Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Emerging Phytochemicals to Treat Leishmaniasis: A Review of Experimental Studies from 2011 to 2021

Author(s): Madhulika Namdeo, Jalaja Veronica, Krishan Kumar, Anjali Anand and Radheshyam Maurya*

Volume 20, Issue 8, 2024

Published on: 24 January, 2024

Article ID: e240124226050 Pages: 30

DOI: 10.2174/0115734072273575231207061849

Price: $65

Abstract

Leishmaniasis is a protozoan disease caused by a parasite from the genus Leishmania. It is known as a neglected tropical disease by WHO and is the second-leading cause of death by parasites after malaria. Chemotherapy is the only effective way to control the disease, but treatment options for leishmaniasis are limited. The majority of the drugs are costly, have serious side effects and necessitate hospitalisation. The lack of an effective vaccine, in addition to the emergence of resistance to currently available drugs, has all been raised as major concerns, especially in endemic areas of developing countries. Phytochemicals might contribute to the development of novel and effective drugs for the treatment of leishmaniasis by providing selectively targeted intervention in parasites. Many phytochemicals (quinones, alkaloids, terpenes, saponins, phenolics) and their derivatives are quite active against diverse groups of pathogens, such as viruses, bacteria, fungi and parasites. To date, many phytochemicals have shown potent anti-leishmanial activity with highly selective mode of action. However, due to a lack of interaction between academician and pharma industries none of them have undergone the clinical assessment. The present review will analyse the most promising phytochemicals and their synthetic compounds, which have shown antileishmal activity in in-vitro and subsequently in animal studies from 2011 to 2021. These phytochemicals are apigenin, hydroxyflavanone, Epigallocatechin-O-3 gallate, caffeic acid, α-bisabolol, β-caryophyllene, ursolic acid, quinones, which have shown notable anti-leishmanial activities in several independent studies.

Graphical Abstract

[1]
Daneshbod, Y.; Oryan, A.; Davarmanesh, M.; Shirian, S.; Negahban, S.; Aledavood, A.; Davarpanah, M.A.; Soleimanpoor, H.; Daneshbod, K. Clinical, histopathologic, and cytologic diagnosis of mucosal leishmaniasis and literature review. Arch. Pathol. Lab. Med., 2011, 135(4), 478-482.
[http://dx.doi.org/10.5858/2010-0069-OA.1] [PMID: 21466365]
[2]
UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. and World Health Organization. (2009) Research to support the elimination of visceral leishmaniasis : Annual report 2008. TDR Business Line., 2009, 27
[3]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5), e35671.
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[4]
Georgiadou, S.P.; Makaritsis, K.P.; Dalekos, G.N. Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. J. Transl. Int. Med., 2015, 3(2), 43-50.
[http://dx.doi.org/10.1515/jtim-2015-0002] [PMID: 27847886]
[5]
Ready, P. Epidemiology of visceral leishmaniasis. Clin. Epidemiol., 2014, 6, 147-154.
[http://dx.doi.org/10.2147/CLEP.S44267] [PMID: 24833919]
[6]
Sundar, S.; Singh, A. Recent developments and future prospects in the treatment of visceral leishmaniasis. Ther. Adv. Infect. Dis., 2016, 3(3-4), 98-109.
[http://dx.doi.org/10.1177/2049936116646063] [PMID: 27536354]
[7]
Uliana, S.R.B.; Trinconi, C.T.; Coelho, A.C. Chemotherapy of leishmaniasis: Present challenges. Parasitology, 2018, 145(4), 464-480.
[http://dx.doi.org/10.1017/S0031182016002523] [PMID: 28103966]
[8]
Alves, F.; Bilbe, G.; Blesson, S.; Goyal, V.; Monnerat, S.; Mowbray, C.; Muthoni Ouattara, G.; Pécoul, B.; Rijal, S.; Rode, J.; Solomos, A.; Strub-Wourgaft, N.; Wasunna, M.; Wells, S.; Zijlstra, E.E.; Arana, B.; Alvar, J. Recent development of visceral leishmaniasis treatments: Successes, pitfalls, and perspectives. Clin. Microbiol. Rev., 2018, 31(4), e00048-18.
[http://dx.doi.org/10.1128/CMR.00048-18] [PMID: 30158301]
[9]
Musa, A.; Khalil, E.; Hailu, A.; Olobo, J.; Balasegaram, M.; Omollo, R.; Edwards, T.; Rashid, J.; Mbui, J.; Musa, B.; Abuzaid, A.A.; Ahmed, O.; Fadlalla, A.; El-Hassan, A.; Mueller, M.; Mucee, G.; Njoroge, S.; Manduku, V.; Mutuma, G.; Apadet, L.; Lodenyo, H.; Mutea, D.; Kirigi, G.; Yifru, S.; Mengistu, G.; Hurissa, Z.; Hailu, W.; Weldegebreal, T.; Tafes, H.; Mekonnen, Y.; Makonnen, E.; Ndegwa, S.; Sagaki, P.; Kimutai, R.; Kesusu, J.; Owiti, R.; Ellis, S.; Wasunna, M. Sodium stibogluconate (SSG) & paromomycin combination compared to SSG for visceral leishmaniasis in East Africa: A randomised controlled trial. PLoS Negl. Trop. Dis., 2012, 6(6), e1674.
[http://dx.doi.org/10.1371/journal.pntd.0001674] [PMID: 22724029]
[10]
Diro, E.; Lynen, L.; Mohammed, R.; Boelaert, M.; Hailu, A.; van Griensven, J. High parasitological failure rate of visceral leishmaniasis to sodium stibogluconate among HIV co-infected adults in Ethiopia. PLoS Negl. Trop. Dis., 2014, 8(5), e2875.
[http://dx.doi.org/10.1371/journal.pntd.0002875] [PMID: 24854196]
[11]
Hendrickx, S.; Guerin, P.J.; Caljon, G.; Croft, S.L.; Maes, L. Evaluating drug resistance in visceral leishmaniasis: The challenges. Parasitology, 2018, 145(4), 453-463.
[http://dx.doi.org/10.1017/S0031182016002031] [PMID: 27866478]
[12]
Chakravarty, J.; Sundar, S. Drug resistance in leishmaniasis. J. Glob. Infect. Dis., 2010, 2(2), 167-176.
[http://dx.doi.org/10.4103/0974-777X.62887] [PMID: 20606973]
[13]
Wiwanitkit, V. Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Ther. Clin. Risk Manag., 2012, 8, 323-328.
[http://dx.doi.org/10.2147/TCRM.S30139] [PMID: 22802694]
[14]
Machado-Silva, A.; Guimarães, P.P.G.; Tavares, C.A.P.; Sinisterra, R.D. New perspectives for leishmaniasis chemotherapy over current anti-leishmanial drugs: A patent landscape. Expert Opin. Ther. Pat., 2015, 25(3), 247-260.
[http://dx.doi.org/10.1517/13543776.2014.993969] [PMID: 25530084]
[15]
World Health Organization. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. World Health Organ. Tech. Rep. Ser., 2012, (975), v-xii, 1-100.
[PMID: 23484340]
[16]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[17]
Oryan, A.; Shirian, S.; Tabandeh, M.R.; Hatam, G.R.; Randau, G.; Daneshbod, Y. Genetic diversity of Leishmania major strains isolated from different clinical forms of cutaneous leishmaniasis in southern Iran based on minicircle kDNA. Infect. Genet. Evol., 2013, 19, 226-231.
[http://dx.doi.org/10.1016/j.meegid.2013.07.021] [PMID: 23892374]
[18]
WHO. Kala-azar elimination programme - report Of A WHO consultation of partners. In: World Health Organization Report of a WHO consultation of partners Geneva, S., 2015.
[19]
Sen, R.; Chatterjee, M. Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine, 2011, 18(12), 1056-1069.
[http://dx.doi.org/10.1016/j.phymed.2011.03.004] [PMID: 21596544]
[20]
Chouhan, G.; Islamuddin, M.; Ahmad, F.; Sahal, D.; Afrin, F. Antileishmanial Potential of Pipernigrum Seed Extracts against Leishmaniadonovani. Open J. Med. Microbiol., 2014, 4(4), 228-235.
[http://dx.doi.org/10.4236/ojmm.2014.44025]
[21]
Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of natural products in leishmaniasis chemotherapy: An overview. Front Chem., 2020, 8, 579891.
[http://dx.doi.org/10.3389/fchem.2020.579891] [PMID: 33330368]
[22]
Singh, N.; Mishra, B.B.; Bajpai, S.; Singh, R.K.; Tiwari, V.K. Natural product based leads to fight against leishmaniasis. Bioorg. Med. Chem., 2014, 22(1), 18-45.
[http://dx.doi.org/10.1016/j.bmc.2013.11.048] [PMID: 24355247]
[23]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.N.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[24]
Monzote, L.; Piñón, A.; Setzer, W. Antileishmanial potential of tropical rainforest plant extracts. Medicines , 2014, 1(1), 32-55.
[http://dx.doi.org/10.3390/medicines1010032] [PMID: 28933376]
[25]
Maurício, I.L.; Stothard, J.R.; Miles, M.A. The strange case of Leishmania chagasi. Parasitol. Today, 2000, 16(5), 188-189.
[http://dx.doi.org/10.1016/S0169-4758(00)01637-9] [PMID: 10782075]
[26]
Berman, J.D. Human leishmaniasis: Clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect. Dis., 1997, 24(4), 684-703.
[http://dx.doi.org/10.1093/clind/24.4.684] [PMID: 9145744]
[27]
Pearson, R.D.; de Queiroz Sousa, A. Clinical spectrum of leishmaniasis. Clinical Infectious Diseases, 1996, 1-11.
[28]
Leishmaniases, W.H.O.E.C. On the C. of the, Organization, W.H. and Meeting, W.H.O.E.C. on the C. of the Leishmaniases. In: Control of the Leishmaniases: Report of a WHO Expert Committee; World Health Organization, 1990.
[29]
Desjeux, P. Leishmaniasis. Clin. Dermatol., 1996, 14(5), 417-423.
[http://dx.doi.org/10.1016/0738-081X(96)00057-0] [PMID: 8889319]
[30]
El-Hassan, A.M.; Meredith, S.E.O.; Yagi, H.I.; Khalil, E.A.G.; Ghalib, H.W.; Abbas, K.; Zijlstra, E.E.; Kroon, C.C.M.; Schoone, G.J.; Ismail, A. Sudanese mucosal leishmaniasis: Epidemiology, clinical features, diagnosis, immune responses and treatment. Trans. R. Soc. Trop. Med. Hyg., 1995, 89(6), 647-652.
[http://dx.doi.org/10.1016/0035-9203(95)90428-X] [PMID: 8594683]
[31]
Rajasekaran, R.; Chen, Y.P.P. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov. Today, 2015, 20(8), 958-968.
[http://dx.doi.org/10.1016/j.drudis.2015.04.006] [PMID: 25936844]
[32]
Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int., 2011, 2011, 1-23.
[http://dx.doi.org/10.4061/2011/571242] [PMID: 22091408]
[33]
de Menezes, J.P.B.; Guedes, C.E.S.; Petersen, A.L.O.A.; Fraga, D.B.M.; Veras, P.S.T. Advances in development of new treatment for leishmaniasis. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/815023] [PMID: 26078965]
[34]
Freitas-Junior, L.H.; Chatelain, E.; Kim, H.A.; Siqueira-Neto, J.L. Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? Int. J. Parasitol. Drugs Drug Resist., 2012, 2, 11-19.
[http://dx.doi.org/10.1016/j.ijpddr.2012.01.003] [PMID: 24533267]
[35]
Corral, M.J.; González-Sánchez, E.; Cuquerella, M.; Alunda, J.M. In-vitro synergistic effect of amphotericin B and allicin on Leishmania donovani and L. infantum. Antimicrob. Agents Chemother., 2014, 58(3), 1596-1602.
[http://dx.doi.org/10.1128/AAC.00710-13] [PMID: 24366748]
[36]
Sundar, S.; Chakravarty, J. Liposomal amphotericin B and leishmaniasis: Dose and response. J. Glob. Infect. Dis., 2010, 2(2), 159-166.
[http://dx.doi.org/10.4103/0974-777X.62886] [PMID: 20606972]
[37]
Berman, J. Amphotericin B formulations and other drugs for visceral leishmaniasis. Am. J. Trop. Med. Hyg., 2015, 92(3), 471-473.
[http://dx.doi.org/10.4269/ajtmh.14-0743] [PMID: 25510726]
[38]
Sundar, S.; Sinha, P.; Jha, T.K.; Chakravarty, J.; Rai, M.; Kumar, N.; Pandey, K.; Narain, M.K.; Verma, N.; Das, V.N.R.; Das, P.; Berman, J.; Arana, B. Oral miltefosine for Indian post‐kala‐azar dermal leishmaniasis: A randomised trial. Trop. Med. Int. Health, 2013, 18(1), 96-100.
[http://dx.doi.org/10.1111/tmi.12015] [PMID: 23136856]
[39]
Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[40]
Elizabeth, M.; Contreras, M. Chemotherapy used in the treatment of visceral leishmaniasis. Review Article CPQ Microbiology, 2019, 3, 1.
[41]
Goto, H.; Costa, J.M.L.; Queiroz, I.T.; Goto, H. Review of the current treatments for leishmaniases. Res. Rep. Trop. Med., 2012, 3, 69-77.
[http://dx.doi.org/10.2147/RRTM.S24764] [PMID: 30890869]
[42]
Jain, K.; Jain, N.K. Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discov. Today, 2013, 18(23-24), 1272-1281.
[http://dx.doi.org/10.1016/j.drudis.2013.08.005] [PMID: 23973338]
[43]
Eskandari, K.; Khademvatan, S.; Sadeghi Nejad, B.; Yusef Naanaie, S.; kohansal, K. Evaluation of the antileishmanial properties of ixora brachiata roxb on leishmania major and leishmania infantum by colorimetric MTT assay. Int. J. Enteric. Pathog., 2019, 7(4), 126-129.
[http://dx.doi.org/10.15171/ijep.2019.26]
[44]
Monzote, L.; García, M.; Scull, R.; Cuellar, A.; Setzer, W.N. Antileishmanial activity of the essential oil from Bixa orellana. Phytother. Res., 2014, 28(5), 753-758.
[http://dx.doi.org/10.1002/ptr.5055] [PMID: 23983115]
[45]
Neris, D.M.; Ortolani, L.G.; Castro, C.A.; Correia, R.O.; Rodolpho, J.M.A.; Camillo, L.; Nogueira, C.T.; Sousa, C.P.; Anibal, F.F. In vitro modulator effect of total extract from the endophytic Paenibacillus polymyxa RNC-D in Leishmania (Leishmania) amazonensis and Macrophages. Int. J. Microbiol., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8895308] [PMID: 32908533]
[46]
Ghosh, S.; Debnath, S.; Hazra, S.; Hartung, A.; Thomale, K.; Schultheis, M.; Kapkova, P.; Schurigt, U.; Moll, H.; Holzgrabe, U.; Hazra, B. Valeriana wallichii root extracts and fractions with activity against Leishmania spp. Parasitol. Res., 2011, 108(4), 861-871.
[http://dx.doi.org/10.1007/s00436-010-2127-0] [PMID: 21085992]
[47]
Rabito, M.F.; Britta, E.A.; Pelegrini, B.L.; Scariot, D.B.; Almeida, M.B.; Nixdorf, S.L.; Nakamura, C.V.; Ferreira, I.C.P. In-vitro and in vivo antileishmania activity of sesquiterpene lactone-rich dichloromethane fraction obtained from Tanacetum parthenium (L.) Schultz-Bip. Exp. Parasitol., 2014, 143, 18-23.
[http://dx.doi.org/10.1016/j.exppara.2014.04.014] [PMID: 24810433]
[48]
Shah, N.A.; Khan, M.R.; Nadhman, A. Antileishmanial, toxicity, and phytochemical evaluation of medicinal plants collected from Pakistan. BioMed Res. Int., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/384204] [PMID: 24995292]
[49]
Bekele, B.; Adane, L.; Tariku, Y.; Hailu, A. Evaluation of antileishmanial activities of triglycerides isolated from roots of Moringa stenopetala. Med. Chem. Res., 2013, 22(10), 4592-4599.
[http://dx.doi.org/10.1007/s00044-013-0467-x]
[50]
Gamboa-Leon, R.; Vera-Ku, M.; Peraza-Sanchez, S.R.; Ku-Chulim, C.; Horta-Baas, A.; Rosado-Vallado, M. Activité antileishmaniale d’un mélange de Tridax procumbens et Allium sativum chez la souris. Parasite, 2014, 21, 1-7.
[http://dx.doi.org/10.1051/parasite/2014016] [PMID: 24717526]
[51]
Musuyu Muganza, D.; Fruth, B.I.; Nzunzu Lami, J.; Mesia, G.K.; Kambu, O.K.; Tona, G.L.; Cimanga Kanyanga, R.; Cos, P.; Maes, L.; Apers, S.; Pieters, L. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. J. Ethnopharmacol., 2012, 141(1), 301-308.
[http://dx.doi.org/10.1016/j.jep.2012.02.035] [PMID: 22394563]
[52]
Sachdeva, H.; Sehgal, R.; Kaur, S. Studies on the protective and immunomodulatory efficacy of Withania somnifera along with cisplatin against experimental visceral leishmaniasis. Parasitol. Res., 2013, 112(6), 2269-2280.
[http://dx.doi.org/10.1007/s00436-013-3387-2] [PMID: 23519426]
[53]
de Medeiros, M.G.F.; da Silva, A.C.; Citó, A.M.G.L.; Borges, A.R.; de Lima, S.G.; Lopes, J.A.D.; Figueiredo, R.C.B.Q. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol. Int., 2011, 60(3), 237-241.
[http://dx.doi.org/10.1016/j.parint.2011.03.004] [PMID: 21421075]
[54]
Sanchez-Suarez, J.; Riveros, I.; Delgado, G. Evaluation of the leishmanicidal and cytotoxic potential of essential oils derived from ten colombian plants. Iran. J. Parasitol., 2013, 8(1), 129-136.
[PMID: 23682270]
[55]
Farias-Junior, P.A.; Rios, M.C.; Moura, T.A.; Almeida, R.P.; Alves, P.B.; Blank, A.F.; Fernandes, R.P.M.; Scher, R. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol. Res., 2012, 45(4), 399-402.
[http://dx.doi.org/10.4067/S0716-97602012000400012] [PMID: 23558998]
[56]
Haldar, N.; Basu, S.; Bhattacharya, S.; Pandey, J.N.; Biswas, M. Antileishmanial activity of Mangifera indica leaf extracts on the in vitro growth of Leishmania donovani promastigotes. Elixir Pharmacy, 2012, 46, 8189-8191.
[57]
Moura do Carmo, D.F.; Amaral, A.C.F.; Machado, G.M.C.; Leon, L.L.; Silva, J.R.A. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules, 2012, 17(2), 1819-1829.
[http://dx.doi.org/10.3390/molecules17021819] [PMID: 22330429]
[58]
Monzote, L.; García, M.; Montalvo, A.M.; Scull, R.; Miranda, M. Chemistry, cytotoxicity and antileishmanial activity of the essential oil from Piper auritum. Mem. Inst. Oswaldo Cruz, 2010, 105(2), 168-173.
[http://dx.doi.org/10.1590/S0074-02762010000200010] [PMID: 20428676]
[59]
Monzote, L.; García, M.; Pastor, J.; Gil, L.; Scull, R.; Maes, L.; Cos, P.; Gille, L. Essential oil from Chenopodium ambrosioides and main components: Activity against Leishmania, their mitochondria and other microorganisms. Exp. Parasitol., 2014, 136, 20-26.
[http://dx.doi.org/10.1016/j.exppara.2013.10.007] [PMID: 24184772]
[60]
Mahmoudvand, H.; Ayatollahi Mousavi, S.A.; Sepahvand, A.; Sharififar, F.; Ezatpour, B.; Gorohi, F.; Saedi Dezaki, E.; Jahanbakhsh, S. Antifungal, antileishmanial, and cytotoxicity activities of various extracts of berberis vulgaris (Berberidaceae) and its active principle berberine. ISRN Pharmacol., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/602436] [PMID: 24977052]
[61]
Tiuman, T.S.; Santos, A.O.; Ueda-Nakamura, T.; Filho, B.P.D.; Nakamura, C.V. Recent advances in leishmaniasis treatment. Int. J. Infect. Dis., 2011, 15(8), e525-e532.
[http://dx.doi.org/10.1016/j.ijid.2011.03.021] [PMID: 21605997]
[62]
Johann, S.; Oliveira, F.B.; Siqueira, E.P.; Cisalpino, P.S.; Rosa, C.A.; Alves, T.M.A.; Zani, C.L.; Cota, B.B. Activity of compounds isolated from Baccharis dracunculifolia D.C. (Asteraceae) against Paracoccidioides brasiliensis. Med. Mycol., 2012, 50(8), 843-851.
[http://dx.doi.org/10.3109/13693786.2012.678903] [PMID: 22548242]
[63]
Angel, G.R.; Menon, N.; Vimala, B.; Nambisan, B. Essential oil composition of eight starchy Curcuma species. Ind. Crops Prod., 2014, 60, 233-238.
[http://dx.doi.org/10.1016/j.indcrop.2014.06.028]
[64]
Cardoso, T.; Bezerra, C.; Medina, L.S.; Ramasawmy, R.; Scheriefer, A.; Bacellar, O.; de Carvalho, E.M. Leishmania braziliensis isolated from disseminated leishmaniasis patients downmodulate neutrophil function. Parasite Immunol., 2019, 41(5), e12620.
[http://dx.doi.org/10.1111/pim.12620] [PMID: 30815888]
[65]
Silva, L.G.; Gomes, K.S.; Costa-Silva, T.A.; Romanelli, M.M.; Tempone, A.G.; Sartorelli, P.; Lago, J.H.G. Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vitro activity against amastigote forms of Trypanosoma cruzi and Leishmania infantum. Nat. Prod. Res., 2021, 35(23), 5373-5377.
[http://dx.doi.org/10.1080/14786419.2020.1765347] [PMID: 32441133]
[66]
Bashir, S.; Alam, M.; Adhikari, A.; Shrestha, R.L.S.; Yousuf, S.; Ahmad, B.; Parveen, S.; Aman, A.; Iqbal Choudhary, M. New antileishmanial sesquiterpene coumarins from Ferula narthex Boiss. Phytochem. Lett., 2014, 9, 46-50.
[http://dx.doi.org/10.1016/j.phytol.2014.04.009]
[67]
Rojas-Silva, P.; Graziose, R.; Vesely, B.; Poulev, A.; Mbeunkui, F.; Grace, M.H.; Kyle, D.E.; Lila, M.A.; Raskin, I. Leishmanicidal activity of a daucane sesquiterpene isolated from Eryngium foetidum. Pharm. Biol., 2014, 52(3), 398-401.
[http://dx.doi.org/10.3109/13880209.2013.837077] [PMID: 24147866]
[68]
Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Bizzo, H.R.; Corte-Real, S.; Alviano, D.S.; Alviano, C.S.; Rosa, M.S.S.; Vermelho, A.B. In-vitro cytocidal effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7- hydroxycalamenene against Leishmania chagasi. BMC Complement. Altern. Med., 2013, 13(1), 249.
[http://dx.doi.org/10.1186/1472-6882-13-249] [PMID: 24088644]
[69]
Soares, D.C.; Portella, N.A.; Ramos, M.F.S.; Siani, A.C.; Saraiva, E.M. Trans-β-caryophyllene: An effective antileishmanial compound found in commercial copaiba Oil (Copaifera spp.). Evid. Based Complement. Alternat. Med., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/761323] [PMID: 23864897]
[70]
Essid, R.; Rahali, F.Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind. Crops Prod., 2015, 77, 795-802.
[http://dx.doi.org/10.1016/j.indcrop.2015.09.049]
[71]
Moreira, R.R.D.; Santos, A.G.; Carvalho, F.A.; Perego, C.H.; Crevelin, E.J.; Crotti, A.E.M.; Cogo, J.; Cardoso, M.L.C.; Nakamura, C.V. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Rev. Inst. Med. Trop. São Paulo, 2019, 61, e33.
[http://dx.doi.org/10.1590/s1678-9946201961033] [PMID: 31269109]
[72]
Singh, S.; Sharma, U.; Kumar, P.; Singh, D.; Dobhal, M.P. Antiparasitic activity of plumericin & isoplumericin isolated from Plumeria bicolor against Leishmania donovani. Indian J. Med. Res., 2011, 134(5), 709-716.
[http://dx.doi.org/10.4103/0971-5916.91005] [PMID: 22199112]
[73]
Shukla, A.K.; Patra, S.; Dubey, V.K. Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite. Eur. J. Med. Chem., 2012, 54, 49-58.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.034] [PMID: 22608855]
[74]
Salem, M.M.; Capers, J.; Rito, S.; Werbovetz, K.A. Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother. Res., 2011, 25(8), 1246-1249.
[http://dx.doi.org/10.1002/ptr.3404] [PMID: 21796699]
[75]
Santos, A.O.; Izumi, E.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Veiga-Júnior, V.F.; Nakamura, C.V. Antileishmanial activity of diterpene acids in copaiba oil. Mem. Inst. Oswaldo Cruz, 2013, 108(1), 59-64.
[http://dx.doi.org/10.1590/S0074-02762013000100010] [PMID: 23440116]
[76]
Cargnin, S.T.; Staudt, A.F.; Menezes, C.; Azevedo, A.P.; Fialho, S.N.; Tasca, T.; Teles, C.B.G.; Gnoatto, S.B. Evaluation of triterpenes derivatives in the viability of Leishmania amazonensis and Trichomonas vaginalis. Braz. J. Pharm. Sci., 2019, 55, e17481.
[http://dx.doi.org/10.1590/s2175-97902019000317481]
[77]
Soares, D.C.; Calegari-Silva, T.C.; Lopes, U.G.; Teixeira, V.L.; de Palmer Paixão, I.C.N.; Cirne-Santos, C.; Bou-Habib, D.C.; Saraiva, E.M. Dolabella-dienetriol, a compound from Dictyota pfaffii algae, inhibits the infection by Leishmania amazonensis. PLoS Negl. Trop. Dis., 2012, 6(9), e1787.
[http://dx.doi.org/10.1371/journal.pntd.0001787] [PMID: 22970332]
[78]
Ogungbe, I.; Setzer, W. In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules, 2013, 18(7), 7761-7847.
[http://dx.doi.org/10.3390/molecules18077761] [PMID: 23823876]
[79]
Lima, G.S.; Castro-Pinto, D.B.; Machado, G.C.; Maciel, M.A.M.; Echevarria, A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine, 2015, 22(12), 1133-1137.
[http://dx.doi.org/10.1016/j.phymed.2015.08.012] [PMID: 26547537]
[80]
Mendanha, S.A.; Alonso, A. Effects of terpenes on fluidity and lipid extraction in phospholipid membranes. Biophys. Chem., 2015, 198, 45-54.
[http://dx.doi.org/10.1016/j.bpc.2015.02.001] [PMID: 25687600]
[81]
Bou, D.D.; Tempone, A.G.; Pinto, É.G.; Lago, J.H.G.; Sartorelli, P. Antiparasitic activity and effect of casearins isolated from Casearia sylvestris on Leishmania and Trypanosoma cruzi plasma membrane. Phytomedicine, 2014, 21(5), 676-681.
[http://dx.doi.org/10.1016/j.phymed.2014.01.004] [PMID: 24560122]
[82]
Thomas, S.A.L.; von Salm, J.L.; Clark, S.; Ferlita, S.; Nemani, P.; Azhari, A.; Rice, C.A.; Wilson, N.G.; Kyle, D.E.; Baker, B.J. Keikipukalides, furanocembrane diterpenes from the antarctic deep sea octocoral plumarella delicatissima. J. Nat. Prod., 2018, 81(1), 117-123.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00732] [PMID: 29260557]
[83]
Shilling, A.J.; Witowski, C.G.; Maschek, J.A.; Azhari, A.; Vesely, B.A.; Kyle, D.E.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Spongian diterpenoids derived from the antarctic sponge dendrilla antarctica are potent inhibitors of the leishmania parasite. J. Nat. Prod., 2020, 83(5), 1553-1562.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00025] [PMID: 32281798]
[84]
Demarchi, I.G.; Thomazella, M.V.; de Souza Terron, M.; Lopes, L.; Gazim, Z.C.; Cortez, D.A.G.; Donatti, L.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Antileishmanial activity of essential oil and 6,7-dehydroroyleanone isolated from Tetradenia riparia. Exp. Parasitol., 2015, 157, 128-137.
[http://dx.doi.org/10.1016/j.exppara.2015.06.014] [PMID: 26116864]
[85]
Cardoso, B.M.; Mello, T.F.P.; Lopes, S.N.; Demarchi, I.G.; Lera, D.S.L.; Pedroso, R.B.; Cortez, D.A.; Gazim, Z.C.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Antileishmanial activity of the essential oil from Tetradenia riparia obtained in different seasons. Mem. Inst. Oswaldo Cruz, 2015, 110(8), 1024-1034.
[http://dx.doi.org/10.1590/0074-02760150290] [PMID: 26602873]
[86]
Teles, C.B.G.; Moreira-Dill, L.S.; Silva, A.A.; Facundo, V.A.; de Azevedo, W.F., Jr; da Silva, L.H.P.; Motta, M.C.M.; Stábeli, R.G.; Silva-Jardim, I. A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement. Altern. Med., 2015, 15(1), 165.
[http://dx.doi.org/10.1186/s12906-015-0681-9] [PMID: 26048712]
[87]
Teles, C.B.G.; Moreira, L.S.; Facundo, V.A.; Zuliani, J.P.; Silvajardim, I. Activity of the Lupane Isolated from., 2011, 22, 936-942.
[88]
Mallick, S.; Dutta, A.; Chaudhuri, A.; Mukherjee, D.; Dey, S.; Halder, S.; Ghosh, J.; Mukherjee, D.; Sultana, S.S.; Biswas, G.; Lai, T.K.; Patra, P.; Sarkar, I.; Chakraborty, S.; Saha, B.; Acharya, K.; Pal, C. Successful therapy of murine visceral leishmaniasis with astrakurkurone, a triterpene isolated from the Mushroom Astraeus hygrometricus, involves the induction of protective cell-mediated immunity and TLR9. Antimicrob. Agents Chemother., 2016, 60(5), 2696-2708.
[http://dx.doi.org/10.1128/AAC.01943-15] [PMID: 26883702]
[89]
Jesus, J.A.; Fragoso, T.N.; Yamamoto, E.S.; Laurenti, M.D.; Silva, M.S.; Ferreira, A.F.; Lago, J.H.G.; Gomes, G.S.; Passero, L.F.D. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 1-11.
[http://dx.doi.org/10.1016/j.ijpddr.2016.12.002] [PMID: 27984757]
[90]
Passero, L.F.D.; Bonfim-Melo, A.; Corbett, C.E.P.; Laurenti, M.D.; Toyama, M.H.; de Toyama, D.O.; Romoff, P.; Fávero, O.A.; dos Grecco, S.S.; Zalewsky, C.A.; Lago, J.H.G. Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae). Parasitol. Res., 2011, 108(3), 529-536.
[http://dx.doi.org/10.1007/s00436-010-2091-8] [PMID: 20886232]
[91]
Begum, S.; Ayub, A.; Qamar Zehra, S.; Shaheen Siddiqui, B.; Iqbal Choudhary, M. Samreen, Leishmanicidal triterpenes from Lantana camara. Chem. Biodivers., 2014, 11(5), 709-718.
[http://dx.doi.org/10.1002/cbdv.201300151] [PMID: 24827681]
[92]
Yamamoto, E.S.; Campos, B.L.S.; Laurenti, M.D.; Lago, J.H.G.; Grecco, S.S.; Corbett, C.E.P.; Passero, L.F.D. Treatment with triterpenic fraction purified from Baccharis uncinella leaves inhibits Leishmania (Leishmania) amazonensis spreading and improves Th1 immune response in infected mice. Parasitol. Res., 2014, 113(1), 333-339.
[http://dx.doi.org/10.1007/s00436-013-3659-x] [PMID: 24173812]
[93]
Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: an update. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/620472] [PMID: 25793002]
[94]
Yamamoto, E.S.; Campos, B.L.S.; Jesus, J.A.; Laurenti, M.D.; Ribeiro, S.P.; Kallás, E.G.; Rafael-Fernandes, M.; Santos-Gomes, G.; Silva, M.S.; Sessa, D.P.; Lago, J.H.G.; Levy, D.; Passero, L.F.D. The effect of ursolic acid on leishmania (Leishmania) amazonensis is related to programed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis. PLoS One, 2015, 10(12), e0144946.
[http://dx.doi.org/10.1371/journal.pone.0144946] [PMID: 26674781]
[95]
Das, A.; Jawed, J.J.; Das, M.C.; Sandhu, P.; De, U.C.; Dinda, B.; Akhter, Y.; Bhattacharjee, S. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa. Int. J. Antimicrob. Agents, 2017, 50(4), 512-522.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.04.022] [PMID: 28669838]
[96]
de Mello, T.F.P.; Bitencourt, H.R.; Pedroso, R.B.; Aristides, S.M.A.; Lonardoni, M.V.C.; Silveira, T.G.V. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp. Parasitol., 2014, 136, 27-34.
[http://dx.doi.org/10.1016/j.exppara.2013.11.003] [PMID: 24269198]
[97]
Cabanillas, B.; Le Lamer, A.C.; Castillo, D.; Arevalo, J.; Estevez, Y.; Rojas, R.; Valadeau, C.; Bourdy, G.; Sauvain, M.; Fabre, N. Dihydrochalcones and benzoic acid derivatives from Piper dennisii. Planta Med., 2012, 78(9), 914-918.
[http://dx.doi.org/10.1055/s-0031-1298459] [PMID: 22516933]
[98]
Dal Picolo, C.R.; Bezerra, M.P.; Gomes, K.S.; Passero, L.F.D.; Laurenti, M.D.; Martins, E.G.A.; Sartorelli, P.; Lago, J.H.G. Antileishmanial activity evaluation of adunchalcone, a new prenylated dihydrochalcone from Piper aduncum L. Fitoterapia, 2014, 97, 28-33.
[http://dx.doi.org/10.1016/j.fitote.2014.05.009] [PMID: 24862066]
[99]
Rizk, Y.S.; Fischer, A.; Cunha, M. de C.; Rodrigues, P.O.; Marques, M.C.S. In-vitro activity of the hydroethanolic extract and biflavonoids isolated from Selaginella sellowii on Leishmania (Leishmania) amazonensis. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 1050-1056.
[100]
Rocha, V.; Quintino da Rocha, C.; Ferreira Queiroz, E.; Marcourt, L.; Vilegas, W.; Grimaldi, G.; Furrer, P.; Allémann, É.; Wolfender, J.L.; Soares, M. Antileishmanial activity of dimeric flavonoids isolated from arrabidaea brachypoda. Molecules, 2018, 24(1), 1.
[http://dx.doi.org/10.3390/molecules24010001] [PMID: 30577423]
[101]
Kyriazis, J.D.; Aligiannis, N.; Polychronopoulos, P.; Skaltsounis, A.L.; Dotsika, E. Leishmanicidal activity assessment of olive tree extracts. Phytomedicine, 2013, 20(3-4), 275-281.
[http://dx.doi.org/10.1016/j.phymed.2012.11.013] [PMID: 23273752]
[102]
Koutsoni, O.S.; Karampetsou, K.; Kyriazis, I.D.; Stathopoulos, P.; Aligiannis, N.; Halabalaki, M.; Skaltsounis, L.A.; Dotsika, E. Evaluation of total phenolic fraction derived from extra virgin olive oil for its antileishmanial activity. Phytomedicine, 2018, 47, 143-150.
[http://dx.doi.org/10.1016/j.phymed.2018.04.030] [PMID: 30166099]
[103]
Cruz, E.M.; da Silva, E.R.; Maquiaveli, C.C.; Alves, E.S.S.; Lucon, J.F., Jr; Reis, M.B.G.; Toledo, C.E.M.; Cruz, F.G.; Vannier-Santos, M.A. Leishmanicidal activity of Cecropia pachystachya flavonoids: Arginase inhibition and altered mitochondrial DNA arrangement. Phytochemistry, 2013, 89, 71-77.
[http://dx.doi.org/10.1016/j.phytochem.2013.01.014] [PMID: 23453911]
[104]
Azadbakht, M.; Davoodi, A.; Hosseinimehr, S.J.; Keighobadi, M.; Fakhar, M.; Valadan, R.; Faridnia, R.; Emami, S.; Azadbakht, M.; Bakhtiyari, A. Tropolone alkaloids from Colchicum kurdicum (Bornm.) Stef. (Colchicaceae) as the potent novel antileishmanial compounds; purification, structure elucidation, antileishmanial activities and molecular docking studies. Exp. Parasitol., 2020, 213, 107902.
[http://dx.doi.org/10.1016/j.exppara.2020.107902] [PMID: 32353376]
[105]
Chowdhury, S.; Mukherjee, T.; Mukhopadhyay, R.; Mukherjee, B.; Sengupta, S.; Chattopadhyay, S.; Jaisankar, P.; Roy, S.; Majumder, H.K. The lignan niranthin poisons Leishmania donovani topoisomerase IB and favours a Th1 immune response in mice. EMBO Mol. Med., 2012, 4(10), 1126-1143.
[http://dx.doi.org/10.1002/emmm.201201316] [PMID: 23027614]
[106]
Saha, S.; Mukherjee, T.; Chowdhury, S.; Mishra, A.; Chowdhury, S.R.; Jaisankar, P.; Mukhopadhyay, S.; Majumder, H.K. The lignan glycosides lyoniside and saracoside poison the unusual type IB topoisomerase of Leishmania donovani and kill the parasite both in-vitro and in-vivo. Biochem. Pharmacol., 2013, 86(12), 1673-1687.
[http://dx.doi.org/10.1016/j.bcp.2013.10.004] [PMID: 24134912]
[107]
Garcia, F.P.; Lazarin-Bidóia, D.; Ueda-Nakamura, T.; Silva, S.O.; Nakamura, C.V. Eupomatenoid-5 isolated from leaves of piper regnellii induces apoptosis in leishmania amazonensis. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/940531] [PMID: 23573160]
[108]
Brito, J.R.; Passero, L.F.D.; Bezerra-Souza, A.; Laurenti, M.D.; Romoff, P.; Barbosa, H.; Ferreira, E.A.; Lago, J.H.G. Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from Saururus cernuus L. (Saururaceae). J. Pharm. Pharmacol., 2019, 71(12), 1871-1878.
[http://dx.doi.org/10.1111/jphp.13171] [PMID: 31595517]
[109]
Maia, M.D.S.; Silva, J.P.R.E.; Nunes, T.A.L.; Sousa, J.M.S.; Rodrigues, G.C.S.; Monteiro, A.F.M.; Tavares, J.F.; Rodrigues, K.A.D.F.; Mendonça-Junior, F.J.B.; Scotti, L.; Scotti, M.T. Virtual screening and the in-vitro assessment of the antileishmanial activity of lignans. Molecules, 2020, 25(10), 1-34.
[http://dx.doi.org/10.3390/molecules25102281] [PMID: 32408657]
[110]
Pulivarthi, D.; Steinberg, K.M.; Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial activity of compounds isolated from Sassafras albidum. In: Natural Product Communications; SAGE Publications Sage CA: Los Angeles, CA, 2015; p. 10.
[111]
Rocha, M.N.; Nogueira, P.M.; Demicheli, C.; de Oliveira, L.G.; da Silva, M.M.; Frézard, F.; Melo, M.N.; Soares, R.P. Cytotoxicity and in-vitro antileishmanial activity of antimony (V), bismuth (V), and tin (IV) complexes of Lapachol. Bioinorg. Chem. Appl., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/961783] [PMID: 23781165]
[112]
Araújo, I.A.C.; de Paula, R.C.; Alves, C.L.; Faria, K.F.; Oliveira, M.M.; Mendes, G.G.; Dias, E.M.F.A.; Ribeiro, R.R.; Oliveira, A.B.; Silva, S.M. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol., 2019, 199, 67-73.
[http://dx.doi.org/10.1016/j.exppara.2019.02.013] [PMID: 30797783]
[113]
Hazra, S.; Ghosh, S.; Sarma, M.D.; Sharma, S.; Das, M.; Saudagar, P.; Prajapati, V.K.; Dubey, V.K.; Sundar, S.; Hazra, B. Evaluation of a diospyrin derivative as antileishmanial agent and potential modulator of ornithine decarboxylase of Leishmania donovani. Exp. Parasitol., 2013, 135(2), 407-413.
[http://dx.doi.org/10.1016/j.exppara.2013.07.021] [PMID: 23973194]
[114]
Sharma, N.; Shukla, A.K.; Das, M.; Dubey, V.K. Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol. Res., 2012, 110(1), 341-348.
[http://dx.doi.org/10.1007/s00436-011-2498-x] [PMID: 21717278]
[115]
Mishra, B.B.; Kishore, N.; Singh, R.K.; Tiwari, V.K. Scope of alkaloids in antileishmanial drug discovery and development. Natural Products;; Springer: Berlin, Heidelberg, 2013, pp. 1263-1299.
[116]
Dimmer, J.; Cabral, F.V.; Sabino, C.P.; Silva, C.R.; Núñez-Montoya, S.C.; Cabrera, J.L.; Ribeiro, M.S. Natural anthraquinones as novel photosentizers for antiparasitic photodynamic inactivation. Phytomedicine, 2019, 61, 152894.
[http://dx.doi.org/10.1016/j.phymed.2019.152894] [PMID: 31054439]
[117]
Vila-Nova, N.S.; de Morais, S.M.; Falcão, M.J.C.; Alcantara, T.T.N.; Ferreira, P.A.T.; Cavalcanti, E.S.B.; Vieira, I.G.P.; Campello, C.C.; Wilson, M. Different susceptibilities of Leishmania spp. promastigotes to the Annona muricata acetogenins annonacinone and corossolone, and the Platymiscium floribundum coumarin scoparone. Exp. Parasitol., 2013, 133(3), 334-338.
[http://dx.doi.org/10.1016/j.exppara.2012.11.025] [PMID: 23232251]
[118]
Vila-Nova, N.S.; de Morais, S.M.; Falcão, M.J.C.; Machado, L.K.A.; Beviláqua, C.M.L.; Costa, I.R.S. Atividade leishmanicida e citotoxicidade de constituintes quimicos de duas especies de annonaceae cultivadas no Nordeste do Brasil. Rev. Soc. Bras. Med. Trop., 2011, 44, 567-571.
[http://dx.doi.org/10.1590/S0037-86822011000500007] [PMID: 22031071]
[119]
Ross, S.A.; El-Fishawy, A.M.; Said, A.; Hawas, U.W.; Tekwani, B.L.; Radwan, M.M.; Aboelmagd, M. A new fatty alcohol from Terminalia arjuna leaves with antileishmanial activity. Med. Chem. Res., 2013, 22(12), 5844-5847.
[http://dx.doi.org/10.1007/s00044-013-0572-x]
[120]
Jameel, M.; Islamuddin, M.; Ali, A.; Afrin, F.; Ali, M. Isolation, characterization and antimicrobial evaluation of a novel compound N-octacosan 7β ol, from Fumaria parviflora Lam. BMC Complement. Altern. Med., 2014, 14(1), 98.
[http://dx.doi.org/10.1186/1472-6882-14-98] [PMID: 24621260]
[121]
Mokoka, T.A.; Peter, X.K.; Fouche, G.; Moodley, N.; Adams, M.; Hamburger, M.; Kaiser, M.; Brun, R.; Maharaj, V.; Koorbanally, N. Antileishmanial activity of 12-methoxycarnosic acid from Salvia repens Burch. ex Benth. (Lamiaceae). S. Afr. J. Bot., 2014, 90, 93-95.
[http://dx.doi.org/10.1016/j.sajb.2013.10.014]
[122]
Lacerda, R.B.M.; Freitas, T.R.; Martins, M.M.; Teixeira, T.L.; da Silva, C.V.; Candido, P.A.; Oliveira, R.J.; Júnior, C.V.; Bolzani, V.S.; Danuello, A.; Pivatto, M. Isolation, leishmanicidal evaluation and molecular docking simulations of piperidine alkaloids from Senna spectabilis. Bioorg. Med. Chem., 2018, 26(22), 5816-5823.
[http://dx.doi.org/10.1016/j.bmc.2018.10.032] [PMID: 30413343]
[123]
Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One, 2011, 6(2), e14666.
[http://dx.doi.org/10.1371/journal.pone.0014666] [PMID: 21346801]
[124]
Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.; Almeida-Amaral, E.E. Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Exp. Parasitol., 2012, 132(2), 151-155.
[http://dx.doi.org/10.1016/j.exppara.2012.06.008] [PMID: 22735546]
[125]
Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. In vitro and in-vivo effects of (-)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J. Nat. Prod., 2013, 76(10), 1993-1996.
[http://dx.doi.org/10.1021/np400624d] [PMID: 24106750]
[126]
Inacio, J.D.F.; Gervazoni, L.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. The effect of (-)-epigallocatechin 3-O-gallate in-vitro and in-vivo in Leishmania braziliensis: Involvement of reactive oxygen species as a mechanism of action. PLoS Negl. Trop. Dis., 2014, 8(8), e3093.
[http://dx.doi.org/10.1371/journal.pntd.0003093] [PMID: 25144225]
[127]
dos Reis, M.B.G.; Manjolin, L.C.; Maquiaveli, C.C.; Santos-Filho, O.A.; da Silva, E.R. Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (+)-catechin and (-)-epicatechin: a comparative structural analysis of enzyme-inhibitor interactions. PLoS One, 2013, 8(11), e78387.
[http://dx.doi.org/10.1371/journal.pone.0078387] [PMID: 24260115]
[128]
Inacio, J.D.F.; Fonseca, M.S.; Almeida-Amaral, E.E. (−)-Epigallocatechin 3- O -Gallate as a new approach for the treatment of visceral leishmaniasis. J. Nat. Prod., 2019, 82(9), 2664-2667.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00632] [PMID: 31503486]
[129]
Sosa, A.M.; Moya Álvarez, A.; Bracamonte, E.; Korenaga, M.; Marco, J.D.; Barroso, P.A. Efficacy of topical treatment with (-)-epigallocatechin gallate, a green tea catechin, in mice with cutaneous leishmaniasis. Molecules. Molecules, 2020, 25(7), 1741.
[http://dx.doi.org/10.3390/molecules25071741] [PMID: 32290128]
[130]
Shi, M.D.; Shiao, C.K.; Lee, Y.C.; Shih, Y.W. Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int., 2015, 15(1), 33.
[http://dx.doi.org/10.1186/s12935-015-0186-0] [PMID: 25859163]
[131]
Kirmizibekmez, H.; Atay, I.; Kaiser, M.; Brun, R.; Cartagena, M.M.; Carballeira, N.M.; Yesilada, E.; Tasdemir, D. Antiprotozoal activity of Melampyrum arvense and its metabolites. Phytother. Res., 2011, 25(1), 142-146.
[http://dx.doi.org/10.1002/ptr.3233] [PMID: 20623589]
[132]
Iqbal, K.; Iqbal, J.; Staerk, D.; Kongstad, K.T. Characterization of antileishmanial compounds from Lawsonia inermis L. Leaves using semi-high resolution antileishmanial profiling combined with HPLC-HRMS-SPE-NMR. Front. Pharmacol., 2017, 8, 337.
[http://dx.doi.org/10.3389/fphar.2017.00337] [PMID: 28620306]
[133]
Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Oral efficacy of apigenin against cutaneous leishmaniasis: involvement of reactive oxygen species and autophagy as a mechanism of action. PLoS Negl. Trop. Dis., 2016, 10(2), e0004442.
[http://dx.doi.org/10.1371/journal.pntd.0004442] [PMID: 26862901]
[134]
Naddaf, N.; Haddad, S. Apigenin effect against Leishmania tropica amastigotes in-vitro. J. Parasit. Dis., 2020, 44(3), 574-578.
[http://dx.doi.org/10.1007/s12639-020-01230-8] [PMID: 32801509]
[135]
Fonseca-Silva, F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Effect of apigenin on leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction. J. Nat. Prod., 2015, 78(4), 880-884.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00011] [PMID: 25768915]
[136]
Emiliano, Y.S.S.; Almeida-Amaral, E.E. Efficacy of apigenin and miltefosine combination therapy against experimental cutaneous leishmaniasis. J. Nat. Prod., 2018, 81(8), 1910-1913.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00356] [PMID: 30095915]
[137]
Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J. Nat. Prod., 2013, 76(8), 1505-1508.
[http://dx.doi.org/10.1021/np400193m] [PMID: 23876028]
[138]
Gervazoni, L.F.O.; Gonçalves-Ozório, G.; Almeida-Amaral, E.E. 2′-Hydroxyflavanone activity in-vitro and in-vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl. Trop. Dis., 2018, 12(12), e0006930.
[http://dx.doi.org/10.1371/journal.pntd.0006930] [PMID: 30521527]
[139]
García, M.; Perera, W.H.; Scull, R.; Monzote, L. Antileishmanial assessment of leaf extracts from Pluchea carolinensis, Pluchea odorata and Pluchea rosea. Asian Pac. J. Trop. Med., 2011, 4(10), 836-840.
[http://dx.doi.org/10.1016/S1995-7645(11)60204-6] [PMID: 22014743]
[140]
Belkhelfa-Slimani, R.; Djerdjouri, B. Caffeic acid combined with autoclaved Leishmania major boosted the protection of infected BALB/c mice by enhancing IgG2 production, IFN-γ/TGF-β and iNO synthase/arginase1 ratios, and the death of infected phagocytes. Inflammopharmacology, 2018, 26(2), 621-634.
[http://dx.doi.org/10.1007/s10787-017-0399-z] [PMID: 28988279]
[141]
Glaser, J.; Schultheis, M.; Moll, H.; Hazra, B.; Holzgrabe, U. Antileishmanial and cytotoxic compounds from Valeriana wallichii and identification of a novel nepetolactone derivative. Molecules, 2015, 20(4), 5740-5753.
[http://dx.doi.org/10.3390/molecules20045740] [PMID: 25834987]
[142]
Montrieux, E.; Perera, W.H.; García, M.; Maes, L.; Cos, P.; Monzote, L. In-vitro and in-vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res., 2014, 113(8), 2925-2932.
[http://dx.doi.org/10.1007/s00436-014-3954-1] [PMID: 24906989]
[143]
Mohammad, B.I.; Al Shammary, M.N.; Abdul Mageed, R.H.; Yousif, N.G. Herbal extract targets in Leishmania tropica. J. Parasit. Dis., 2015, 39(4), 663-672.
[http://dx.doi.org/10.1007/s12639-014-0436-4] [PMID: 26688631]
[144]
Bortoleti, B.T.S.; Tomiotto-Pellissier, F.; Gonçalves, M.D.; Miranda-Sapla, M.M.; Assolini, J.P.; Carloto, A.C.; Lima, D.M.; Silveira, G.F.; Almeida, R.S.; Costa, I.N.; Conchon-Costa, I.; Pavanelli, W.R. Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability. Phytomedicine, 2019, 57, 262-270.
[http://dx.doi.org/10.1016/j.phymed.2018.12.035] [PMID: 30802712]
[145]
Fouladvand, M.; Barazesh, A.; Tahmasebi, R. Evaluation of in vitro antileishmanial activity of curcumin and its derivatives “gallium curcumin, indium curcumin and diacethyle curcumin”. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(24), 3306-3308.
[http://dx.doi.org/10.1016/j.ijid.2012.05.343] [PMID: 24379060]
[146]
Ribeiro, T.G.; Nascimento, A.M.; Henriques, B.O.; Chávez-Fumagalli, M.A.; Franca, J.R.; Duarte, M.C.; Lage, P.S.; Andrade, P.H.R.; Lage, D.P.; Rodrigues, L.B.; Costa, L.E.; Martins, V.T.; Faraco, A.A.G.; Coelho, E.A.F.; Castilho, R.O. Antileishmanial activity of standardized fractions of Stryphnodendron obovatum (Barbatimão) extract and constituent compounds. J. Ethnopharmacol., 2015, 165, 238-242.
[http://dx.doi.org/10.1016/j.jep.2015.02.047] [PMID: 25732835]
[147]
de Melo, J.O.; Bitencourt, T.A.; Fachin, A.L.; Cruz, E.M.O.; de Jesus, H.C.R.; Alves, P.B.; de Fátima Arrigoni-Blank, M.; de Castro Franca, S.; Beleboni, R.O.; Fernandes, R.P.M.; Blank, A.F.; Scher, R. Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Trop., 2013, 128(1), 110-115.
[http://dx.doi.org/10.1016/j.actatropica.2013.06.024] [PMID: 23850505]
[148]
Saedi Dezaki, E.; Mahmoudvand, H.; Sharififar, F.; Fallahi, S.; Monzote, L.; Ezatkhah, F. Chemical composition along with anti-leishmanial and cytotoxic activity of Zataria multiflora. Pharm. Biol., 2016, 54(5), 752-758.
[http://dx.doi.org/10.3109/13880209.2015.1079223] [PMID: 26449681]
[149]
Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop., 2015, 145, 31-38.
[http://dx.doi.org/10.1016/j.actatropica.2015.02.002] [PMID: 25697866]
[150]
Maurya, A.; Singh, M.; Dubey, V.; Srivastava, S.; Luqman, S.; Bawankule, D. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr. Pharm. Biotechnol., 2014, 15(2), 173-181.
[http://dx.doi.org/10.2174/1389201015666140528152946] [PMID: 24894548]
[151]
Forrer, M.; Kulik, E.M.; Filippi, A.; Waltimo, T. The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Arch. Oral Biol., 2013, 58(1), 10-16.
[http://dx.doi.org/10.1016/j.archoralbio.2012.08.001] [PMID: 22939370]
[152]
Corpas-López, V.; Morillas-Márquez, F.; Navarro-Moll, M.C.; Merino-Espinosa, G.; Díaz-Sáez, V.; Martín-Sánchez, J. (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. J. Nat. Prod., 2015, 78(6), 1202-1207.
[http://dx.doi.org/10.1021/np5008697] [PMID: 26076227]
[153]
Corpas-López, V.; Merino-Espinosa, G.; López-Viota, M.; Gijón-Robles, P.; Morillas-Mancilla, M.J.; López-Viota, J.; Díaz-Sáez, V.; Morillas-Márquez, F.; Navarro Moll, M.C.; Martín-Sánchez, J. Topical treatment of Leishmania tropica infection using (-)-$α$-bisabolol ointment in a hamster model: Effectiveness and safety assessment. Journal of Natural Products. J. Nat. Prod., 2016, 79(9), 2403-2407.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00740] [PMID: 27616730]
[154]
Colares, A.V.; Almeida-Souza, F.; Taniwaki, N.N.; Souza, C.S.F.; da Costa, J.G.M.; Calabrese, K.S.; Abreu-Silva, A.L. In vitro antileishmanial activity of essential oil of Vanillosmopsis arborea (Asteraceae) baker. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/727042] [PMID: 23935675]
[155]
Corpas-López, V.; Merino-Espinosa, G. The sesquiterpene (-)-$α$-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis. In: Apoptosis; Springer, 2016; pp. 1071-1081.
[156]
Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Navarro-Moll, M.C.; Morillas-Márquez, F.; Martín-Sánchez, J. Effectiveness of the sesquiterpene (-)-α-bisabolol in dogs with naturally acquired canine leishmaniosis: An exploratory clinical trial. Vet. Res. Commun., 2018, 42(2), 121-130.
[http://dx.doi.org/10.1007/s11259-018-9714-4] [PMID: 29453596]
[157]
Yaluff, G.; Vega, C.; Alvarenga, N. In vitro antiprotozoal activity of (S)-cis-Verbenol against Leishmania spp. and Trypanosoma cruzi. Acta Trop., 2017, 168, 41-44.
[http://dx.doi.org/10.1016/j.actatropica.2016.12.013] [PMID: 28062234]
[158]
Pollier, J.; Goossens, A. Oleanolic acid. Phytochemistry, 2012, 77, 10-15.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.022] [PMID: 22377690]
[159]
Melo, T.S.; Gattass, C.R.; Soares, D.C.; Cunha, M.R.; Ferreira, C.; Tavares, M.T.; Saraiva, E.; Parise-Filho, R.; Braden, H.; Delorenzi, J.C. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol. Int., 2016, 65(3), 227-237.
[http://dx.doi.org/10.1016/j.parint.2016.01.001] [PMID: 26772973]
[160]
Jesus, J.A.; Fragoso da Silva, T.N.; Yamamoto, E.S.; G Lago J.H.; Dalastra Laurenti, M.; Passero, L.F.D.; Passero, L.F.D. Ursolic acid potentializes conventional therapy in experimental leishmaniasis. Pathogens, 2020, 9(10), 855.
[http://dx.doi.org/10.3390/pathogens9100855] [PMID: 33092305]
[161]
Antinarelli, L.M.R.; de Oliveira Souza, I.; Zabala Capriles, P.V.; Gameiro, J.; Britta, E.A.; Nakamura, C.V.; Lima, W.P.; da Silva, A.D.; Coimbra, E.S. Antileishmanial activity of a 4-hydrazinoquinoline derivative: Induction of autophagy and apoptosis-related processes and effectiveness in experimental cutaneous leishmaniasis. Exp. Parasitol., 2018, 195, 78-86.
[http://dx.doi.org/10.1016/j.exppara.2018.10.007] [PMID: 30385267]
[162]
Bhat, S.Y.; Jagruthi, P.; Srinivas, A.; Arifuddin, M.; Qureshi, I.A. Synthesis and characterization of quinoline-carbaldehyde derivatives as novel inhibitors for leishmanial methionine aminopeptidase 1. Eur. J. Med. Chem., 2020, 186, 111860.
[http://dx.doi.org/10.1016/j.ejmech.2019.111860] [PMID: 31759728]
[163]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[164]
Coimbra, E.S.; Antinarelli, L.M.R.; Silva, N.P.; Souza, I.O.; Meinel, R.S.; Rocha, M.N. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chem. Biol. Interact., 2016, 260, 50-57.
[http://dx.doi.org/10.1016/j.cbi.2016.10.017.This]
[165]
Tavares, G.S.V.; Mendonça, D.V.C.; Lage, D.P.; Granato, J.T.; Ottoni, F.M.; Ludolf, F.; Chávez-Fumagalli, M.A.; Duarte, M.C.; Tavares, C.A.P.; Alves, R.J.; Coimbra, E.S.; Coelho, E.A.F. Antileishmanial activity, cytotoxicity and mechanism of action of clioquinol against leishmania infantum and leishmania amazonensis Species. Basic Clin. Pharmacol. Toxicol., 2018, 123(3), 236-246.
[http://dx.doi.org/10.1111/bcpt.12990] [PMID: 29481714]
[166]
Stevanović, S.; Perdih, A.; Senćanski, M.; Glišić, S.; Duarte, M.; Tomás, A.; Sena, F.; Sousa, F.; Pereira, M.; Solmajer, T. In Silico Discovery of a Substituted 6-Methoxy-quinalidine with leishmanicidal activity in Leishmania infantum. Molecules, 2018, 23(4), 772.
[http://dx.doi.org/10.3390/molecules23040772] [PMID: 29584709]
[167]
Carvalho, L.; Luque-Ortega, J.R.; López-Martín, C.; Castanys, S.; Rivas, L.; Gamarro, F. The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase. Antimicrob. Agents Chemother., 2011, 55(9), 4204-4210.
[http://dx.doi.org/10.1128/AAC.00520-11] [PMID: 21670183]
[168]
Bompart, D.; Núñez-Durán, J.; Rodríguez, D.; Kouznetsov, V.V.; Meléndez Gómez, C.M.; Sojo, F.; Arvelo, F.; Visbal, G.; Alvarez, A.; Serrano-Martín, X.; García-Marchán, Y. Anti-leishmanial evaluation of C2-aryl quinolines: Mechanistic insight on bioenergetics and sterol biosynthetic pathway of Leishmania braziliensis. Bioorg. Med. Chem., 2013, 21(14), 4426-4431.
[http://dx.doi.org/10.1016/j.bmc.2013.04.063] [PMID: 23719286]
[169]
Soyer, T.G.; Mendonça, D.V.C.; Tavares, G.S.V.; Lage, D.P.; Dias, D.S.; Ribeiro, P.A.F.; Perin, L.; Ludolf, F.; Coelho, V.T.S.; Ferreira, A.C.G.; Neves, P.H.A.S.; Matos, G.F.; Chávez-Fumagalli, M.A.; Coimbra, E.S.; Pereira, G.R.; Coelho, E.A.F.; Antinarelli, L.M.R. Evaluation of the in-vitro and in-vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis. Exp. Parasitol., 2019, 199, 30-37.
[http://dx.doi.org/10.1016/j.exppara.2019.02.019] [PMID: 30817917]
[170]
Lage, L.M.R.; Barichello, J.M.; Lage, D.P.; Mendonça, D.V.C.; Carvalho, A.M.R.S.; Rodrigues, M.R.; Menezes-Souza, D.; Roatt, B.M.; Alves, R.J.; Tavares, C.A.P.; Coelho, E.A.F.; Duarte, M.C. An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitol. Res., 2016, 115(11), 4083-4095.
[http://dx.doi.org/10.1007/s00436-016-5181-4] [PMID: 27365053]
[171]
Duarte, M.C.; Tavares, G.S.V.; Valadares, D.G.; Lage, D.P.; Ribeiro, T.G.; Lage, L.M.R.; Rodrigues, M.R.; Faraco, A.A.G.; Soto, M.; da Silva, E.S.; Chávez Fumagalli, M.A.; Tavares, C.A.P.; Leite, J.P.V.; Oliveira, J.S.; Castilho, R.O.; Coelho, E.A.F. Antileishmanial activity and mechanism of action from a purified fraction of Zingiber officinalis Roscoe against Leishmania amazonensis. Exp. Parasitol., 2016, 166, 21-28.
[http://dx.doi.org/10.1016/j.exppara.2016.03.026] [PMID: 27013260]
[172]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[173]
Saha, P.; Bhattacharjee, S.; Sarkar, A.; Manna, A.; Majumder, S.; Chatterjee, M. Berberine chloride mediates its anti-leishmanial activity via differential regulation of the mitogen activated protein kinase pathway in macrophages. PLoS One, 2011, 6(4), e18467.
[http://dx.doi.org/10.1371/journal.pone.0018467] [PMID: 21483684]
[174]
De Sarkar, S.; Sarkar, D.; Sarkar, A.; Dighal, A.; Staniek, K.; Gille, L.; Chatterjee, M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol. Res., 2019, 118(1), 335-345.
[http://dx.doi.org/10.1007/s00436-018-6157-3] [PMID: 30470927]
[175]
López-Arencibia, A.; García-Velázquez, D.; Martín-Navarro, C.M.; Sifaoui, I.; Reyes-Batlle, M.; Lorenzo-Morales, J.; Gutiérrez-Ravelo, Á.; Piñero, J.E. In-vitro activities of hexaazatrinaphthylenes against Leishmania spp. Antimicrob. Agents Chemother., 2015, 59(5), 2867-2874.
[http://dx.doi.org/10.1128/AAC.00226-15] [PMID: 25753635]
[176]
López-Arencibia, A.; Mart\in-Navarro, A.; Carmen, M.; Sifaoui, I. Apoptotic protein profile in Leishmania donovani after treatment with hexaazatrinaphthylenes derivatives. In: Experimental Parasitology; Elsevier, 2016; 166, pp. 83-8.
[177]
López-Arencibia, A.; Bethencourt-Estrella, C.J.; Freijo, M.B.; Reyes-Batlle, M.; Sifaoui, I.; Nicolás-Hernández, D.S. New phenalenone analogues with improved activity against Leishmania species. Biomedicine and Pharmacotherapy, 2020, 132, 0-6.
[http://dx.doi.org/10.1016/j.biopha.2020.110814]
[178]
Want, M.Y.; Islammudin, M.; Chouhan, G.; Ozbak, H.A.; Hemeg, H.A.; Chattopadhyay, A.P.; Afrin, F. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int. J. Nanomedicine, 2017, 12, 2189-2204.
[http://dx.doi.org/10.2147/IJN.S106548] [PMID: 28356736]
[179]
Cortes, S.; Albuquerque, A.; Cabral, L.I.L.; Lopes, L.; Campino, L.; Cristiano, M.L.S. In-vitro susceptibility of Leishmania infantum to artemisinin derivatives and selected trioxolanes. Antimicrob. Agents Chemother., 2015, 59(8), 5032-5035.
[http://dx.doi.org/10.1128/AAC.00298-15] [PMID: 26014947]
[180]
Kwofie, K.D.; Sato, K.; Sanjoba, C.; Hino, A.; Shimogawara, R.; Amoa-Bosompem, M.; Ayi, I.; Boakye, D.A.; Anang, A.K.; Chang, K.S.; Ohashi, M.; Kim, H.S.; Ohta, N.; Matsumoto, Y.; Iwanaga, S. Oral activity of the antimalarial endoperoxide 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Leishmania donovani complex. PLoS Negl. Trop. Dis., 2019, 13(3), e0007235.
[http://dx.doi.org/10.1371/journal.pntd.0007235] [PMID: 30908481]
[181]
Cabral, L.I.L.; Pomel, S.; Cojean, S.; Amado, P.S.M.; Loiseau, P.M.; Cristiano, M.L.S. Synthesis and antileishmanial activity of 1,2,4,5-tetraoxanes against leishmania donovani. Molecules, 2020, 25(3), 465.
[http://dx.doi.org/10.3390/molecules25030465] [PMID: 31979089]
[182]
Jesús Corral-Caridad, M.; Moreno, I.; Toraño, A.; Domínguez, M.; Alunda, J.M. Effect of allicin on promastigotes and intracellular amastigotes of Leishmania donovani and L. infantum. Exp. Parasitol., 2012, 132(4), 475-482.
[http://dx.doi.org/10.1016/j.exppara.2012.08.016] [PMID: 22995646]
[183]
Metwally, D.M.; Al-Olayan, E.M.; El-Khadragy, M.F.; Alkathiri, B. Anti-leishmanial activity (in-vitro and in-vivo) of allicin and allicin cream using leishmania major (sub-strain zymowme LON4) and Balb/c Mice. PLoS One, 2016, 11(8), e0161296.
[http://dx.doi.org/10.1371/journal.pone.0161296] [PMID: 27537199]
[184]
Corral‐Caridad, M.J.; Alunda, J.M. Chemotherapy of leishmaniasis: A veterinary perspective. In: Trypanosomatid Diseases: Molecular Routes to Drug Discovery; Wiley Online Library, 2013; pp. 17-35.
[185]
Corral, M.J.; Benito-Peña, E.; Jiménez-Antón, M.D.; Cuevas, L.; Moreno-Bondi, M.C.; Alunda, J.M. Allicin induces calcium and mitochondrial dysregulation causing necrotic death in leishmania. PLoS Negl. Trop. Dis., 2016, 10(3), e0004525.
[http://dx.doi.org/10.1371/journal.pntd.0004525] [PMID: 27023069]
[186]
Varela-M, R.E.; Villa-Pulgarin, J.A.; Yepes, E.; Müller, I.; Modolell, M.; Muñoz, D.L.; Robledo, S.M.; Muskus, C.E.; López-Abán, J.; Muro, A.; Vélez, I.D.; Mollinedo, F. In-vitro and in-vivo efficacy of ether lipid edelfosine against Leishmania spp. and SbV-resistant parasites. PLoS Negl. Trop. Dis., 2012, 6(4), e1612.
[http://dx.doi.org/10.1371/journal.pntd.0001612] [PMID: 22506086]
[187]
López-Arencibia, A. Perifosine mechanisms of action in leishmania species. Antimicrobial agents and chemotherapy. Am Soc Microbiol., 2017, 61, e02127-e16.
[188]
Dinesh, N.; Pallerla, D.S.R.; Kaur, P.K.; Kishore Babu, N.; Singh, S. Exploring Leishmania donovani 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies. Microb. Pathog., 2014, 66, 14-23.
[http://dx.doi.org/10.1016/j.micpath.2013.11.001] [PMID: 24239940]
[189]
Lucas, I.; Kolodziej, H. In-vitro antileishmanial activity of resveratrol originates from its cytotoxic potential against host cells. Planta Med., 2012, 79(1), 20-26.
[http://dx.doi.org/10.1055/s-0032-1328020] [PMID: 23225365]
[190]
Paiva, C.N.; Feijó, D.F.; Dutra, F.F.; Carneiro, V.C.; Freitas, G.B.; Alves, L.S.; Mesquita, J.; Fortes, G.B.; Figueiredo, R.T.; Souza, H.S.P.; Fantappié, M.R.; Lannes-Vieira, J.; Bozza, M.T. Oxidative stress fuels Trypanosoma cruzi infection in mice. J. Clin. Invest., 2012, 122(7), 2531-2542.
[http://dx.doi.org/10.1172/JCI58525] [PMID: 22728935]
[191]
Paiva, C.N.; Medei, E.; Bozza, M.T. ROS and trypanosoma cruzi: Fuel to infection, poison to the heart. PLoS Pathog., 2018, 14(4), e1006928.
[http://dx.doi.org/10.1371/journal.ppat.1006928] [PMID: 29672619]
[192]
Ferreira, C.; Soares, D.C.; Nascimento, M.T.C.; Pinto-da-Silva, L.H.; Sarzedas, C.G.; Tinoco, L.W.; Saraiva, E.M. Resveratrol is active against Leishmania amazonensis: In-vitro effect of its association with Amphotericin B. Antimicrob. Agents Chemother., 2014, 58(10), 6197-6208.
[http://dx.doi.org/10.1128/AAC.00093-14] [PMID: 25114129]
[193]
Cuevas, F.; Mojoli, A.; Maldonado, M.; Rojas de Arias, A.; Pandolfi, E.; Segovia-Corrales, A. In-vivo analysis of the genotoxic potential of 14-Hydroxylunularin, a molecule with leishmanicidal effect. Rev. Latinoam. Quím., 2011, 39, 100-106.
[194]
Serna, M.E.; Maldonado, M.; Torres, S.; Schinini, A.; Peixoto de Abreu Lima, A.; Pandolfi, E.; Rojas de Arias, A. Finding of leishmanicidal activity of 14-hydroxylunularin in mice experimentally infected with Leishmania infantum. Parasitol. Int., 2015, 64(5), 295-298.
[http://dx.doi.org/10.1016/j.parint.2015.03.005] [PMID: 25843766]
[195]
Emami, S.; Tavangar, P.; Keighobadi, M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur. J. Med. Chem., 2017, 135, 241-259.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.044] [PMID: 28456033]
[196]
Keighobadi, M.; Emami, S.; Fakhar, M.; Shokri, A.; Mirzaei, H.; Hosseini Teshnizi, S. Repurposing azole antifungals into antileishmanials: Novel 3-triazolylflavanones with promising in-vitro antileishmanial activity against Leishmania major. Parasitol. Int., 2019, 69, 103-109.
[http://dx.doi.org/10.1016/j.parint.2018.12.006] [PMID: 30582997]
[197]
Acharya, A.; Stockmann, J.; Beyer, L.; Rudack, T.; Nabers, A.; Gumbart, J.C.; Gerwert, K.; Batista, V.S. The Effect of (−)-Epigallocatechin-3-Gallate on the Amyloid-β Secondary Structure. Biophys. J., 2020, 119(2), 349.
[http://dx.doi.org/10.1016/j.bpj.2020.05.033] [PMID: 32579965]
[198]
Garcia, A.R.; Oliveira, D.M.P.; Claudia F Amaral, A.; Jesus, J.B.; Rennó Sodero, A.C.; Souza, A.M.T.; Supuran, C.T.; Vermelho, A.B.; Rodrigues, I.A.; Pinheiro, A.S. Leishmania infantum arginase: Biochemical characterization and inhibition by naturally occurring phenolic substances. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1100-1109.
[http://dx.doi.org/10.1080/14756366.2019.1616182] [PMID: 31124384]
[199]
Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.M. Caffeic acid and its derivatives: Antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem., 2021, 69(10), 2979-3004.
[http://dx.doi.org/10.1021/acs.jafc.0c07579] [PMID: 33656341]
[200]
Ramazani, E.; Akaberi, M.; Emami, S.A.; Tayarani-Najaran, Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci., 2022, 304, 120728.
[http://dx.doi.org/10.1016/j.lfs.2022.120728] [PMID: 35753438]
[201]
Seki, T.; Kokuryo, T.; Yokoyama, Y.; Suzuki, H.; Itatsu, K.; Nakagawa, A.; Mizutani, T.; Miyake, T.; Uno, M.; Yamauchi, K.; Nagino, M. Antitumor effects of α‐bisabolol against pancreatic cancer. Cancer Sci., 2011, 102(12), 2199-2205.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02082.x] [PMID: 21883695]
[202]
Fidyt, K.; Pastorczak, A.; Goral, A.; Szczygiel, K.; Fendler, W.; Muchowicz, A.; Bartlomiejczyk, M.A.; Madzio, J.; Cyran, J.; Graczyk-Jarzynka, A.; Jansen, E.; Patkowska, E.; Lech-Maranda, E.; Pal, D.; Blair, H.; Burdzinska, A.; Pedzisz, P.; Glodkowska-Mrowka, E.; Demkow, U.; Gawle-Krawczyk, K.; Matysiak, M.; Winiarska, M.; Juszczynski, P.; Mlynarski, W.; Heidenreich, O.; Golab, J.; Firczuk, M. Targeting the thioredoxin system as a novel strategy against B-cell acute lymphoblastic leukemia. Mol. Oncol., 2019, 13(5), 1180-1195.
[http://dx.doi.org/10.1002/1878-0261.12476] [PMID: 30861284]
[203]
Yin, R.; Li, T.; Tian, J.X.; Xi, P.; Liu, R.H. Ursolic acid, a potential anticancer compound for breast cancer therapy.In: Critical Reviews in Food Science and Nutrition; Taylor \& Francis, 2018, 58, pp. 568-574.
[204]
Ali, A.; Assimopoulou, A.; Papageorgiou, V.; Kolodziej, H. Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med., 2011, 77(18), 2003-2012.
[http://dx.doi.org/10.1055/s-0031-1280092] [PMID: 21800278]
[205]
Wellington, K.W.; Kolesnikova, N.I.; Nyoka, N.B.P.; McGaw, L.J. Investigation of the antimicrobial and anticancer activity of aminonaphthoquinones. Drug Dev. Res., 2019, 80(1), 138-146.
[http://dx.doi.org/10.1002/ddr.21477] [PMID: 30284739]
[206]
Awasthi, B.P.; Kathuria, M.; Pant, G.; Kumari, N.; Mitra, K. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis, 2016, 21(8), 941-953.
[http://dx.doi.org/10.1007/s10495-016-1259-9] [PMID: 27315817]
[207]
Roy, A. Plumbagin: A potential anti-cancer compound. Mini Reviews in Medicinal Chemistry. Bentham Science Publishers., 2021, 21, 731-737.
[208]
Tripathi, S.K.; Panda, M.; Biswal, B.K. Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem. Toxicol., 2019, 125, 566-582.
[http://dx.doi.org/10.1016/j.fct.2019.01.018] [PMID: 30685472]
[209]
Wong, T.Y.; Menaga, S.; Huang, C.Y.F.; Ho, S.H.A.; Gan, S.C.; Lim, Y.M. 2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells. Genomics Inform., 2022, 20(1), e7.
[http://dx.doi.org/10.5808/gi.21041] [PMID: 35399006]
[210]
Liu, Y.; Cai, Y.; He, C.; Chen, M.; Li, H. Anticancer properties and pharmaceutical applications of plumbagin: A review. Am. J. Chin. Med., 2017, 45(3), 423-441.
[http://dx.doi.org/10.1142/S0192415X17500264] [PMID: 28359198]
[211]
Gupta, R.; Luxami, V.; Paul, K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg. Chem., 2021, 108, 104633.
[http://dx.doi.org/10.1016/j.bioorg.2021.104633] [PMID: 33513476]
[212]
Gobec, M.; Kljun, J.; Sosič, I.; Mlinarič-Raščan, I.; Uršič, M.; Gobec, S.; Turel, I. Structural characterization and biological evaluation of a clioquinol–ruthenium complex with copper-independent antileukaemic activity. Dalton Trans., 2014, 43(24), 9045-9051.
[http://dx.doi.org/10.1039/C4DT00463A] [PMID: 24781711]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy