-4020(01)89208-5]
[20]
Dikshit, D.K.; Panday, S.K. Aldol reactions of pyroglutamates: Chiral synthesis of 4.α.(S)- and 4.β.(R)-(arylmethyl)] pyroglutamates. J. Org. Chem., 1992, 57(6), 1920-1924.
[http://dx.doi.org/10.1021/jo00032a056]
[21]
Prasad, J.; Golay, P.K.; Panday, S.K. Sodium enolate derived reactions of N-Boc and N-benzyl-2-(S)- pyroglutamates with electrophiles: Synthesis of 4-substituted and 2- substituted pyroglutamates. Curr. Bioact. Compd., 2018, 14(3), 248-253.
[http://dx.doi.org/10.2174/1573407213666161221125542]
[22]
Dikshit, D.K.; Bajpai, S.N. Titanium enolates from pyroglutamates: Exclusive formation of 4-α aldol adducts. Tetrahedron Lett., 1995, 36(18), 3231-3232.
[http://dx.doi.org/10.1016/0040-4039(95)00450-Q]
[23]
Kumar Panday, S.; Griffart-Brunet, D.; Langlois, N. A short and efficient synthesis of (S)-4-methylene proline benzyl ester from (S)-pyroglutamic acid. Tetrahedron Lett., 1994, 35(36), 6673-6676.
[http://dx.doi.org/10.1016/S0040-4039(00)73465-4]
[24]
Dikshit, D.K.; Maheshwari, A.; Remote, O.; Remote, O. C-dianion chemistry of pyroglutamates: Reaction at C-4 with electrophiles. Tetrahedron Lett., 1999, 40(23), 4411-4412.
[http://dx.doi.org/10.1016/S0040-4039(99)00759-5]
[25]
Goswami, L.N.; Srivastava, S.; Panday, S.K.; Dikshit, D.K. Cycloaddition–hydrogenolysis strategy for the synthesis of 2,4-disubstituted pyroglutamates. Tetrahedron Lett., 2001, 42(44), 7891-7892.
[http://dx.doi.org/10.1016/S0040-4039(01)01629-X]
[26]
Ezquerra, J.; Pedregal, C.; Yruretagoyena, B.; Rubio, A.; Carreno, M.C.; Escribano, A.; Ruano, J.L.G. Synthesis of enantiomerically pure 4-substituted glutamic acids and prolines: General aldol reaction of pyroglutamate lactam lithium enolate mediated by Et2O.BF3. J. Org. Chem., 1995, 60(9), 2925-2930.
[http://dx.doi.org/10.1021/jo00114a054]
[27]
Ohta, T.; Hosoi, A.; Nozoe, S. Stereoselective hydroxylation of N-carbamoyl-L-pyroglutamate. Synthesis of (−)-bulgecinine. Tetrahedron Lett., 1988, 29(3), 329-332.
[http://dx.doi.org/10.1016/S0040-4039(00)80087-8]
[28]
a) Prasad, J.; Pathak, M.B.; Panday, S.K. An efficient and straight forward synthesis of (5S)-1-benzyl-5-(1H-imidazol-1-ylmethyl)-2-pyrrolidinone (MM1): A novel antihypertensive agent. Med. Chem. Res., 2012, 21, 321-324.;
b) Panday, S.K.; Pathak, M.B.; Prasad, J. An efficient and straight forward strategy for the synthesis of enantiomerically pure(S)-1-Benzyl-5-((Alkyl/Aryl amino-methyl)-Pyrrolidin-2-ones. Indian J. Chem, 2015, 54(B), 936-939.;
c) Panday, S.K.; Prasad, J.; Pathak, M.B. A straight forward and facile approach towards the N- derivatization of pyroglutamates through mitsunobu reaction: Synthesis of N-alkyl/N-acyl pyroglutamates. Synth. Commun., 2011, 41(24), 3654-3661.
[29]
Panday, S.K.; Langlois, N. An efficient straightforward synthesis of (-)- bulgecinine. Synth. Commun., 1997, 27(8), 1373-1384.
[http://dx.doi.org/10.1080/00397919708006067]
[30]
Petersen, J.S.; Fels, G.; Rapoport, H. Chirospecific syntheses of (+)- and (-)-anatoxin a. J. Am. Chem. Soc., 1984, 106(16), 4539-4547.
[http://dx.doi.org/10.1021/ja00328a040]
[31]
Caubert, V.; Massé, J.; Retailleau, P.; Langlois, N. Stereoselective formal synthesis of the potent proteasome inhibitor. Salinosporamide A. Tetrahedron Lett., 2007, 48(3), 381-384.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.087]
[32]
Ohfune, Y.; Tomita, M. Total synthesis of (-)-domoic acid. A revision of the original structure. J. Am. Chem. Soc., 1982, 104(12), 3511-3513.
[http://dx.doi.org/10.1021/ja00376a048]
[33]
Cossy, J.; Cases, M.; Gomez Pardo, D. Approaches to a synthesis of α-kainic acid. Tetrahedron, 1999, 55(19), 6153-6166.
[http://dx.doi.org/10.1016/S0040-4020(99)00284-7]
[34]
Hanessian, S.; Ninkovic, S. Stereoselective synthesis of (−)-α-Kainic acid and (+)-α-allokainic acid via trimethylstannyl mediated radical carbo-cyclization and oxidative destannylation. J. Org. Chem., 1996, 61(16), 5418-5424.
[http://dx.doi.org/10.1021/jo9604088]
[35]
Baldwin, J.E.; Moloney, M.G.; Parsons, A.F. Enantioselective kainoid synthesis by cobalt-mediated cyclisation of an amino acid derivative. Tetrahedron, 1990, 46(20), 7263-7282.
[http://dx.doi.org/10.1016/S0040-4020(01)87906-0]
[36]
Cohen, J.L.; Chamberlin, A.R. Diastereoselective synthesis of glutamate-appended oxolane rings: Synthesis of (s)-(+)-lycoperdic acid. J. Org. Chem., 2007, 72(24), 9240-9247.
[http://dx.doi.org/10.1021/jo7017137] [PMID: 17975930]
[37]
Langlois, N. Stereoselective formal synthesis of pseudodistomin C. Org. Lett., 2002, 4(2), 185-187.
[http://dx.doi.org/10.1021/ol010221p] [PMID: 11796046]
[38]
Le Nguyen, B.K.; Langlois, N. Concise syntheses of racemic and enantiopure deoxydysibetaine. Tetrahedron Lett., 2003, 44(32), 5961-5963.
[http://dx.doi.org/10.1016/S0040-4039(03)01505-3]
[39]
Langlois, N.; Le Nguyen, B.K. Diastereoselective syntheses of deoxydysibetaine, dysibetaine, and its 4-epimer. J. Org. Chem., 2004, 69(22), 7558-7564.
[http://dx.doi.org/10.1021/jo040216+] [PMID: 15497982]
[40]
Hanessian, S.; Margarita, R.; Hall, A.; Johnstone, S.; Tremblay, M.; Parlanti, L. Total synthesis and structural confirmation of the marine natural product Dysinosin A: A novel inhibitor of thrombin and Factor VIIa. J. Am. Chem. Soc., 2002, 124(45), 13342-13343.
[http://dx.doi.org/10.1021/ja0208153] [PMID: 12418860]
[41]
Toyooka, N.; Zhou, D.; Nemoto, H.; Tezuka, Y.; Kadota, S.; Jones, T.; Garraffo, H.; Spande, T.; Daly, J. First enantioselective synthesis of a hydroxyindolizidine alkaloid from the ant myrmicaria melanogaster. Synlett, 2008, 2008(12), 1894-1896.
[http://dx.doi.org/10.1055/s-2008-1078502]
[42]
Wierzejska, J.; Motogoe, S.; Makino, Y.; Sengoku, T.; Takahashi, M.; Yoda, H. A new approach toward the total synthesis of (+)- batzellaside B. Beilstein J. Org. Chem., 2012, 8, 1831-1838.
[http://dx.doi.org/10.3762/bjoc.8.210]
[43]
Sengoku, T.; Satoh, Y.; Oshima, M.; Takahashi, M.; Yoda, H. First asymmetric synthesis of pyrrolizidine alkaloids, (+)-hyacinthacine B1 and (+)-B2. Tetrahedron, 2008, 64(35), 8052-8058.
[http://dx.doi.org/10.1016/j.tet.2008.06.078]
[44]
Thottathil, J.K.; Moniot, J.L. Lithium diphenylcuprate reactions with 4-tosyloxy-L-prolines: An interesting stereochemical outcome. Tetrahedron Lett., 1986, 27(2), 151-154.
[http://dx.doi.org/10.1016/S0040-4039(00)83964-7]
[45]
Imaki, K.; Sakuyama, S.; Okada, T.; Toda, M.; Hayashi, M.; Miyamoto, T.; Kawasaki, A.; Okegawa, T. Potent orally active inhibitors of angiotensin-converting enzyme (ACE). Chem. Pharm. Bull., 1981, 29(8), 2210-2214.
[http://dx.doi.org/10.1248/cpb.29.2210] [PMID: 6274523]
[46]
Panday, S.K.; Dikshit, M.; Dikshit, D.K. Synthesis of N-[3′-(acetylthio)alkanoyl] and N-[3′-mercaptoalkanoyl]-4-α(s)-(phenylmethyl) pyroglutamic acids and prolines as potent ACE inhibitors. Med. Chem. Res., 2009, 18(7), 566-578.
[http://dx.doi.org/10.1007/s00044-008-9150-z]
[47]
Panday, S.K. Advances in the chemistry of proline and its derivatives: An excellent amino acid with versatile applications in asymmetric synthesis. Tetrahedron Asymmetry, 2011, 22(20-22), 1817-1847.
[http://dx.doi.org/10.1016/j.tetasy.2011.09.013]
[48]
Hardy, P.M. A convenient one-step synthesis of pyroglutamic acid (2- oxotetrahydropyrrole-5-carboxylic acid. Synthesis, 1978, 1978(4), 290-291.
[http://dx.doi.org/10.1055/s-1978-24726]
[49]
Braña, M.F.; Garranzo, M.; Pérez-Castells, J. On the chemoselectivity of pyroglutamates in reactions with indole derivatives. Tetrahedron Lett., 1998, 39(36), 6569-6572.
[http://dx.doi.org/10.1016/S0040-4039(98)01368-9]
[50]
Mavromoustakos, T.; Moutevelis-Minakakis, P.; Kokotos, C.G.; Kontogianni, P.; Politi, A.; Zoumpoulakis, P.; Findlay, J.; Cox, A.; Balmforth, A.; Zoga, A.; Iliodromitis, E. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Bioorg. Med. Chem., 2006, 14(13), 4353-4360.
[http://dx.doi.org/10.1016/j.bmc.2006.02.044] [PMID: 16546395]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy