Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, In vitro and In vivo Evaluation of New Imidazo[1,2-a]pyridine Derivatives as Cyclooxygenase-2 Inhibitors

Author(s): Nahid Ahmadi, Mona Khoramjouy, Mahsa Azami Movahed, Salimeh Amidi, Mehrdad Faizi and Afshin Zarghi*

Volume 24, Issue 7, 2024

Published on: 24 January, 2024

Page: [504 - 513] Pages: 10

DOI: 10.2174/0118715206269563231220104846

Price: $65

Abstract

Background: Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases.

Objective: The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits.

Methods: Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities.

Results: The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC50 values of 0.13 to 0.05 μM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC50 value of 0.05 μM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. In vivo analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED50 value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90.

Conclusion: The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.

Graphical Abstract

[1]
Montinari, M.R.; Minelli, S.; De Caterina, R. The first 3500 years of aspirin history from its roots - A concise summary. Vascul. Pharmacol., 2019, 113, 1-8.
[http://dx.doi.org/10.1016/j.vph.2018.10.008] [PMID: 30391545]
[2]
Desborough, M.J.R.; Keeling, D.M. The aspirin story – From willow to wonder drug. Br. J. Haematol., 2017, 177(5), 674-683.
[http://dx.doi.org/10.1111/bjh.14520] [PMID: 28106908]
[3]
Sneader, W. The discovery of aspirin: A reappraisal. BMJ, 2000, 321(7276), 1591-1594.
[http://dx.doi.org/10.1136/bmj.321.7276.1591] [PMID: 11124191]
[4]
Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[http://dx.doi.org/10.1038/newbio231232a0] [PMID: 5284360]
[5]
Smith, J.B.; Willis, A.L. Aspirin selectively inhibits prostaglandin production in human platelets. Nat. New Biol., 1971, 231(25), 235-237.
[http://dx.doi.org/10.1038/newbio231235a0] [PMID: 5284361]
[6]
Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and functional insights. J. Lipid Res., 2009, 50, S29-S34.
[http://dx.doi.org/10.1194/jlr.R800042-JLR200]
[7]
Brian, J.E., Jr; Moore, S.A.; Faraci, F.M. Expression and vascular effects of cyclooxygenase-2 in brain. Stroke, 1998, 29(12), 2600-2606.
[http://dx.doi.org/10.1161/01.STR.29.12.2600] [PMID: 9836773]
[8]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[9]
Kurumbail, R.; Kiefer, J.R.; Marnett, L.J. Cyclooxygenase enzymes: Catalysis and inhibition. Curr. Opin. Struct. Biol., 2001, 11(6), 752-760.
[http://dx.doi.org/10.1016/S0959-440X(01)00277-9] [PMID: 11751058]
[10]
Simon, L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med., 1999, 106(5), 37S-42S.
[http://dx.doi.org/10.1016/S0002-9343(99)00115-1] [PMID: 10390126]
[11]
Masferrer, J.L.; Zweifel, B.S.; Manning, P.T.; Hauser, S.D.; Leahy, K.M.; Smith, W.G.; Isakson, P.C.; Seibert, K. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci., 1994, 91(8), 3228-3232.
[http://dx.doi.org/10.1073/pnas.91.8.3228] [PMID: 8159730]
[12]
Catella-Lawson, F.; Reilly, M.P.; Kapoor, S.C.; Cucchiara, A.J.; DeMarco, S.; Tournier, B.; Vyas, S.N.; FitzGerald, G.A. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med., 2001, 345(25), 1809-1817.
[http://dx.doi.org/10.1056/NEJMoa003199] [PMID: 11752357]
[13]
Patrono, C. Cardiovascular effects of cyclooxygenase‐2 inhibitors: A mechanistic and clinical perspective. Br. J. Clin. Pharmacol., 2016, 82(4), 957-964.
[http://dx.doi.org/10.1111/bcp.13048] [PMID: 27317138]
[14]
Jüni, P.; Nartey, L.; Reichenbach, S.; Sterchi, R.; Dieppe, P.A.; Egger, M. Risk of cardiovascular events and rofecoxib: Cumulative meta-analysis. Lancet, 2004, 364(9450), 2021-2029.
[http://dx.doi.org/10.1016/S0140-6736(04)17514-4] [PMID: 15582059]
[15]
Davies, N.M.; Jamali, F. COX-2 selective inhibitors cardiac toxicity: Getting to the heart of the matter. J. Pharm. Pharm. Sci., 2004, 7(3), 332-336.
[PMID: 15576013]
[16]
Turini, M.E.; DuBois, R.N. Cyclooxygenase-2: A therapeutic target. Annu. Rev. Med., 2002, 53(1), 35-57.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103952] [PMID: 11818462]
[17]
Teismann, P. COX‐2 in the neurodegenerative process of Parkinson’s disease. Biofactors, 2012, 38(6), 395-397.
[http://dx.doi.org/10.1002/biof.1035] [PMID: 22826171]
[18]
O’Banion, M.K. COX-2 and Alzheimer’s disease: Potential roles in inflammation and neurodegeneration. Expert Opin. Investig. Drugs, 1999, 8(10), 1521-1536.
[http://dx.doi.org/10.1517/13543784.8.10.1521] [PMID: 11139808]
[19]
Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15(1), 106.
[http://dx.doi.org/10.1186/s12935-015-0260-7] [PMID: 26549987]
[20]
Howe, L.R.; Dannenberg, A.J. , Eds.; A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Seminars in oncology; Elsevier, 2002.
[21]
Castellone, M.D.; Teramoto, H.; Williams, B.O.; Druey, K.M.; Gutkind, J.S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 2005, 310(5753), 1504-1510.
[http://dx.doi.org/10.1126/science.1116221] [PMID: 16293724]
[22]
Singh-Ranger, G.; Salhab, M.; Mokbel, K. The role of cyclooxygenase-2 in breast cancer (Review). Breast Cancer Res. Treat., 2008, 109(2), 189-198.
[http://dx.doi.org/10.1007/s10549-007-9641-5] [PMID: 17624587]
[23]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[24]
Baghaki, S.; Yalcin, C.E.; Baghaki, H.S.; Aydin, S.Y.; Daghan, B.; Yavuz, E. COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. Int. J. Infect. Dis., 2020, 101, 29-32.
[http://dx.doi.org/10.1016/j.ijid.2020.09.1466] [PMID: 33007455]
[25]
Hawkey, C.J. COX-2 inhibitors. Lancet, 1999, 353(9149), 307-314.
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[26]
Faki, Y.; Er, A. Different chemical structures and physiological/pathological roles of cyclooxygenases. Rambam Maimonides Med. J., 2021, 12(1), e0003.
[http://dx.doi.org/10.5041/RMMJ.10426] [PMID: 33245277]
[27]
FitzGerald, G.A.; Patrono, C. The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med., 2001, 345(6), 433-442.
[http://dx.doi.org/10.1056/NEJM200108093450607] [PMID: 11496855]
[28]
Méric, J.B.; Rottey, S.; Olaussen, K.; Soria, J.C.; Khayat, D.; Rixe, O.; Spano, J.P. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol., 2006, 59(1), 51-64.
[http://dx.doi.org/10.1016/j.critrevonc.2006.01.003] [PMID: 16531064]
[29]
Chahal, S.; Rani, P. Kiran; Sindhu, J.; Joshi, G.; Ganesan, A.; Kalyaanamoorthy, S.; Mayank; Kumar, P.; Singh, R.; Negi, A. Design and development of COX-II inhibitors: Current scenario and future perspective. ACS Omega, 2023, 8(20), 17446-17498.
[http://dx.doi.org/10.1021/acsomega.3c00692] [PMID: 37251190]
[30]
Arefi, H.; Naderi, N.; Shemirani, A.B.I.; Kiani, F.M.; Azami, M.M.; Zarghi, A. Design, synthesis, and biological evaluation of new 1,4‐diarylazetidin‐2‐one derivatives (β‐lactams) as selective cyclooxygenase‐2 inhibitors. Arch. Pharm., 2020, 353(3), 1900293.
[http://dx.doi.org/10.1002/ardp.201900293] [PMID: 31917485]
[31]
Bayanati, M.; Khoramjouy, M.; Faizi, M.; Movahed, M.A.; Mahboubi-Rabbani, M.; Zarghi, A. Novel Benzo[4,5]imidazo[1,2-a]pyrimidine derivatives as selective Cyclooxygenase-2 Inhibitors: Design, synthesis, docking studies, and biological evaluation. Med. Chem. Res., 2023, 32(3), 495-505.
[http://dx.doi.org/10.1007/s00044-023-03022-0] [PMID: 36713891]
[32]
Azami, M.M.; Abbasi, F.K.; Rajabi, M.; Abedi, N.; Naderi, N.; Daraei, B. Design, synthesis, and biological evaluation of new 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amine as selective COX-2 inhibitors. Med. Chem. Res., 2023.
[33]
Soltani, S.; Abolhasani, H.; Zarghi, A.; Jouyban, A. QSAR analysis of diaryl COX-2 inhibitors: Comparison of feature selection and train-test data selection methods. Eur. J. Med. Chem., 2010, 45(7), 2753-2760.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.055] [PMID: 20332057]
[34]
Abolhasani, H.; Zarghi, A.; Komeili, M.T.; Abolhasani, A.; Daraei, B.; Dastmalchi, S. Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents. Bioorg. Med. Chem., 2021, 32, 115960.
[http://dx.doi.org/10.1016/j.bmc.2020.115960] [PMID: 33477020]
[35]
Farzaneh, S.; Shahhosseini, S.; Arefi, H.; Daraei, B.; Esfahanizadeh, M.; Zarghi, A. Design, synthesis and biological evaluation of new 1,3-diphenyl-3- (phenylamino)propan-1-ones as selective cyclooxygenase (COX-2) inhibitors. Med. Chem., 2018, 14(7), 652-659.
[http://dx.doi.org/10.2174/1573406414666180525133221] [PMID: 29804536]
[36]
Zarghi, A.; Kakhki, S. Design, synthesis, and biological evaluation of new 2-phenyl-4H-chromen-4-one derivatives as selective cyclooxygenase-2 inhibitors. Sci. Pharm., 2015, 83(1), 15-26.
[http://dx.doi.org/10.3797/scipharm.1407-20] [PMID: 26839798]
[37]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[38]
Elie, J.; Vercouillie, J.; Arlicot, N.; Lemaire, L.; Bidault, R.; Bodard, S.; Hosselet, C.; Deloye, J.B.; Chalon, S.; Emond, P.; Guilloteau, D.; Buron, F.; Routier, S. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [18 F] PET tracer. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1-7.
[http://dx.doi.org/10.1080/14756366.2018.1501043] [PMID: 30362376]
[39]
Bekheit, M.S.; Mohamed, H.A.; Abdel-Wahab, B.F.; Fouad, M.A. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med. Chem. Res., 2021, 30(5), 1125-1138.
[http://dx.doi.org/10.1007/s00044-021-02716-7]
[40]
Sağlık, B.N.; Osmaniye, D.; Levent, S.; Çevik, U.A.; Çavuşoğlu, B.K.; Özkay, Y.; Kaplancıklı Z.A. Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. Eur. J. Med. Chem., 2021, 209, 112918.
[http://dx.doi.org/10.1016/j.ejmech.2020.112918] [PMID: 33071054]
[41]
Vernieri, E.; Gomez-Monterrey, I.; Milite, C.; Grieco, P.; Musella, S.; Bertamino, A.; Scognamiglio, I.; Alcaro, S.; Artese, A.; Ortuso, F.; Novellino, E.; Sala, M.; Campiglia, P. Design, synthesis, and evaluation of new tripeptides as COX-2 inhibitors. J. Amino Acids, 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/606282] [PMID: 23533709]
[42]
Uddin, M.J.; Rao, P.N.P.; Knaus, E.E. Design and synthesis of novel celecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: Replacement of the sulfonamide pharmacophore by a sulfonylazide bioisostere. Bioorg. Med. Chem., 2003, 11(23), 5273-5280.
[http://dx.doi.org/10.1016/j.bmc.2003.07.005] [PMID: 14604691]
[43]
Goel, R.; Luxami, V.; Paul, K. Imidazo [1, 2-a] pyridines: Promising drug candidate for antitumor therapy. Curr. Top. Med. Chem., 2016, 16(30), 3590-3616.
[http://dx.doi.org/10.2174/1568026616666160414122644] [PMID: 27086790]
[44]
Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-a]pyridines: A decade update. Chem. Commun., 2015, 51(9), 1555-1575.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[45]
Gallemi, C.F.; Bono, I-J.M.; Serrat, A.M.F.; Vidal, C.M.; Arnal, C.L.; Guasch, F.G. Substituted imidazo 1, {2a} azines as selective inhibitors of cox-2; Google Patents, 2003.
[46]
Azami, M.M.; Daraei, B.; Zarghi, A. Synthesis and biological evaluation of new imidazo [1, 2-a] pyridine derivatives as selective cox-2 inhibitors. Lett. Drug Des. Discov., 2016, 13(8), 793-799.
[http://dx.doi.org/10.2174/1570180813666160613090944]
[47]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[48]
Domer, F. Characterization of the analgesic activity of ketorolac in mice. Eur. J. Pharmacol., 1990, 177(3), 127-135.
[http://dx.doi.org/10.1016/0014-2999(90)90262-5] [PMID: 2311674]
[49]
Ghorbannia-Dellavar, S.; Farimani, M.M.; Pahlevani, A.H.; Khoramjouy, M.; Mosaddegh, M.; Faizi, M. Antinociceptive activity of Iranian Euphorbia species in mice: Preliminary phytochemical analysis of Euphorbia malleata. S. Afr. J. Bot., 2023, 159, 532-543.
[http://dx.doi.org/10.1016/j.sajb.2023.05.012]
[50]
Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962, 194(4832), 927-929.
[http://dx.doi.org/10.1038/194927b0] [PMID: 13871375]
[51]
Tang, D.; Guo, X.; Wang, Y.; Wang, J.; Li, J.; Huang, Q.; Chen, B. Metal free, I2-catalyzed [3+1+1] cycloaddition reactions to synthesize 1,2,4-trisubstituted imidazoles. Tetrahedron Lett., 2015, 56(44), 5982-5985.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.034]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy