Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Systematic Review Article

The Application of Artificial Intelligence in Thyroid Nodules: A Systematic Review Based on Bibliometric Analysis

Author(s): Yun Peng, Tong-Tong Wang, Jing-Zhi Wang, Heng Wang, Ruo-Yun Fan, Liang-Geng Gong and Wu-Gen Li*

Volume 24, Issue 11, 2024

Published on: 04 January, 2024

Page: [1280 - 1290] Pages: 11

DOI: 10.2174/0118715303264254231117113456

Price: $65

Abstract

Background: Thyroid nodules are common lesions in benign and malignant thyroid diseases. More and more studies have been conducted on the feasibility of artificial intelligence (AI) in the detection, diagnosis, and evaluation of thyroid nodules. The aim of this study was to use bibliometric methods to analyze and predict the hot spots and frontiers of AI in thyroid nodules.

Methods: Articles on the application of artificial intelligence in thyroid nodules were retrieved from the Web of Science core collection database. A website (https://bibliometric.com/), VOSviewer and CiteSpace software were used for bibliometric analyses. The collaboration maps of countries and institutions were analyzed. The cluster and timeline view based on cocitation references and keywords citation bursts visualization map were generated.

Results: The study included 601 papers about AI in thyroid nodules. China contributed to more than half (52.41%) of these publications. The cluster view and timeline view of co-citation references were assembled into 9 clusters, “AI”, “deep learning”, “papillary thyroid carcinoma”, “radiomics”, “ultrasound image”, “biomarkers”, “medical image segmentation”, “central lymph node metastasis (CLNM)”, and “self-organizing auto-encoder”. The “AI”, “radiomics”, “medical image segmentation”, “deep learning”, and “CLNM”, emerging in the last 10 years and continuing until recent years.

Conclusion: An increasing number of scholars were devoted to this field. The potential future research hotspots include risk factor assessment and CLNM prediction of thyroid carcinoma based on radiomics and deep learning, automatic segmentation based on medical images (especially ultrasound images).

Graphical Abstract

[1]
Skowrońska, A.; Milczarek-Banach, J.; Wiechno, W.; Chudziński, W.; Żach, M.; Mazurkiewicz, M.; Miśkiewicz, P.; Bednarczuk, T. Accuracy of the European Thyroid Imaging Reporting and Data System (EU-TIRADS) in the valuation of thyroid nodule malignancy in reference to the post-surgery histological results. Pol. J. Radiol., 2018, 83, 577-584.
[http://dx.doi.org/10.5114/pjr.2018.81556] [PMID: 30800196]
[2]
Bernardi, S.; Michelli, A.; Bonazza, D.; Calabrò, V.; Zanconati, F.; Pozzato, G.; Fabris, B. Usefulness of core needle biopsy for the diagnosis of thyroid Burkitt’s lymphoma: A case report and review of the literature. BMC Endocr. Disord., 2018, 18(1), 86.
[http://dx.doi.org/10.1186/s12902-018-0312-9] [PMID: 30453922]
[3]
Gharib, H.; Papini, E.; Garber, J.R.; Duick, D.S.; Harrell, R.M.; Hegedus, L.; Paschke, R.; Valcavi, R.; Vitti, P. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules- 2016 update appendix. Endocr. Pract., 2016, 22, 1-60.
[http://dx.doi.org/10.4158/EP161208.GL]
[4]
Yang, J.; Shi, X.; Wang, B.; Qiu, W.; Tian, G.; Wang, X.; Wang, P.; Yang, J. Ultrasound image classification of thyroid nodules based on deep learning. Front. Oncol., 2022, 12, 905955.
[http://dx.doi.org/10.3389/fonc.2022.905955] [PMID: 35912199]
[5]
Rossi, E.D. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol., 2021, 9(4), 193-194.
[6]
Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; Sherman, S.I.; Steward, D.L.; Tuttle, R.M. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 2009, 19(11), 1167-1214.
[http://dx.doi.org/10.1089/thy.2009.0110] [PMID: 19860577]
[7]
Gwon, H.Y.; Na, D.G.; Noh, B.J.; Paik, W.; Yoon, S.J.; Choi, S.J.; Shin, D.R. Thyroid nodules with isolated macrocalcifications: Malignancy risk of isolated macrocalcifications and postoperative risk stratification of malignant tumors manifesting as isolated macrocalcifications. Korean J. Radiol., 2020, 21(5), 605-613.
[http://dx.doi.org/10.3348/kjr.2019.0523] [PMID: 32323506]
[8]
Liu, R.; Jiang, G.; Gao, P.; Li, G.; Nie, L.; Yan, J.; Jiang, M.; Duan, R.; Zhao, Y.; Luo, J.; Yin, Y.; Li, C. Non-invasive amide proton transfer imaging and ZOOM diffusion-weighted imaging in differentiating benign and malignant thyroid micronodules. Front. Endocrinol., 2018, 9, 747.
[http://dx.doi.org/10.3389/fendo.2018.00747] [PMID: 30631303]
[9]
Suh, C.H.; Baek, J.H.; Choi, Y.J.; Lee, J.H. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: A systematic review and meta-analysis. AJNR Am. J. Neuroradiol., 2017, 38(1), 154-161.
[http://dx.doi.org/10.3174/ajnr.A4967] [PMID: 27789450]
[10]
Abbasian, A.A.; Gharbali, A.; Mohammadi, A. Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images. Iran. J. Cancer Prev., 2015, 8(2), 116-124.
[PMID: 25960851]
[11]
Jin, Z.; Zhang, F.; Wang, Y.; Tian, A.; Zhang, J.; Chen, M.; Yu, J. Single-photon emission computed tomography/computed tomography image-based radiomics for discriminating vertebral bone metastases from benign bone lesions in patients with tumors. Front. Med., 2022, 8, 792581.
[http://dx.doi.org/10.3389/fmed.2021.792581] [PMID: 35059418]
[12]
Xia, J.; Chen, H.; Li, Q.; Zhou, M.; Chen, L.; Cai, Z.; Fang, Y.; Zhou, H. Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach. Comput. Methods Programs Biomed., 2017, 147, 37-49.
[http://dx.doi.org/10.1016/j.cmpb.2017.06.005] [PMID: 28734529]
[13]
Kim, B.H.; Lee, C.; Lee, J.Y.; Tae, K. Initial experience of a deep learning application for the differentiation of Kikuchi-Fujimoto’s disease from tuberculous lymphadenitis on neck CECT. Sci. Rep., 2022, 12(1), 14184.
[http://dx.doi.org/10.1038/s41598-022-18535-8] [PMID: 35986073]
[14]
Liang, X.; Yu, J.; Liao, J.; Chen, Z. Convolutional neural network for breast and thyroid nodules diagnosis in ultrasound imaging. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/1763803] [PMID: 32420322]
[15]
Zhu, J.; Zhang, S.; Yu, R.; Liu, Z.; Gao, H.; Yue, B.; Liu, X.; Zheng, X.; Gao, M.; Wei, X. An efficient deep convolutional neural network model for visual localization and automatic diagnosis of thyroid nodules on ultrasound images. Quant. Imaging Med. Surg., 2021, 11(4), 1368-1380.
[http://dx.doi.org/10.21037/qims-20-538] [PMID: 33816175]
[16]
Zhou, H.; Liu, B.; Liu, Y.; Huang, Q.; Yan, W. Ultrasonic intelligent diagnosis of papillary thyroid carcinoma based on machine learning. J. Healthc. Eng., 2022, 2022, 1-8.
[http://dx.doi.org/10.1155/2022/6428796] [PMID: 35047154]
[17]
Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res., 2021, 133, 285-296. [J].
[http://dx.doi.org/10.1016/j.jbusres.2021.04.070]
[18]
Wang, Y.Q.; Chen, Y.B.; Xu, D.; Cui, Y.L. Bibliometrics and visualization of the mechanisms of Parkinson’s Diseases Based on animal models. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(10), 1560-1568.
[http://dx.doi.org/10.2174/1871530320666200421103429] [PMID: 32316904]
[19]
Roldan-Valadez, E.; Salazar-Ruiz, S.Y.; Ibarra-Contreras, R.; Rios, C. Current concepts on bibliometrics: A brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. Ir. J. Med. Sci., 2019, 188(3), 939-951.
[http://dx.doi.org/10.1007/s11845-018-1936-5] [PMID: 30511320]
[20]
Yang, K.; Meho, L.I. Citation analysis: A comparison of google scholar, scopus, and web of science. Proc. Am. Soc. Inf. Sci. Technol., 2006, 43(1), 1-15.
[http://dx.doi.org/10.1002/meet.14504301185]
[21]
Yan, S.; Zhang, H.; Wang, J. Trends and hot topics in radiology, nuclear medicine and medical imaging from 2011–2021: A bibliometric analysis of highly cited papers. Jpn. J. Radiol., 2022, 40(8), 847-856.
[http://dx.doi.org/10.1007/s11604-022-01268-z] [PMID: 35344133]
[22]
Xu, S.; Cavagnaro, M.J.; Shi, J. A novel scientometrics research on the interaction between oxidative stress and hematopoietic stem cell transplantation complications: From graft-versus-host disease to sepsis. Oxid. Med. Cell. Longev., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/7708085] [PMID: 36743696]
[23]
Yeung, A.W.K.; Heinrich, M.; Atanasov, A.G. Ethnopharmacology—a bibliometric analysis of a field of research meandering between medicine and food science? Front. Pharmacol., 2018, 9, 215.
[http://dx.doi.org/10.3389/fphar.2018.00215] [PMID: 29599720]
[24]
Ma, D.; Yang, B.; Guan, B.; Song, L.; Liu, Q.; Fan, Y.; Zhao, L.; Wang, T.; Zhang, Z.; Gao, Z.; Li, S.; Xu, H. A bibliometric analysis of pyroptosis From 2001 to 2021. Front. Immunol., 2021, 12, 731933.
[http://dx.doi.org/10.3389/fimmu.2021.731933] [PMID: 34484243]
[25]
Wu, H.; Wang, Y.; Tong, L.; Yan, H.; Sun, Z. The global research trends and hotspots on developmental dysplasia of the hip: A bibliometric and visualized study. Front. Surg., 2021, 8, 671403.
[http://dx.doi.org/10.3389/fsurg.2021.671403] [PMID: 34760913]
[26]
Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA, 2005, 102(46), 16569-16572.
[http://dx.doi.org/10.1073/pnas.0507655102] [PMID: 16275915]
[27]
Garfield, E. Citation analysis as a tool in journal evaluation. Science, 1972, 178(4060), 471-479.
[http://dx.doi.org/10.1126/science.178.4060.471] [PMID: 5079701]
[28]
Zheng, J.; Zhou, R.; Meng, B. Knowledge framework and emerging trends in intracranial aneurysm magnetic resonance angiography: A scientometric analysis from 2004 to 2020. Quant. Imaging Med. Surg., 2021, 11(5), 1854.
[29]
Bai, M.; Zhang, J.; Chen, D.; Lu, M.; Li, J.; Zhang, Z.; Niu, X. Insights into research on myocardial ischemia/reperfusion injury from 2012 to 2021: A bibliometric analysis. Eur. J. Med. Res., 2023, 28(1), 17.
[http://dx.doi.org/10.1186/s40001-022-00967-7] [PMID: 36624514]
[30]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[31]
Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; Hammers, L.W.; Hamper, U.M.; Langer, J.E.; Reading, C.C.; Scoutt, L.M.; Stavros, A.T. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White paper of the ACR TI-RADS committee. J. Am. Coll. Radiol., 2017, 14(5), 587-595.
[http://dx.doi.org/10.1016/j.jacr.2017.01.046] [PMID: 28372962]
[32]
Chi, J.; Walia, E.; Babyn, P.; Wang, J.; Groot, G.; Eramian, M. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J. Digit. Imaging, 2017, 30(4), 477-486.
[http://dx.doi.org/10.1007/s10278-017-9997-y] [PMID: 28695342]
[33]
Feng, C.; Zhou, X.; Wang, H.; He, Y.; Li, Z.; Tu, C. Research hotspots and emerging trends of deep learning applications in orthopedics: A bibliometric and visualized study. Front. Public Health, 2022, 10, 949366.
[http://dx.doi.org/10.3389/fpubh.2022.949366] [PMID: 35928480]
[34]
Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X-J. A bibliometric analysis and visualization of medical big data research. Sustainability, 2018, 10(2), 166.
[http://dx.doi.org/10.3390/su10010166]
[35]
Lee, Y.H.; Kim, D.W.; In, H.S.; Park, J.S.; Kim, S.H.; Eom, J.W.; Kim, B.; Lee, E.J.; Rho, M.H. Differentiation between benign and malignant solid thyroid nodules using an US classification system. Korean J. Radiol., 2011, 12(5), 559-567.
[http://dx.doi.org/10.3348/kjr.2011.12.5.559] [PMID: 21927557]
[36]
Rago, T.; Vitti, P. Risk stratification of thyroid nodules: From ultrasound features to TIRADS. Cancers , 2022, 14(3), 717.
[http://dx.doi.org/10.3390/cancers14030717] [PMID: 35158985]
[37]
Unsal, O.; Akpinar, M.; Turk, B.; Ucak, I.; Ozel, A.; Kayaoglu, S.; Uslu Coskun, B. Sonographic scoring of solid thyroid nodules: Effects of nodule size and suspicious cervical lymph node. Rev. Bras. Otorrinolaringol., 2017, 83(1), 73-79.
[PMID: 27161187]
[38]
Wen, Q.; Wang, Y.; Li, X.; Jin, X.; Wang, G. Decreased serum exosomal miR‐29a expression and its clinical significance in papillary thyroid carcinoma. J. Clin. Lab. Anal., 2021, 35(1), e23560.
[http://dx.doi.org/10.1002/jcla.23560] [PMID: 33368640]
[39]
Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; Aerts, H.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer, 2012, 48(4), 441-446.
[http://dx.doi.org/10.1016/j.ejca.2011.11.036] [PMID: 22257792]
[40]
Guo, S.Y.; Zhou, P.; Zhang, Y.; Jiang, L.Q.; Zhao, Y.F. Exploring the value of radiomics features based on B-mode and contrast-enhanced ultrasound in discriminating the nature of thyroid nodules. Front. Oncol., 2021, 11, 738909.
[http://dx.doi.org/10.3389/fonc.2021.738909] [PMID: 34722288]
[41]
Peng, Y.; Zhang, Z.; Wang, T. Prediction of central lymph node metastasis in cN0 papillary thyroid carcinoma by CT radiomics. Acad. Radiol., 2022, 30(7), 1400-7.
[PMID: 36220726]
[42]
Wang, H.; Song, B.; Ye, N.; Ren, J.; Sun, X.; Dai, Z.; Zhang, Y.; Chen, B.T. Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma. Eur. J. Radiol., 2020, 122, 108755.
[http://dx.doi.org/10.1016/j.ejrad.2019.108755] [PMID: 31783344]
[43]
Zheng, X.; Yao, Z.; Huang, Y.; Yu, Y.; Wang, Y.; Liu, Y.; Mao, R.; Li, F.; Xiao, Y.; Wang, Y.; Hu, Y.; Yu, J.; Zhou, J. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat. Commun., 2020, 11(1), 1236.
[http://dx.doi.org/10.1038/s41467-020-15027-z] [PMID: 32144248]
[44]
Chen, J.; You, H.; Li, K. A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput. Methods Programs Biomed., 2020, 185, 105329.
[http://dx.doi.org/10.1016/j.cmpb.2020.105329] [PMID: 31955006]
[45]
Ma, W.; Li, X.; Zou, L.; Fan, C.; Wu, M. Symmetrical awareness network for cross-site ultrasound thyroid nodule segmentation. Front. Public Health, 2023, 11, 1055815.
[http://dx.doi.org/10.3389/fpubh.2023.1055815] [PMID: 36969643]
[46]
Li, J.; Chen, J.; Bai, H.; Wang, H.; Hao, S.; Ding, Y.; Peng, B.; Zhang, J.; Li, L.; Huang, W. An overview of organs-on-chips based on deep learning. Research, 2022, 2022, 2022/9869518.
[http://dx.doi.org/10.34133/2022/9869518] [PMID: 35136860]
[47]
Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; Kim, R.; Raman, R.; Nelson, P.C.; Mega, J.L.; Webster, D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22), 2402-2410.
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[48]
Wei, X.; Gao, M.; Yu, R.; Liu, Z.; Gu, Q.; Liu, X.; Zheng, Z.; Zheng, X.; Zhu, J.; Zhang, S. Ensemble deep learning model for multicenter classification of thyroid nodules on ultrasound images. Med. Sci. Monit., 2020, 26, e926096.
[http://dx.doi.org/10.12659/MSM.926096] [PMID: 32555130]
[49]
Dolezal, J.M.; Trzcinska, A.; Liao, C.Y.; Kochanny, S.; Blair, E.; Agrawal, N.; Keutgen, X.M.; Angelos, P.; Cipriani, N.A.; Pearson, A.T. Deep learning prediction of BRAF-RAS gene expression signature identifies noninvasive follicular thyroid neoplasms with papillary-like nuclear features. Mod. Pathol., 2021, 34(5), 862-874.
[http://dx.doi.org/10.1038/s41379-020-00724-3] [PMID: 33299111]
[50]
Lee, J.H.; Baek, J.H.; Kim, J.H.; Shim, W.H.; Chung, S.R.; Choi, Y.J.; Lee, J.H. Deep learning–based computer-aided diagnosis system for localization and diagnosis of metastatic lymph nodes on ultrasound: A pilot study. Thyroid, 2018, 28(10), 1332-1338.
[http://dx.doi.org/10.1089/thy.2018.0082] [PMID: 30132411]
[51]
Lini, L.; Rong, X.; Wei, H.; Xia, G.; Huayan, X.; Linjun, X.; Hongding, Z.; Gao, J.; Chao, L.; Yingkun, G. Characteristics and research status among clinical trials in cardio‐oncology by bibliometric and visualized analysis. Cancer Med., 2023, 12(11), 12535-12547.
[http://dx.doi.org/10.1002/cam4.6045] [PMID: 37148538]
[52]
Zhou, H.; Tan, W.; Qiu, Z.; Song, Y.; Gao, S. A bibliometric analysis in gene research of myocardial infarction from 2001 to 2015. PeerJ, 2018, 6, e4354.
[http://dx.doi.org/10.7717/peerj.4354] [PMID: 29456889]
[53]
Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol., 2006, 57(3), 359-377. [J].
[http://dx.doi.org/10.1002/asi.20317]
[54]
Davnall, F.; Yip, C.S.P.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging, 2012, 3(6), 573-589.
[http://dx.doi.org/10.1007/s13244-012-0196-6] [PMID: 23093486]
[55]
Guo, W.; Bai, W.; Liu, J.; Luo, D.; Yuan, H. Can contrast-enhancement computed tomography texture and histogram analyses help to differentiate malignant from benign thyroid nodules? Jpn. J. Radiol., 2020, 38(12), 1135-1141.
[http://dx.doi.org/10.1007/s11604-020-01018-z] [PMID: 32661879]
[56]
Li, J.; Wu, X.; Mao, N.; Zheng, G.; Zhang, H.; Mou, Y.; Jia, C.; Mi, J.; Song, X. Computed tomography-based radiomics model to predict central cervical lymph node metastases in papillary thyroid carcinoma: A multicenter study. Front. Endocrinol., 2021, 12, 741698.
[http://dx.doi.org/10.3389/fendo.2021.741698] [PMID: 34745008]
[57]
Zhu, J.; Zheng, J.; Li, L.; Huang, R.; Ren, H.; Wang, D.; Dai, Z.; Su, X. Application of machine learning algorithms to predict central lymph node metastasis in T1-T2, non-invasive, and clinically node negative papillary thyroid carcinoma. Front. Med., 2021, 8, 635771.
[http://dx.doi.org/10.3389/fmed.2021.635771] [PMID: 33768105]
[58]
Huang, X.; Zhang, Y.; He, D.; Lai, L.; Chen, J.; Zhang, T.; Mao, H. Machine Learning-Based Shear Wave Elastography Elastic Index (SWEEI) in predicting cervical lymph node metastasis of papillary thyroid microcarcinoma: A comparative analysis of five practical prediction models. Cancer Manag. Res., 2022, 14, 2847-2858.
[http://dx.doi.org/10.2147/CMAR.S383152] [PMID: 36171862]
[59]
Zou, Y.; Shi, Y.; Sun, F.; Liu, J.; Guo, Y.; Zhang, H.; Lu, X.; Gong, Y.; Xia, S. Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using shapley additive explanations. Comput. Methods Programs Biomed., 2022, 225, 107038.
[http://dx.doi.org/10.1016/j.cmpb.2022.107038] [PMID: 35930861]
[60]
Dobrijević, D.; Andrijević, L.; Antić, J.; Rakić, G.; Pastor, K. Hemogram‐based decision tree models for discriminating COVID ‐19 from RSV in infants. J. Clin. Lab. Anal., 2023, 37(6), e24862.
[http://dx.doi.org/10.1002/jcla.24862] [PMID: 36972470]
[61]
Zhang, B.; Tian, J.; Pei, S.; Chen, Y.; He, X.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Cong, S.; Zhang, S. Machine learning–assisted system for thyroid nodule diagnosis. Thyroid, 2019, 29(6), 858-867.
[http://dx.doi.org/10.1089/thy.2018.0380] [PMID: 30929637]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy