Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Novel N-(3-ethynyl Phenyl)-6,7-bis(2-methoxyethoxy)Quinazoline-4-amine Derivatives: Synthesis, Characterization, Anti-cancer Activity, In-silico and DFT Studies

Author(s): Amitananda Dash, Guruswamy Vaddamanu, Raja Karreddula, Surya Surendra Babu Manubolu, Pavana Kumari G.* and Naveen Mulakayala*

Volume 24, Issue 7, 2024

Published on: 29 January, 2024

Page: [514 - 532] Pages: 19

DOI: 10.2174/0118715206276286231220055233

Price: $65

Abstract

Background: Cancer is one of the most common reasons for mortality in the world. A continuous effort to develop effective anti-cancer drugs with minimum side effects has become necessary. The use of small-molecule drugs has revolutionized cancer research by inhibiting cancer cell survival and proliferation. Quinazolines are a class of bioactive heterocyclic compounds with active pharmacophores in several anti-cancer drugs. Such small molecule inhibitors obstruct the significant signals responsible for cancer cell development, thus blocking these cell signals to prevent cancer development and spread.

Objective: In the current study, novel quinazoline derivatives structurally similar to erlotinib were synthesized and explored as novel anti-cancer agents.

Methods: All the synthesized molecules were confirmed by spectroscopic techniques like 1H NMR, 13C NMR, and ESI-MS. Various techniques were applied to study the protein-drug interaction, DFT analysis, Hirshfeld surface, and target prediction. The molecules were screened in vitro for their anti-cancer properties against 60 human tumor cell lines. The growth inhibitory properties of a few compounds were studied against the MCF7 breast cancer cell line.

Results: The activity of compounds 9f, 9o, and 9s were found to be active. However, compound 9f is more active when compared with other compounds.

Conclusion: Some synthesized compounds were active against different cancer cell lines. The in-vitro study results were found to be in agreement with the predictions from in-silico data. The selected molecules were further subjected to get the possible mechanism of action against different cancer cells.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[5]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176.
[http://dx.doi.org/10.1016/j.molonc.2012.02.004] [PMID: 22440008]
[6]
Salerno, S.; Da Settimo, F.; Taliani, S.; Simorini, F.; La Motta, C.; Fornaciari, G.; Marini, A.M. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr. Med. Chem., 2010, 17(35), 4270-4290.
[http://dx.doi.org/10.2174/092986710793361252] [PMID: 20939813]
[7]
Hevener, K.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B, 2018, 8(6), 844-861.
[http://dx.doi.org/10.1016/j.apsb.2018.07.008] [PMID: 30505655]
[8]
Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv., 2020, 10(68), 41353-41392.
[http://dx.doi.org/10.1039/D0RA06642G] [PMID: 35516563]
[9]
Faraj, F.L.; Zahedifard, M.; Paydar, M.; Looi, C.Y.; Abdul, M.N.; Ali, H.M.; Ahmad, N.; Gwaram, N.S.; Abdulla, M.A. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells. Sci. World J., 2014, 1-15.
[http://dx.doi.org/10.1155/2014/212096]
[10]
Selvam, T.P.; Theivendren, P.K.; Palanirajan, V. Quinazoline marketed drugs – A review. Res. Pharmacy, 2011, 1(1), 1-21. Available from: www.researchinpharmacy.com
[11]
Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules, 2019, 9(11), 668.
[http://dx.doi.org/10.3390/biom9110668] [PMID: 31671561]
[12]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[13]
Javle, M.M.; Oh, D.Y.; Ikeda, M.; Yong, W.P.; Hsu, K.; Lindmark, B.; McIntyre, N.; Firth, C. Varlitinib plus capecitabine in secondline advanced biliary tract cancer: A randomized, phase II study (TreeTopp). ESMO Open, 2022, 7(1), 100314.
[http://dx.doi.org/10.1016/j.esmoop.2021.100314] [PMID: 34922298]
[14]
Shirley, M. Dacomitinib: First global approval. Drugs, 2018, 78(18), 1947-1953.
[http://dx.doi.org/10.1007/s40265-018-1028-x] [PMID: 30506139]
[15]
Lavanya, V.; Mohamed, A.A.A.; Ahmed, N.; Rishi, A.K.; Jamal, S. Small molecule inhibitors as emerging cancer therapeutics. Integr. Cancer Sci. Ther., 2014, 1(3), 39-46.
[http://dx.doi.org/10.15761/ICST.1000109]
[16]
Piperdi, B.; Perez-Soler, R. Role of erlotinib in the treatment of non-small cell lung cancer: Clinical outcomes in wild-type epidermal growth factor receptor patients. Drugs, 2012, 72(Suppl. 1), 11-19.
[http://dx.doi.org/10.2165/1163018-S0-000000000-00000]
[17]
Shirzad, M.; Nourigorji, M.; Sajedi, A.; Ranjbar, M.; Rasti, F.; Sourani, Z.; Moradi, M.; Mostafa, M.S.; Memar, M.Y. Targeted therapy in coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Int. Immunopharmacol., 2022, 111, 109161.
[http://dx.doi.org/10.1016/j.intimp.2022.109161] [PMID: 35998506]
[18]
Shagufta, S.; Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm., 2017, 8(5), 871-885.
[http://dx.doi.org/10.1039/C7MD00097A] [PMID: 30108803]
[19]
Poudapally, S.; Battu, S.; Velatooru, L.R.; Bethu, M.S.; Janapala, V.R.; Sharma, S.; Sen, S.; Pottabathini, N.; Iska, V.B.R.; Katangoor, V. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(9), 1923-1928.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.042] [PMID: 28351589]
[20]
Cn, G.; Liao, J.; Cn, G.; Chen, P. Coupling compounds of nsaid anti-inflammatory and analgesic drugs and EGFR kinase inhibitors, synthesis methods and applications thereof. (U.S. Patent No. 0175453). U.S. Patent and Trademark Office., 2016.
[21]
Shafi, S.; Mahboob Alam, M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 2012, 49, 324-333.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[22]
Mulakayala, N.; Rao, P.; Iqbal, J.; Bandichhor, R.; Oruganti, S. Synthesis of novel therapeutic agents for the treatment of multiple sclerosis: A brief overview. Eur. J. Med. Chem., 2013, 60, 170-186.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.055] [PMID: 23291119]
[23]
Sudhakar, H.; Pavana, K. G.; Mulakayala, N. Montmorillonite K10 as highly efficient catalyst for the synthesis of phenols from arylboronic acids. Indian J Adv Chem Sci, 2013, 2, 57.
[24]
Sudhakar, H.; Pavana, K.G.; Venkata, N.R.; Mulakayala, N. Green approach toward the synthesis of n-substituted anilines via smile rearrangement using amberlite IR-400 resin. Indian J. Adv. Chem. Sci., 2014, 2, 294.
[25]
Ismail; Kuthati, B.; Thalari, G.; Bommarapu, V.; Mulakayala, C.; Chita, S.K.; Mulakayala, N. Synthesis of novel spiro[pyrazolo[4,3-d]pyrimidinones and spiro[benzo[4,5]thieno[2,3-d]pyrimidine-2,3. Bioorg. Med. Chem. Lett., 2016, 27, 1446.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.088]
[26]
Mulakayala, N.; Kandagatla, B. Ismail; Rapolu, R.K.; Rao, P.; Mulakayala, C.; Kumar, C.S.; Iqbal, J.; Oruganti, S. InCl3-catalysed synthesis of 2-aryl quinazolin-4(3H)-ones and 5-aryl pyrazolo[4,3-d]pyrimidin-7(6H)-ones and their evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(15), 5063-5066.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.003] [PMID: 22749421]
[27]
Mulakayala, N.; Rambabu, D.; Raja, M.R. M, C.; Kumar, C.S.; Kalle, A.M.; Rama, K, G.; Malla, R, C.; Basaveswara, R, M.V.; Pal, M. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: Their evaluation as potential anti-cancer agents. Bioorg. Med. Chem., 2012, 20(2), 759-768.
[http://dx.doi.org/10.1016/j.bmc.2011.12.001] [PMID: 22202437]
[28]
Rao, R.M.; Reddy, C.H.U. Alinakhi; Mulakayala, N.; Alvala, M.; Arunasree, M.K.; Poondra, R.R.; Iqbal, J.; Pal, M. Sequential coupling/desilylation–coupling/cyclization in a single pot under Pd/C–Cu catalysis: Synthesis of 2-(hetero)aryl indoles. Org. Biomol. Chem., 2011, 9(10), 3808-3816.
[http://dx.doi.org/10.1039/c0ob01161d] [PMID: 21448470]
[29]
Manjulatha, K.; Srinivas, S.; Mulakayala, N.; Rambabu, D.; Prabhakar, M.; Arunasree, K.M.; Alvala, M.; Basaveswara, R. M.V.; Pal, M. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: Their evaluation as inhibitors of SIRT1. Bioorg. Med. Chem. Lett., 2012, 22(19), 6160-6165.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.017] [PMID: 22929231]
[30]
Veeraboina, M.R.; Pattabi, V.; Somaiah, N.; Navuluri, S.; Mulakayala, N. Synthesis anticancer evaluation and molecular docking studies of amide derivatives of oxazole-pyrimidine-1,3,4-thiadiazole analogues. Chemical Data Collections, 2023, 47, 101071.
[http://dx.doi.org/10.1016/j.cdc.2023.101071]
[31]
Shaik, B.F.; Yeruva, R.P.; Poorna, S.C.; Tangella, P.N.; Vadiga, K.S.; Gajula, B.M.; Varimadugu, A.; Mulakayala, N.; Shaik, A. An efficient multi-functionalized synthesis of N-Arylated Indole-3- Substituted-2-Benzimidazoles as anticancer agents. Lett. Org. Chem., 2023, 20(8)
[http://dx.doi.org/10.2174/1570178620666230217111458]
[32]
Varimadugu, A.; Sudhakar, H.; Thalari, G.; Mulakayala, N. Amberlite infrared-120 catalyzed synthesis of 6-Aryl-5H-Quinazolino[4,3-b]Quinazolin8(6H)-one derivatives as anticancer agents. Indian J. Adv. Chem. Sci., 2018, 6, 187-192.
[http://dx.doi.org/10.2260/7IJACS.2018.604003]
[33]
Sudhakar, H.; Mulakayala, N. Facile synthesis of aurones using amberlyst-15 as a reusable catalyst and their biological evaluation. Indian J. Adv. Chem. Sci., 2016, 4, 160-167.
[34]
Gudisela, M.R.; Srinivasu, N.; Mulakayala, C.; Bommu, P.; Rao, M.V.B.; Mulakayala, N. Design, synthesis and anticancer activity of N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives. Bioorg. Med. Chem. Lett., 2017, 27(17), 4140-4145.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.029] [PMID: 28756024]
[35]
Singh, J.; Denzel, T.W.; Fox, R.; Kissick, T.P.; Herter, R.; Wurdinger, J.; Schierling, P.; Papaioannou, C.G.; Moniot, J.L.; Mueller, R.H.; Cimarusti, C.M. Regioselective activation of Aminothiazole(iminoxyacetic acid)acetic acid: An efficient synthesis of the monobactam aztreonam. Org. Process Res. Dev., 2002, 6(6), 863-868.
[http://dx.doi.org/10.1021/op025572d]
[36]
Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.; Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst., 1990, 82(13), 1113-1117.
[http://dx.doi.org/10.1093/jnci/82.13.1113] [PMID: 2359137]
[37]
Madadi, N.R.; Penthala, N.R.; Janganati, V.; Crooks, P.A. Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines. Bioorg. Med. Chem. Lett., 2014, 24(2), 601-603.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.013] [PMID: 24361000]
[38]
Hassanzadeh, F.; Poorirani, S.; Sadeghian-Rizi, S.; Khodarahmi, G.; Khajouei, M.R. Synthesis and cytotoxic evaluation of novel quinazolinone derivatives as potential anticancer agents. Res. Pharm. Sci., 2018, 13(5), 450-459.
[http://dx.doi.org/10.4103/1735-5362.236838] [PMID: 30271447]
[39]
Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, Marvin ChemAxon, Available From: http://www.chemaxon.com
[40]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[41]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[42]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[43]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[44]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[45]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[46]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[47]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[48]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[49]
Dassault Systèmes; Dassault Systèmes: San Diego, 2019. Discovery Studio Visualizer [20.1.0.19295]
[50]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, W.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J Gaussian Inc.; Wallingford, CT , 2010.
[51]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian, Inc.; Wallingford, CT , 2016.
[52]
Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, 2016.
[53]
Han, S.Y.; Kim, Y.A. Recent development of peptide coupling reagents in organic synthesis. Tetrahedron, 2004, 60(11), 2447-2467.
[http://dx.doi.org/10.1016/j.tet.2004.01.020]
[54]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[55]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computer-Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[56]
Mostashari-Rad, T.; Arian, R.; Sadri, H.; Mehridehnavi, A.; Mokhtari, M.; Ghasemi, F.; Fassihi, A. Study of CXCR4 chemokine receptor inhibitors using QSPR and molecular docking methodologies. J. Theor. Comput. Chem., 2019, 18(4), 1950018.
[http://dx.doi.org/10.1142/S0219633619500184]
[57]
Kim, T.Y.; Ji, E.S.; Lee, J.Y.; Kim, J.Y.; Yoo, J.S.; Szasz, A.M.; Dome, B.; Marko-Varga, G.; Kwon, H.J. DNA Polymerase alpha subunit B is a binding protein for erlotinib resistance in non-small cell lung cancer. Cancers, 2020, 12(9), 2613.
[http://dx.doi.org/10.3390/cancers12092613] [PMID: 32933200]
[58]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[59]
Jin, Q.; Esteva, F.J. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J. Mammary Gland Biol. Neoplasia, 2008, 13(4), 485-498.
[http://dx.doi.org/10.1007/s10911-008-9107-3] [PMID: 19034632]
[60]
Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J., 2012, 448(3), 417-423.
[http://dx.doi.org/10.1042/BJ20121513] [PMID: 23101586]
[61]
Khajehzadeh, M.; Moghadam, M. Molecular structure, FT IR, NMR, UV, NBO and HOMO–LUMO of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile by DFT/B3LYP and PBEPBE methods with LanL2DZ and 6-311 ++G(d,2p) basis sets. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 180, 51-66.
[http://dx.doi.org/10.1016/j.saa.2017.02.055] [PMID: 28273614]
[62]
Anitha, L.; Saritha, S.R.; Layana, S.R.; Nair, L. C.S.; Hubert Joe, I.; Sudarsanakumar, M.R. Structural studies of 3-[(E)-[(2E)-2-methyl-3-phenylprop-2-en-1-ylidene] amino]-1-phenylthiourea: Combined experimental and computational studies. J. Mol. Struct., 2019, 1191, 206-217.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.062]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy