Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Insight into the Predictive Power of Surrogate Diagnostic Indices for Identifying Individuals with Metabolic Syndrome

Author(s): Shaghayegh Hosseinkhani, Katayoon Forouzanfar, Nastaran Hadizadeh, Farideh Razi, Somayeh Darzi and Fatemeh Bandarian*

Volume 24, Issue 11, 2024

Published on: 22 January, 2024

Page: [1291 - 1302] Pages: 12

DOI: 10.2174/0118715303264620231106105345

Price: $65

Abstract

Background: This study aimed to assess the diagnostic capability of insulin surrogate measurements in identifying individuals with metabolic syndrome (MetS) and propose applicable indices derived from fasting values, particularly in large study populations.

Methods: Data were collected from the datasets of the Surveillance of Risk Factors of NCDs in Iran Study (STEPS). MetS was defined based on the National Cholesterol Education Program (NCEP) criteria. Various insulin surrogate indices, including Homeostasis Model Assessment (HOMA), Quantitative Insulin Sensitivity Check Index (QUICKI), Fasting glucose to insulin ratio (FGIR), Reynaud, Reciprocal insulin, McAuley, Metabolic Score for Insulin Resistance (METS-IR), Triglyceride-glucose index (TyG), TG/ HDL-C, TG/ BMI, and TG/ WC ratio were assessed. Receiver Operating Characteristic (ROC) curves were used to assess pathologic conditions and determine the optimal cut-off through the highest score of the Youden index. Also, Area Under the Curve (AUC) values were established for each index totally and according to sex, age, and BMI differences.

Results: The study population consisted of 373 individuals (49.9% women; 75.1% middle age, 39.1% obese, and 27.3% overweight), of whom 117 (31.4%) had MetS. The METS-IR (AUC: 0.856; 95% CI: 0.817-0.895), TG/ HDL-C (AUC: 0.820; 95% CI: 0.775-0.886), TyG (AUC: 0.808; 95% CI: 0.759-0.857), and McAuley (AUC: 0.804; 95% CI: 0.757-0.852) indices provided the greatest AUC respectively for detection of MetS. The values of AUC for all the indices were higher in men than women. This trend was consistent after data stratification based on BMI categories, middle age, and senile individuals.

Conclusion: The present study indicated that indices of insulin, including METS-IR, TG/HDLC, TyG, and McAuley, have an equal or better capacity in determining the risk of MetS than HOMA-IR, are capable of identifying individuals with MetS and may provide a simple approach for identifying populations at risk of insulin resistance.

Graphical Abstract

[1]
Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol., 2019, 234(6), 8152-8161.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[2]
Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients, 2020, 12(4), 1066.
[http://dx.doi.org/10.3390/nu12041066] [PMID: 32290535]
[3]
Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis., 2017, 11(8), 215-225.
[http://dx.doi.org/10.1177/1753944717711379] [PMID: 28639538]
[4]
Payab, M.; Tayanloo-Beik, A.; Falahzadeh, K.; Mousavi, M.; Salehi, S.; Djalalinia, S.; Ebrahimpur, M.; Rezaei, N.; Rezaei-Tavirani, M.; Larijani, B.; Arjmand, B.; Gilany, K. Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J. Diabetes Metab. Disord., 2021, 21(1), 889-917.
[http://dx.doi.org/10.1007/s40200-021-00917-w] [PMID: 35673462]
[5]
Tagi, V.M.; Giannini, C.; Chiarelli, F. Insulin resistance in children. Front. Endocrinol. (Lausanne), 2019, 10, 342.
[http://dx.doi.org/10.3389/fendo.2019.00342] [PMID: 31214120]
[6]
Placzkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Piwowar, A. Indirect insulin resistance detection: Current clinical trends and laboratory limitations. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2019, 163(3), 187-199.
[http://dx.doi.org/10.5507/bp.2019.021] [PMID: 31165793]
[7]
Singh, B.; Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes, 2010, 1(2), 36-47.
[http://dx.doi.org/10.4239/wjd.v1.i2.36] [PMID: 21537426]
[8]
Tabatabaei-Malazy, O.; Saeedi Moghaddam, S.; Rezaei, N.; Sheidaei, A.; Hajipour, M.J.; Mahmoudi, N.; Mahmoudi, Z.; Dilmaghani-Marand, A.; Rezaee, K.; Sabooni, M.; Razi, F.; Kompani, F.; Delavari, A.; Larijani, B.; Farzadfar, F. A nationwide study of metabolic syndrome prevalence in Iran; a comparative analysis of six definitions. PLoS One, 2021, 16(3), e0241926.
[http://dx.doi.org/10.1371/journal.pone.0241926] [PMID: 33657130]
[9]
Djalalinia, S.; Modirian, M.; Sheidaei, A.; Yoosefi, M.; Zokaiee, H.; Damirchilu, B.; Mahmoudi, Z.; Mahmoudi, N.; Hajipour, M.J.; Peykari, N.; Rezaei, N.; Haghshenas, R.; Mohammadi, M.H.; Delavari, A.; Gouya, M.M.; Naderimagham, S.; Kousha, A.; Moghisi, A.; Mahdavihezaveh, A.; Abachizadeh, K.; Majdzadeh, R.; Sayyari, A.A.; Malekzadeh, R.; Larijani, B.; Farzadfar, F. Protocol design for large–scale cross–sectional studies of surveillance of risk factors of non–communicable diseases in Iran: STEPs 2016. Arch. Iran Med., 2017, 20(9), 608-616.
[PMID: 29048923]
[10]
Detection NCEPEPo, Adults ToHBCi. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 2002, 106(25), 3143-3421.
[11]
Brennan, A.M.; Standley, R.A.; Yi, F.; Carnero, E.A.; Sparks, L.M.; Goodpaster, B.H. Individual response variation in the effects of weight loss and exercise on insulin sensitivity and cardiometabolic risk in older adults. Front. Endocrinol. (Lausanne), 2020, 11, 632.
[http://dx.doi.org/10.3389/fendo.2020.00632] [PMID: 33013705]
[12]
Wang, K.; He, G.; Zhang, Y.; Yin, J.; Yan, Y.; Zhang, Y.; Wang, K. Association of triglyceride-glucose index and its interaction with obesity on hypertension risk in Chinese: A population-based study. J. Hum. Hypertens., 2021, 35(3), 232-239.
[http://dx.doi.org/10.1038/s41371-020-0326-4] [PMID: 32203074]
[13]
Chen, H.; Sullivan, G.; Quon, M.J. Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes, 2005, 54(7), 1914-1925.
[http://dx.doi.org/10.2337/diabetes.54.7.1914] [PMID: 15983190]
[14]
Legro, R.S.; Finegood, D.; Dunaif, A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 1998, 83(8), 2694-2698.
[http://dx.doi.org/10.1210/jc.83.8.2694] [PMID: 9709933]
[15]
Raynaud, E.; Perez-Martin, A.; Brun, J.; Benhaddad, AA.; Mercier, J. Revised concept for the estimation of insulin sensitivity from a single sample. Diabetes Care, 1999, 22(6), 1003-1004.
[http://dx.doi.org/10.2337/diacare.22.6.1003]
[16]
Hermans, M.P.; Levy, J.C.; Morris, R.J.; Turner, R.C. Comparison of insulin sensitivity tests across a range of glucose tolerance from normal to diabetes. Diabetologia, 1999, 42(6), 678-687.
[http://dx.doi.org/10.1007/s001250051215] [PMID: 10382587]
[17]
McAuley, K.A.; Williams, S.M.; Mann, J.I.; Walker, R.J.; Lewis-Barned, N.J.; Temple, L.A.; Duncan, A.W. Diagnosing insulin resistance in the general population. Diabetes Care, 2001, 24(3), 460-464.
[http://dx.doi.org/10.2337/diacare.24.3.460] [PMID: 11289468]
[18]
Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; Sevilla-González, M.R.; Martagón, A.J.; Hernández, L.M.; Mehta, R.; Caballeros-Barragán, C.R.; Aguilar-Salinas, C.A. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol., 2018, 178(5), 533-544.
[http://dx.doi.org/10.1530/EJE-17-0883] [PMID: 29535168]
[19]
Antoniolli, L.P.; Nedel, B.L.; Pazinato, T.C.; de Andrade Mesquita, L.; Gerchman, F. Accuracy of insulin resistance indices for metabolic syndrome: A cross-sectional study in adults. Diabetol. Metab. Syndr., 2018, 10(1), 65.
[http://dx.doi.org/10.1186/s13098-018-0365-y] [PMID: 30151057]
[20]
Park, S.Y.; Gautier, J.F.; Chon, S. Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes Metab. J., 2021, 45(5), 641-654.
[http://dx.doi.org/10.4093/dmj.2021.0220] [PMID: 34610719]
[21]
Hosseinkhani, S.; Arjmand, B.; Bandarian, F.; Aazami, H.; Hadizadeh, N.; Najjar, N.; Pasalar, P.; Razi, F. Omics experiments in Iran, a review in endocrine and metabolism disorders studies. J. Diabetes Metab. Disord., 2021, 2021, 1-6.
[http://dx.doi.org/10.1007/s40200-021-00727-0]
[22]
Ahmed, F. AL-Habori, M.; Al-Zabedi, E.; Saif-Ali, R. Impact of triglycerides and waist circumference on insulin resistance and β-cell function in non-diabetic first-degree relatives of type 2 diabetes. BMC Endocr. Disord., 2021, 21(1), 124.
[http://dx.doi.org/10.1186/s12902-021-00788-5] [PMID: 34134670]
[23]
Johnson, A.M.F.; Olefsky, J.M. The origins and drivers of insulin resistance. Cell, 2013, 152(4), 673-684.
[http://dx.doi.org/10.1016/j.cell.2013.01.041] [PMID: 23415219]
[24]
Kraegen, E.; Cooney, G.; Ye, J.; Thompson, A. Triglycerides, fatty acids and insulin resistance - hyperinsulinemia. Exp. Clin. Endocrinol. Diabetes, 2001, 109(4), 516-526.
[http://dx.doi.org/10.1055/s-2001-15114] [PMID: 11453039]
[25]
Zhang, M.; Liu, D.; Qin, P.; Liu, Y.; Sun, X.; Li, H.; Wu, X.; Zhang, Y.; Han, M.; Qie, R.; Huang, S.; Li, Y.; Wu, Y.; Yang, X.; Feng, Y.; Zhao, Y.; Hu, D.; Hu, F. Association of metabolic score for insulin resistance and its 6‐year change with incident type 2 diabetes mellitus. J. Diabetes, 2021, 13(9), 725-734.
[http://dx.doi.org/10.1111/1753-0407.13161] [PMID: 33644990]
[26]
Cai, X.T.; Zhu, Q.; Liu, S.S.; Wang, M.R.; Wu, T.; Hong, J.; Hu, J.L.; Li, N. Associations between the metabolic score for insulin resistance index and the risk of type 2 diabetes mellitus among non-obese adults: Insights from a population-based cohort study. Int. J. Gen. Med., 2021, 14, 7729-7740.
[http://dx.doi.org/10.2147/IJGM.S336990] [PMID: 34785931]
[27]
Mirr, M.; Skrypnik, D.; Bogdański, P.; Owecki, M. Newly proposed insulin resistance indexes called TyG-NC and TyG-NHtR show efficacy in diagnosing the metabolic syndrome. J. Endocrinol. Invest., 2021, 44(12), 2831-2843.
[http://dx.doi.org/10.1007/s40618-021-01608-2] [PMID: 34132976]
[28]
Baez-Duarte, B.G.; Zamora-Gínez, I.; González-Duarte, R.; Torres-Rasgado, E.; Ruiz-Vivanco, G.; Pérez-Fuentes, R.; Celis, T.M.R.G.O.D. Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) index as a reference criterion of risk for metabolic syndrome (MetS) and low insulin sensitivity in apparently healthy subjects. Gac. Med. Mex., 2017, 153(2), 152-158.
[PMID: 28474700]
[29]
Trikudanathan, S.; Raji, A.; Chamarthi, B.; Seely, E.W.; Simonson, D.C. Comparison of insulin sensitivity measures in South Asians. Metabolism, 2013, 62(10), 1448-1454.
[http://dx.doi.org/10.1016/j.metabol.2013.05.016] [PMID: 23906497]
[30]
Salazar, M.R.; Carbajal, H.A.; Espeche, W.G.; Leiva Sisnieguez, C.E.; March, C.E.; Balbín, E.; Dulbecco, C.A.; Aizpurúa, M.; Marillet, A.G.; Reaven, G.M. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance. Diab. Vasc. Dis. Res., 2013, 10(4), 346-352.
[http://dx.doi.org/10.1177/1479164113479809] [PMID: 23624761]
[31]
Nie, G.; Hou, S.; Zhang, M.; Peng, W. High TG/HDL ratio suggests a higher risk of metabolic syndrome among an elderly Chinese population: A cross-sectional study. BMJ Open, 2021, 11(3), e041519.
[http://dx.doi.org/10.1136/bmjopen-2020-041519] [PMID: 33753431]
[32]
Lee, J.; Ah Lee, Y.; Yong Lee, S.; Ho Shin, C.; Hyun Kim, J. Comparison of lipid-derived markers for metabolic syndrome in youth: Triglyceride/HDL cholesterol ratio, triglyceride-glucose index, and non-HDL cholesterol. Tohoku J. Exp. Med., 2022, 256(1), 53-62.
[http://dx.doi.org/10.1620/tjem.256.53] [PMID: 35082184]
[33]
Khan, S.H.; Sobia, F.; Niazi, N.K.; Manzoor, S.M.; Fazal, N.; Ahmad, F. Metabolic clustering of risk factors: Evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol. Metab. Syndr., 2018, 10(1), 74.
[http://dx.doi.org/10.1186/s13098-018-0376-8] [PMID: 30323862]
[34]
Raimi, T.H.; Dele-Ojo, B.F.; Dada, S.A.; Fadare, J.O.; Ajayi, D.D.; Ajayi, E.A.; Ajayi, O.A. Triglyceride-glucose index and related parameters predicted metabolic syndrome in Nigerians. Metab. Syndr. Relat. Disord., 2021, 19(2), 76-82.
[http://dx.doi.org/10.1089/met.2020.0092] [PMID: 33170086]
[35]
Kim, H.S.; Lee, J.; Cho, Y.K.; Kim, E.H.; Lee, M.J.; Kim, H.K.; Park, J.Y.; Lee, W.J.; Jung, C.H. Prognostic value of triglyceride and glucose index for incident type 2 diabetes beyond metabolic health and obesity. Endocrinol. Metab. (Seoul), 2021, 36(5), 1042-1054.
[http://dx.doi.org/10.3803/EnM.2021.1184] [PMID: 34674505]
[36]
Kaur, N.; Garg, R.; Tapasvi, C.; Chawla, S.; Kaur, N. Correlation of surrogate markers of insulin resistance with fasting insulin in type 2 diabetes mellitus patients: A study of malwa population in Punjab, India. J. Lab. Physicians, 2021, 13(3), 238-244.
[http://dx.doi.org/10.1055/s-0041-1730884] [PMID: 34602788]
[37]
Moon, S.; Park, J.H.; Jang, E.J.; Park, Y.K.; Yu, J.M.; Park, J.S.; Ahn, Y.; Choi, S.H.; Yoo, H.J. The cut-off values of surrogate measures for insulin sensitivity in a healthy population in Korea according to the Korean National Health and Nutrition Examination Survey (KNHANES) 2007-2010. J. Korean Med. Sci., 2018, 33(29), e197.
[http://dx.doi.org/10.3346/jkms.2018.33.e197] [PMID: 30008630]
[38]
Kim, T.J.; Kim, H.J.; Kim, Y.B.; Lee, J.Y.; Lee, H.S.; Hong, J.H.; Lee, J.W. Comparison of surrogate markers as measures of uncomplicated insulin resistance in Korean adults. Korean J. Fam. Med., 2016, 37(3), 188-196.
[http://dx.doi.org/10.4082/kjfm.2016.37.3.188] [PMID: 27274391]
[39]
Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res., 2017, 120, 34-42.
[http://dx.doi.org/10.1016/j.phrs.2017.03.008] [PMID: 28300617]
[40]
Rochlani, Y.; Pothineni, N.V.; Mehta, J.L. Metabolic syndrome: Does it differ between women and men? Cardiovasc. Drugs Ther., 2015, 29(4), 329-338.
[http://dx.doi.org/10.1007/s10557-015-6593-6] [PMID: 25994831]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy