Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Review Article

Advancements of Lanthanide-doped Phosphors in Solid-state Lighting Applications

Author(s): Nelson Oshogwue Etafo*

Volume 1, 2024

Published on: 22 January, 2024

Article ID: e220124225904 Pages: 23

DOI: 10.2174/0127723348280880240115054806

Price: $65

Abstract

The challenge of energy conversion and enhancement has been a problem in the world of lighting technologies as the population and global industrialization grow rapidly. Solid-state lighting (SSL) has proven to be a better alternative in the illumination industry because of its environmentally friendly and high energy efficiency. Lanthanide-doped phosphors have gained global attention in SSL because they have versatile applications with enhanced overall performance and luminescence. This review delves into the advancement in lanthanide-doped phosphors for Solid-state lighting (SSL) applications. It discusses the in-depth analysis of how to tailor the crystal lattice design, optimize the host material for emission efficiency, and minimize the non-radiative pathways. This paper further discusses the lanthanide-doped phosphor composition, strategies to obtain desired emission spectra, and enhanced color rendering index with the Energy transfer mechanism and the synthesis techniques. This review also addresses 3 processes for expanding the light spectrum, current challenges, future directions, and emerging trends present in the lanthanide-doped phosphor in Solid-state lighting (SSL) applications.

[1]
Anderson, A.; Boyd, K.; Buendia, G. Center of sustainable systems, university of Michigan. In: US Environmental Footprint Factsheets Pub No CSS08-08 2022; , 2022.
[2]
Tsao, J.; Coltrin, M. Solid-state lighting technology perspective; Albuquerque, NM, and Livermore: CA, United States, 2006.
[http://dx.doi.org/10.2172/889939]
[3]
Bergh, A.; Craford, G.; Duggal, A.; Haitz, R. The promise and challenge of solid-state lighting. Phys. Today, 2001, 54(12), 42-47.
[http://dx.doi.org/10.1063/1.1445547]
[4]
Luo, X.; Xie, R.J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths, 2020, 38(5), 464-473.
[http://dx.doi.org/10.1016/j.jre.2020.01.016]
[5]
Chatterjee, D.; Khandekar, S. Hybrid solar simulator for long-term testing of photothermal materials. IEEE Trans. Instrum. Meas., 2023, 72, 1-8.
[http://dx.doi.org/10.1109/TIM.2023.3295471]
[6]
Nguyen, Q.K.; Glorieux, B.; Sebe, G.; Yang, T.H.; Yu, Y.W.; Sun, C.C. Passive anti-leakage of blue light for phosphor-converted white LEDs with crystal nanocellulose materials. Sci. Rep., 2023, 13(1), 13039.
[http://dx.doi.org/10.1038/s41598-023-39929-2] [PMID: 37563271]
[7]
Pashaei, B.; Karimi, S.; Shahroosvand, H.; Abbasi, P.; Pilkington, M.; Bartolotta, A.; Fresta, E.; Fernandez-Cestau, J.; Costa, R.D.; Bonaccorso, F. Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chem. Soc. Rev., 2019, 48(19), 5033-5139.
[http://dx.doi.org/10.1039/C8CS00075A] [PMID: 31418444]
[8]
Panigrahi, K.; Nag, A. Challenges and strategies to design phosphors for future white light emitting diodes. J. Phys. Chem. C, 2022, 126(20), 8553-8564.
[http://dx.doi.org/10.1021/acs.jpcc.2c01679]
[9]
Chen, D.; Xiang, W.; Liang, X.; Zhong, J.; Yu, H.; Ding, M.; Lu, H.; Ji, Z. Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review. J. Eur. Ceram. Soc., 2015, 35(3), 859-869.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.002]
[10]
Fang, M.H.; Bao, Z.; Huang, W.T.; Liu, R.S. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes. Chem. Rev., 2022, 122(13), 11474-11513.
[http://dx.doi.org/10.1021/acs.chemrev.1c00952] [PMID: 35603576]
[11]
Yan, Y.; Luo, C.; Ling, S.; Liang, J.; Liao, S.; Huang, Y. Enhancing quantum efficiency and thermal stability in Gd2SrAl2O7: Mn4+, Bi3+, Na+ far-red emitting phosphor by energy transfer and cation substitution strategy for indoor plant growth LED lighting. J. Alloys Compd., 2023, 947, 169609.
[http://dx.doi.org/10.1016/j.jallcom.2023.169609]
[12]
Godithi, S.B.; Sachdeva, E.; Garg, V.; Brown, R.; Kohler, C.; Rawal, R. A review of advances for thermal and visual comfort controls in personal environmental control (PEC) systems. Intell. Build. Int., 2019, 11(2), 75-104.
[http://dx.doi.org/10.1080/17508975.2018.1543179]
[13]
Liu, Y.; Guo, Y.; Liu, Y. High‐mobility organic light‐emitting semiconductors and its optoelectronic devices. Small Struct., 2021, 2(1), 2000083.
[http://dx.doi.org/10.1002/sstr.202000083]
[14]
Griffini, G. Host matrix materials for luminescent solar concentrators: Recent achievements and forthcoming challenges. Front. Mater., 2019, 6, 29.
[http://dx.doi.org/10.3389/fmats.2019.00029]
[15]
Tabanli, S.; Yilmaz, H.C.; Bilir, G.; Erdem, M.; Eryurek, G.; Bartolo, B.D.; Collins, J. Broadband, White Light Emission from Doped and Undoped Insulators. ECS J. Solid State Sci. Technol., 2018, 7(1), R3199-R3210.
[http://dx.doi.org/10.1149/2.0261801jss]
[16]
Legendre, J.; Chapuis, P.O. Overcoming non-radiative losses with AlGaAs PIN junctions for near-field thermophotonic energy harvesting. Appl. Phys. Lett., 2022, 121(19), 193902.
[http://dx.doi.org/10.1063/5.0116662]
[17]
Amin, M.R.; Strobel, P.; Schnick, W.; Schmidt, P.J.; Moewes, A. Energy levels of Eu 2+ states in the next-generation LED-phosphor SrLi 2 Al 2 O 2 N 2:Eu 2+. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2022, 10(26), 9740-9747.
[http://dx.doi.org/10.1039/D2TC01372J]
[18]
Zhang, H.; Zhong, J.; Du, F.; Chen, L.; Zhang, X.; Mu, Z.; Zhao, W. Efficient and thermally stable broad-band near-infrared emission in a KAlP 2 O 7:Cr 3+ phosphor for nondestructive examination. ACS Appl. Mater. Interfaces, 2022, 14(9), 11663-11671.
[http://dx.doi.org/10.1021/acsami.2c00200] [PMID: 35195983]
[19]
Hofman, E.; Khammang, A.; Wright, J.T.; Li, Z.J.; McLaughlin, P.F.; Davis, A.H.; Franck, J.M.; Chakraborty, A.; Meulenberg, R.W.; Zheng, W. Decoupling and coupling of the host–dopant interaction by manipulating dopant movement in core/shell quantum dots. J. Phys. Chem. Lett., 2020, 11(15), 5992-5999.
[http://dx.doi.org/10.1021/acs.jpclett.0c01861] [PMID: 32633980]
[20]
Zhuo, Y.; Hariyani, S.; Armijo, E.; Abolade Lawson, Z.; Brgoch, J. Evaluating thermal quenching temperature in eu 3+ -substituted oxide phosphors via machine learning. ACS Appl. Mater. Interfaces, 2020, 12(5), 5244-5250.
[http://dx.doi.org/10.1021/acsami.9b16065] [PMID: 31860258]
[21]
Xiang, Y.; Liu, Z.; Gao, Y.; Feng, L.; Zhou, T.; Liu, M.; Zhao, Y.; Lai, X.; Bi, J.; Gao, D. Novel double perovskite Ca2Gd0.5Nb1-W5/6O6:0.5 Eu3+ red phosphors with excellent thermal stability and high color purity for white LEDs. Chem. Eng. J., 2023, 456, 140901.
[http://dx.doi.org/10.1016/j.cej.2022.140901]
[22]
Zheng, T.; Luo, L.; Du, P.; Lis, S.; Rodríguez-Mendoza, U.R.; Lavín, V.; Martín, I.R.; Runowski, M. Pressure-triggered enormous redshift and enhanced emission in Ca2Gd8Si6O26:Ce3+ phosphors: Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. Chem. Eng. J., 2022, 443, 136414.
[http://dx.doi.org/10.1016/j.cej.2022.136414]
[23]
Ruan, F.; Fan, G.; Li, Y.; Zhou, J.; Li, N.; Fan, D.; Chen, Q. Fluorescence properties and thermal stability of Sr2Gd1-xNbO6: xEu3+ with dual-wavelength excitation response. Opt. Mater., 2023, 144, 114348.
[http://dx.doi.org/10.1016/j.optmat.2023.114348]
[24]
Wang, S.; Yao, Y.; Kong, J.; Zhao, S.; Sun, Z.; Wu, Z.; Li, L.; Luo, J. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite. Chem. Commun., 2018, 54(32), 4053-4056.
[http://dx.doi.org/10.1039/C8CC01663A] [PMID: 29620108]
[25]
Morkoç, H.; Mohammad, S.N. High-luminosity blue and blue-green gallium nitride light-emitting diodes. Science, 1995, 267(5194), 51-55.
[http://dx.doi.org/10.1126/science.267.5194.51] [PMID: 17840057]
[26]
Kente, T.; Mhlanga, S.D. Gallium nitride nanostructures: Synthesis, characterization and applications. J. Cryst. Growth, 2016, 444, 55-72.
[http://dx.doi.org/10.1016/j.jcrysgro.2016.03.033]
[27]
Zhang, N.; Liu, Z. The InGaN material system and blue/green emitters. In: Light-Emitting Diodes; Springer, 2019; pp. 203-243.
[http://dx.doi.org/10.1007/978-3-319-99211-2_6]
[28]
Van der Heggen, D.; Joos, J.J.; Feng, A.; Fritz, V.; Delgado, T.; Gartmann, N.; Walfort, B.; Rytz, D.; Hagemann, H.; Poelman, D.; Viana, B.; Smet, P.F. Persistent Luminescence in Strontium Aluminate: A Roadmap to a Brighter Future. Adv. Funct. Mater., 2022, 32(52), 2208809.
[http://dx.doi.org/10.1002/adfm.202208809]
[29]
Etafo, N.O.; Oliva, J.; Garcia, C.R.; Mtz-Enríquez, A.I.; Ruiz, J.I.; Avalos-Belmontes, F.; Lopez-Badillo, C.M.; Gomez-Solis, C. Enhancing of the blue/NIR emission of novel BaLaAlO4:Yb3+(X mol%),Tm3+ (0.5 mol%) upconversion phosphors with the Yb3+ concentration (X = 0.5 to 6). Inorg. Chem. Commun., 2022, 137, 109192.
[http://dx.doi.org/10.1016/j.inoche.2021.109192]
[30]
Etafo, N.; Rodriguez Garcia, C.; Esquivel-Castro, T.; León-Madrid, M.; Santibañez, A.; Oliva, J. The effect of a Yb co-dopant on the blue upconversion and thermoluminescent emission of SrLaAlO4:Yb3+,Tm3+ phosphors. Coatings, 2023, 13(6), 1003.
[http://dx.doi.org/10.3390/coatings13061003]
[31]
Sun, L.; Devakumar, B.; Liang, J.; Wang, S.; Sun, Q.; Huang, X. Highly efficient Ce 3+ → Tb 3+ energy transfer induced bright narrowband green emissions from garnet-type Ca 2 YZr 2 (AlO 4) 3:Ce 3+, Tb 3+ phosphors for white LEDs with high color rendering index. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(34), 10471-10480.
[http://dx.doi.org/10.1039/C9TC03664D]
[32]
Tong, Y.; Chen, Y.; Chen, S.; Wei, R.; Chen, L.; Guo, H. Luminescent properties of Na2GdMg2(VO4)3:Eu3+ red phosphors for NUV excited pc-WLEDs. Ceram. Int., 2021, 47(9), 12320-12326.
[http://dx.doi.org/10.1016/j.ceramint.2021.01.083]
[33]
Zhao, H.; Sun, D.; Lyu, Z.; Shen, S.; Wang, L.; Zhou, L.; Lu, Z.; Wang, J.; He, J.; You, H. An efficient blue-excitable broadband Y 3 ScAl 4 O 12:Ce 3+ garnet phosphor for WLEDs. Dalton Trans., 2023, 52(35), 12470-12477.
[http://dx.doi.org/10.1039/D3DT01898A] [PMID: 37602396]
[34]
Lei, L.; Dong, Q.; Gundogdu, K.; So, F. Metal halide perovskites for laser applications. Adv. Funct. Mater., 2021, 31(16), 2010144.
[http://dx.doi.org/10.1002/adfm.202010144]
[35]
Veldhuis, S.A.; Boix, P.P.; Yantara, N.; Li, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. Perovskite materials for light‐emitting diodes and lasers. Adv. Mater., 2016, 28(32), 6804-6834.
[http://dx.doi.org/10.1002/adma.201600669] [PMID: 27214091]
[36]
Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q.; Zhai, S.; Zhang, S.; Liu, G.; Yuan, L.; Guo, B.; Chen, Z.; Wei, K.; Liu, A.; Yue, S.; Niu, G.; Pan, X.; Sun, J.; Hua, Y.; Wu, W.Q.; Di, D.; Zhao, B.; Tian, J.; Wang, Z.; Yang, Y.; Chu, L.; Yuan, M.; Zeng, H.; Yip, H.L.; Yan, K.; Xu, W.; Zhu, L.; Zhang, W.; Xing, G.; Gao, F.; Ding, L. Advances in the application of perovskite materials. Nano-Micro Lett., 2023, 15(1), 177.
[http://dx.doi.org/10.1007/s40820-023-01140-3] [PMID: 37428261]
[37]
Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; Zhou, Z.; Liu, X.; Segawa, H.; Tan, H.; Tang, Q.; Fang, J.; Li, Y.; Ding, L.; Ning, Z.; Qi, Y.; Zhang, Y.; Han, L. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett., 2021, 13(1), 152.
[http://dx.doi.org/10.1007/s40820-021-00672-w] [PMID: 34232444]
[38]
Weyher, J.L.; Kamler, G.; Nowak, G.; Borysiuk, J.; Lucznik, B.; Krysko, M.; Grzegory, I.; Porowski, S. Defects in GaN single crystals and homoepitaxial structures. J. Cryst. Growth, 2005, 281(1), 135-142.
[http://dx.doi.org/10.1016/j.jcrysgro.2005.03.020]
[39]
Luo, D.; Su, R.; Zhang, W.; Gong, Q.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater., 2019, 5(1), 44-60.
[http://dx.doi.org/10.1038/s41578-019-0151-y]
[40]
Wu, X.; Kim, M.; Kwon, H.; Wang, Y. Photochemical creation of fluorescent quantum defects in semiconducting carbon nanotube hosts. Angew. Chem. Int. Ed., 2018, 57(3), 648-653.
[http://dx.doi.org/10.1002/anie.201709626] [PMID: 29215774]
[41]
Liu, Q.; Vandewal, K. Understanding and suppressing non‐radiative recombination losses in non‐fullerene organic solar cells. Adv. Mater., 2023, 35(35), 2302452.
[http://dx.doi.org/10.1002/adma.202302452] [PMID: 37201949]
[42]
Phung, N.; Al-Ashouri, A.; Meloni, S.; Mattoni, A.; Albrecht, S.; Unger, E.L.; Merdasa, A.; Abate, A. The role of grain boundaries on ionic defect migration in metal halide perovskites. Adv. Energy Mater., 2020, 10(20), 1903735.
[http://dx.doi.org/10.1002/aenm.201903735]
[43]
Kim, S.; Hood, S.N.; Park, J.S.; Whalley, L.D.; Walsh, A. Quick-start guide for first-principles modelling of point defects in crystalline materials. JPhys Energy, 2020, 2(3), 036001.
[http://dx.doi.org/10.1088/2515-7655/aba081]
[44]
Zhong, K.; Bu, R.; Jiao, F.; Liu, G.; Zhang, C. Toward the defect engineering of energetic materials: A review of the effect of crystal defects on the sensitivity. Chem. Eng. J., 2022, 429, 132310.
[http://dx.doi.org/10.1016/j.cej.2021.132310]
[45]
Feldmann, S.; Gangishetty, M.; Bravić, I.; Neumann, T.; Peng, B.; Winkler, T. Exciton localization in doped perovskite nanocrystals enhances intrinsic radiative recombination. In: Physical Chemistry of Semiconductor Materials and Interfaces XX; Congreve, D.; Nielsen, C.; Musser, A.J.; Baran, D., Eds.; SPIE, 2021; p. 39.
[http://dx.doi.org/10.1117/12.2594757]
[46]
Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H.M.; Rigosi, A.F.; Berkelbach, T.C.; Nagler, P.; Schüller, C.; Korn, T.; Nuckolls, C.; Hone, J.; Brus, L.E.; Heinz, T.F.; Reichman, D.R.; Chernikov, A. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 2017, 8(1), 15251.
[http://dx.doi.org/10.1038/ncomms15251] [PMID: 28469178]
[47]
Wang, J.; Ewing, R.C.; Becker, U. Defect formation energy in pyrochlore: The effect of crystal size. Mater. Res. Express, 2014, 1(3), 035501.
[http://dx.doi.org/10.1088/2053-1591/1/3/035501]
[48]
Nag, D.; Aggarwal, T.; Sinha, S.; Sarkar, R.; Bhunia, S.; Chen, Y.F.; Ganguly, S.; Saha, D.; Horng, R-H.; Laha, A. Carrier-induced defect saturation in green InGaN LEDs: A potential phenomenon to enhance efficiency at higher wavelength regime. ACS Photonics, 2021, 8(3), 926-932.
[http://dx.doi.org/10.1021/acsphotonics.0c01969]
[49]
Fornari, R. Electronic materials and crystal growth. In: Single Crystals of Electronic Materials; Elsevier, 2019; pp. 1-3.
[http://dx.doi.org/10.1016/B978-0-08-102096-8.00001-X]
[50]
Lin, C.C.; Meijerink, A.; Liu, R.S. Critical red components for next-generation white LEDs. J. Phys. Chem. Lett., 2016, 7(3), 495-503.
[http://dx.doi.org/10.1021/acs.jpclett.5b02433] [PMID: 26758988]
[51]
George, N.C.; Denault, K.A.; Seshadri, R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res., 2013, 43(1), 481-501.
[http://dx.doi.org/10.1146/annurev-matsci-073012-125702]
[52]
Kumar, G.; Haldar, A.; Vijaya, R. Photonic crystal based heterostructures in the control of emission and diffraction features. ISSS J. Micro Smart Syst., 2022, 11(1), 81-112.
[http://dx.doi.org/10.1007/s41683-021-00086-1]
[53]
Xia, Z.; Meijerink, A. Ce 3+ -Doped garnet phosphors: Composition modification, luminescence properties and applications. Chem. Soc. Rev., 2017, 46(1), 275-299.
[http://dx.doi.org/10.1039/C6CS00551A] [PMID: 27834975]
[54]
Unithrattil, S.; Kim, H.J.; Gil, K.H.; Vu, N.H.; Hoang, V.H.; Kim, Y.H.; Arunkumar, P.; Im, W.B. Engineering the lattice site occupancy of apatite-structure phosphors for effective broad-band emission through cation pairing. Inorg. Chem., 2017, 56(10), 5696-5703.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00310] [PMID: 28467077]
[55]
Gopalakrishna, P.L.B.; Rajendran, D.N. Effect of lanthanide ion co-doping on the luminescence in the cerium-doped zinc oxide-phosphor system. Spectrosc. Lett., 2019, 52(8), 431-440.
[http://dx.doi.org/10.1080/00387010.2019.1659824]
[56]
Halappa, P.; Mathur, A.; Delville, M.H.; Shivakumara, C. Alkali metal ion co-doped Eu3+ activated GdPO4 phosphors: Structure and photoluminescence properties. J. Alloys Compd., 2018, 740, 1086-1098.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.087]
[57]
Park, W.B.; Song, Y.; Pyo, M.; Sohn, K.S. Nonradiative energy transfer between two different activator sites in La_4−xCa_xSi_12O_3+xN_18−x:Eu^2+. Opt. Lett., 2013, 38(10), 1739-1741.
[http://dx.doi.org/10.1364/OL.38.001739] [PMID: 23938929]
[58]
Gautier, R.; Li, X.; Xia, Z.; Massuyeau, F. Two-step design of a single-doped white phosphor with high color rendering. J. Am. Chem. Soc., 2017, 139(4), 1436-1439.
[http://dx.doi.org/10.1021/jacs.6b12597] [PMID: 28098997]
[59]
Dai, P.; Wang, Q.; Xiang, M.; Chen, T.M.; Zhang, X.; Chiang, Y.W.; Chan, T-S.; Wang, X. Composition-driven anionic disorder-order transformations triggered single-Eu2+-converted high-color-rendering white-light phosphors. Chem. Eng. J., 2020, 380, 122508.
[http://dx.doi.org/10.1016/j.cej.2019.122508]
[60]
Huang, Y.F.; Chi, Y.C.; Cheng, C.H.; Tsai, C.T.; Wang, W.C.; Huang, D.W.; Chen, L-Y.; Lin, G-R. LuAG:Ce/CASN:Eu phosphor enhanced high-CRI R/G/B LD lighting fidelity. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(31), 9556-9563.
[http://dx.doi.org/10.1039/C9TC01586H]
[61]
Hermus, M.; Phan, P.C.; Duke, A.C.; Brgoch, J. Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series: Ba 2 (Y1– x Lux)5B5O17:Ce3+ (x = 0–1). Chem. Mater., 2017, 29(12), 5267-5275.
[http://dx.doi.org/10.1021/acs.chemmater.7b01416]
[62]
Giordano, L.; Du, H.; Castaing, V.; Luan, F.; Guo, D.; Viana, B. Enhanced red-UC luminescence through Ce3+ co-doping in NaBiF4:Yb3+/Ho3+(Er3+)/Ce3+ phosphors prepared by ultrafast coprecipitation approach. Opt. Mater.: X., 2022, 16, 100199.
[http://dx.doi.org/10.1016/j.omx.2022.100199]
[63]
Oh, J.H.; Oh, J.R.; Park, H.K.; Sung, Y.G.; Do, Y.R. New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs. Opt. Express, 2011, 19(S3), A270-A279.
[http://dx.doi.org/10.1364/OE.19.00A270] [PMID: 21643368]
[64]
Zhang, Z.; Li, J.; Yang, N.; Liang, Q.; Xu, Y.; Fu, S.; Yan, J.; Zhou, J.; Shi, J.; Wu, M. A novel multi-center activated single-component white light-emitting phosphor for deep UV chip-based high color-rendering WLEDs. Chem. Eng. J., 2020, 390, 124601.
[http://dx.doi.org/10.1016/j.cej.2020.124601]
[65]
Zhang, X.; Zhu, Z.; Guo, Z.; Sun, Z.; Yang, Z.; Zhang, T.; Zhang, J.; Wu, Z.; Wang, Z. Dopant preferential site occupation and high efficiency white emission in K 2 BaCa(PO 4) 2:Eu 2+, Mn 2+ phosphors for high quality white LED applications. Inorg. Chem. Front., 2019, 6(5), 1289-1298.
[http://dx.doi.org/10.1039/C9QI00138G]
[66]
Leng, Z.; Zhang, D.; Bai, H.; He, H.; Qing, Q.; Zhao, J.; Tang, Z. A zero-thermal-quenching perovskite-like phosphor with an ultra-narrow-band blue-emission for wide color gamut backlight display applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(39), 13722-13732.
[http://dx.doi.org/10.1039/D1TC03317D]
[67]
Green, M.A.; Keevers, M.J.; Thomas, I.; Lasich, J.B.; Emery, K.; King, R.R. 40% efficient sunlight to electricity conversion. Prog. Photovolt. Res. Appl., 2015, 23(6), 685-691.
[http://dx.doi.org/10.1002/pip.2612]
[68]
Soumya, C.; Deepanraj, B.; Ranjitha, J. A review on solar photovoltaic systems and its application in electricity generation.AIP Conf. Proc; , 2021, 2396, p. 020011.
[http://dx.doi.org/10.1063/5.0066291]
[69]
Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X, 2019, 4(1), 1548305.
[http://dx.doi.org/10.1080/23746149.2018.1548305]
[70]
Rasool, S.; Yeop, J.; An, N.G.; Kim, J.W.; Kim, J.Y. Role of charge‐carrier dynamics toward the fabrication of efficient air‐processed organic solar cells. Small Methods, 2023, 2300578.
[http://dx.doi.org/10.1002/smtd.202300578] [PMID: 37649231]
[71]
Kochergin, V.; Neely, L.; Jao, C.Y.; Robinson, H.D. Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices. Appl. Phys. Lett., 2011, 98(13), 133305.
[http://dx.doi.org/10.1063/1.3574091]
[72]
Zhang, P.; Wang, T.; Chang, X.; Gong, J. Effective charge carrier utilization in photocatalytic conversions. Acc. Chem. Res., 2016, 49(5), 911-921.
[http://dx.doi.org/10.1021/acs.accounts.6b00036] [PMID: 27075166]
[73]
Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys., 2021, 129(24), 240901.
[http://dx.doi.org/10.1063/5.0048653]
[74]
Chauhan, V.; Kumar, Y.; Gupta, D.; Sharma, A. Quantum dots and nanoparticles in light-emitting diodes and displays applications. In: Advanced Materials for Solid State Lighting; Springer, 2023; pp. 253-277.
[http://dx.doi.org/10.1007/978-981-99-4145-2_10]
[75]
Jin, G.Q.; Chau, C.V.; Arambula, J.F.; Gao, S.; Sessler, J.L.; Zhang, J.L. Lanthanide porphyrinoids as molecular theranostics. Chem. Soc. Rev., 2022, 51(14), 6177-6209.
[http://dx.doi.org/10.1039/D2CS00275B] [PMID: 35792133]
[76]
Zhu, X.; Zhang, H.; Zhang, F. Ligand-based surface engineering of lanthanide nanoparticles for bioapplications. ACS Mater. Lett., 2022, 4(9), 1815-1830.
[http://dx.doi.org/10.1021/acsmaterialslett.2c00528]
[77]
Xu, D. Lanthanide-activated upconversion luminescent nanomaterials. In: Upconversion Nanoparticles (UCNPs) for Functional Applications; Springer, 2023; pp. 165-192.
[http://dx.doi.org/10.1007/978-981-99-3913-8_7]
[78]
Feng, R.; Li, G.; Ko, C.N.; Zhang, Z.; Wan, J.B.; Zhang, Q.W. Long‐lived second near‐infrared luminescent probes: An emerging role in time‐resolved luminescence bioimaging and biosensing. Small Struct., 2023, 4(2), 2200131.
[http://dx.doi.org/10.1002/sstr.202200131]
[79]
Li, X.; Liang, H.; Zheng, C.; Zhao, C.; Bai, S.; Zhao, X.; Zhang, H.; Zhu, Y. White light emitting diodes based on lanthanide ions doped Cs2NaInCl6 double perovskites. J. Alloys Compd., 2023, 966, 171542.
[http://dx.doi.org/10.1016/j.jallcom.2023.171542]
[80]
Rafique, R.; Kailasa, S.K.; Park, T.J. Upconversion-luminescent nanomaterials for biomedical applications. In: Upconversion Nanophosphors; Elsevier, 2022; pp. 337-374.
[http://dx.doi.org/10.1016/B978-0-12-822842-5.00005-4]
[81]
Pham, H.; Miller, L.W. Lanthanide-based resonance energy transfer biosensors for live-cell applications. In: Methods Enzymol; , 2021; 651, pp. 291-311.
[http://dx.doi.org/10.1016/bs.mie.2021.01.010]
[82]
Tiwari, A.; Dhoble, S.J. Tunable lanthanide/transition metal ion‐doped novel phosphors for possible application in w‐LEDs: A review. Luminescence, 2020, 35(1), 4-33.
[http://dx.doi.org/10.1002/bio.3712] [PMID: 31647168]
[83]
Revathy, J.S.; Abraham, M.; Jagannath, G.; Rajendran, D.N.; Das, S. Microwave-assisted synthesis of GdOF: Eu3+/Tb3+ ultrafine phosphor powders suitable for advanced forensic and security ink applications. J. Colloid Interface Sci., 2023, 641, 1014-1032.
[http://dx.doi.org/10.1016/j.jcis.2023.03.082] [PMID: 36996681]
[84]
Yao, J.; Yang, M.; Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev., 2014, 114(12), 6130-6178.
[http://dx.doi.org/10.1021/cr200359p] [PMID: 24779710]
[85]
Wang, T.; Wang, X.; Yang, R.; Li, C. Recent advances in ternary organic solar cells based on förster resonance energy transfer. Sol. RRL, 2021, 5(12), 2100496.
[http://dx.doi.org/10.1002/solr.202100496]
[86]
Cardoso Dos Santos, M.; Algar, W.R.; Medintz, I.L.; Hildebrandt, N. Quantum dots for Förster Resonance Energy Transfer (FRET). Trends Analyt. Chem., 2020, 125, 115819.
[http://dx.doi.org/10.1016/j.trac.2020.115819]
[87]
Grazon, C.; Chern, M.; Lally, P.; Baer, R.C.; Fan, A.; Lecommandoux, S.; Klapperich, C.; Dennis, A.M.; Galagan, J.E.; Grinstaff, M.W. The quantum dot vs. organic dye conundrum for ratiometric FRET-based biosensors: Which one would you chose? Chem. Sci., 2022, 13(22), 6715-6731.
[http://dx.doi.org/10.1039/D1SC06921G] [PMID: 35756504]
[88]
Yang, Q.; Hu, Z.; Zhu, S.; Ma, R.; Ma, H.; Ma, Z.; Wan, H.; Zhu, T.; Jiang, Z.; Liu, W.; Jiao, L.; Sun, H.; Liang, Y.; Dai, H. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc., 2018, 140(5), 1715-1724.
[http://dx.doi.org/10.1021/jacs.7b10334] [PMID: 29337545]
[89]
Wallace, B.; Atzberger, P.J. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency. PLoS One, 2017, 12(5), e0177122.
[http://dx.doi.org/10.1371/journal.pone.0177122] [PMID: 28542211]
[90]
Steele, J.M.; Ramnarace, C.M.; Farner, W.R. Controlling FRET enhancement using plasmon modes on gold nanogratings. J. Phys. Chem. C, 2017, 121(40), 22353-22360.
[http://dx.doi.org/10.1021/acs.jpcc.7b07317]
[91]
Joglekar, A.; Chen, R.; Lawrimore, J. A sensitized emission based calibration of FRET efficiency for probing the architecture of macromolecular machines. Cell. Mol. Bioeng., 2013, 6(4), 369-382.
[http://dx.doi.org/10.1007/s12195-013-0290-y] [PMID: 24319499]
[92]
Wang, J.; Sheng, T.; Zhu, X.; Li, Q.; Wu, Y.; Zhang, J.; Liu, J.; Zhang, Y. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications. Mater. Chem. Front., 2021, 5(4), 1743-1770.
[http://dx.doi.org/10.1039/D0QM00910E]
[93]
Liu, J.; Wang, Q.; Sang, X.; Hu, H.; Li, S.; Zhang, D.; Liu, C.; Wang, Q.; Zhang, B.; Wang, W.; Song, F. Modulated luminescence of lanthanide materials by local surface plasmon resonance effect. Nanomaterials, 2021, 11(4), 1037.
[http://dx.doi.org/10.3390/nano11041037] [PMID: 33921613]
[94]
Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater., 2020, 32(38), 2001763.
[http://dx.doi.org/10.1002/adma.202001763] [PMID: 32754970]
[95]
Zhang, C.; Baktash, A.; Zhong, J.X.; Chen, W.; Bai, Y.; Hao, M.; Chen, P.; He, D.; Ding, S.; Steele, J.A.; Lin, T.; Lyu, M.; Wen, X.; Wu, W-Q.; Wang, L. Dual metal‐assisted defect engineering towards high‐performance perovskite solar cells. Adv. Funct. Mater., 2022, 32(52), 2208077.
[http://dx.doi.org/10.1002/adfm.202208077]
[96]
Shinde, K.N.; Dhoble, S.J.; Swart, H.C.; Park, K. Basic mechanisms of photoluminescence. In: Phosphate Phosphors for Solid-State Lighting; Springer, 2012; pp. 41-59.
[http://dx.doi.org/10.1007/978-3-642-34312-4_2]
[97]
Wang, Y.; Ding, J.; Zhou, X.; Wang, Y. Promotion of efficiency and thermal stability by restraining dynamic energy migration based on the highly symmetric rigid structure in the n-UV excitation green emission garnet phosphors. Chem. Eng. J., 2020, 381, 122528.
[http://dx.doi.org/10.1016/j.cej.2019.122528]
[98]
Lin, Y.C.; Bettinelli, M.; Karlsson, M. Unraveling the mechanisms of thermal quenching of luminescence in Ce 3+ -doped garnet phosphors. Chem. Mater., 2019, 31(11), 3851-3862.
[http://dx.doi.org/10.1021/acs.chemmater.8b05300]
[99]
Lv, X.; Guo, N.; Xiao, R.; Ma, Q.; Liu, R.; Yang, M.; Shao, B.; Ouyang, R. Tuning the thermal quenching properties of Ga3+-modified LiTaO3:Bi3+ phosphor through defect engineering strategy. J. Lumin., 2023, 255, 119609.
[http://dx.doi.org/10.1016/j.jlumin.2022.119609]
[100]
Fang, Z.; He, H.; Gan, L.; Li, J.; Ye, Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv. Sci., 2018, 5(12), 1800736.
[http://dx.doi.org/10.1002/advs.201800736] [PMID: 30581694]
[101]
Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light‐emitting diodes for display applications. Adv. Mater., 2019, 31(34), 1804294.
[http://dx.doi.org/10.1002/adma.201804294] [PMID: 30650209]
[102]
Chaudhary, B.; Jain, N.K.; Murugesan, J.; Patel, V. Exploring temperature-controlled friction stir powder additive manufacturing process for multi-layer deposition of aluminum alloys. J. Mater. Res. Technol., 2022, 20, 260-268.
[http://dx.doi.org/10.1016/j.jmrt.2022.07.049]
[103]
Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T.; Snaith, H.J. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater., 2016, 6(8), 1502458.
[http://dx.doi.org/10.1002/aenm.201502458]
[104]
Yang, T.; Gao, L.; Lu, J.; Ma, C.; Du, Y.; Wang, P.; Ding, Z.; Wang, S.; Xu, P.; Liu, D.; Li, H.; Chang, X.; Fang, J.; Tian, W.; Yang, Y.; Liu, S.; Zhao, K. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun., 2023, 14(1), 839.
[http://dx.doi.org/10.1038/s41467-023-36229-1] [PMID: 36792606]
[105]
Aydin, E.; Ugur, E.; Yildirim, B.K.; Allen, T.G.; Dally, P.; Razzaq, A.; Cao, F.; Xu, L.; Vishal, B.; Yazmaciyan, A.; Said, A.A.; Zhumagali, S.; Azmi, R.; Babics, M.; Fell, A.; Xiao, C.; De Wolf, S. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988), 732-738.
[http://dx.doi.org/10.1038/s41586-023-06667-4] [PMID: 37769785]
[106]
Schmidt, F.; Amrein, M.; Hedwig, S.; Kober-Czerny, M.; Paracchino, A.; Holappa, V.; Suhonen, R.; Schäffer, A.; Constable, E.C.; Snaith, H.J.; Lenz, M. Organic solvent free PbI2 recycling from perovskite solar cells using hot water. J. Hazard. Mater., 2023, 447, 130829.
[http://dx.doi.org/10.1016/j.jhazmat.2023.130829] [PMID: 36682249]
[107]
Zanoni, K.P.S.; Pérez-del-Rey, D.; Dreessen, C.; Rodkey, N.; Sessolo, M.; Soltanpoor, W.; Morales-Masis, M.; Bolink, H.J. Tin(IV) oxide electron transport layer via industrial-scale pulsed laser deposition for planar perovskite solar cells. ACS Appl. Mater. Interfaces, 2023, 15(27), 32621-32628.
[http://dx.doi.org/10.1021/acsami.3c04387] [PMID: 37368062]
[108]
Huang, Y.M.; James Singh, K.; Hsieh, T.H.; Langpoklakpam, C.; Lee, T.Y.; Lin, C.C.; Li, Y.; Chen, F.C.; Chen, S.C.; Kuo, H.C.; He, J.H. Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14(11), 4042-4064.
[http://dx.doi.org/10.1039/D1NR05288H] [PMID: 35246672]
[109]
Manna, L. The Bright and Enlightening Science of Quantum Dots. Nano Lett., 2023, 23(21), 9673-9676.
[http://dx.doi.org/10.1021/acs.nanolett.3c03904] [PMID: 37870455]
[110]
Chen, X.; Lin, X.; Zhou, L.; Sun, X.; Li, R.; Chen, M.; Yang, Y.; Hou, W.; Wu, L.; Cao, W.; Zhang, X.; Yan, X.; Chen, S. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun., 2023, 14(1), 284.
[http://dx.doi.org/10.1038/s41467-023-35954-x] [PMID: 36650161]
[111]
Gao, Y.; Li, B.; Liu, X.; Shen, H.; Song, Y.; Song, J.; Yan, Z.; Yan, X.; Chong, Y.; Yao, R.; Wang, S.; Li, L.S.; Fan, F.; Du, Z. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol., 2023, 18(10), 1168-1174.
[http://dx.doi.org/10.1038/s41565-023-01441-z] [PMID: 37474685]
[112]
Yuan, J.; Tian, J. Ligand engineering of CsPbI 3 quantum dots for efficient solar cells. J. Phys. Chem. C, 2023, 127(26), 12520-12527.
[http://dx.doi.org/10.1021/acs.jpcc.3c02711]
[113]
Bronstein, H.; Nielsen, C.B.; Schroeder, B.C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem., 2020, 4(2), 66-77.
[http://dx.doi.org/10.1038/s41570-019-0152-9] [PMID: 37128048]
[114]
Li, Y.; Huang, B.; Zhang, X.; Ding, J.; Zhang, Y.; Xiao, L.; Wang, B.; Cheng, Q.; Huang, G.; Zhang, H.; Yang, Y.; Qi, X.; Zheng, Q.; Zhang, Y.; Qiu, X.; Liang, M.; Zhou, H. Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nat. Commun., 2023, 14(1), 1241.
[http://dx.doi.org/10.1038/s41467-023-36937-8] [PMID: 36871022]
[115]
Wang, S.; Wang, B.; He, S.; Wang, Y.; Cheng, J.; Li, Y. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells via introducing binary-mixed organic electron transport layers. New J. Chem., 2023, 47(10), 5048-5055.
[http://dx.doi.org/10.1039/D2NJ05127C]
[116]
Mutlu, A.; Çırak, D.; Yeşil, T.; Zafer, C.; Gultekin, B. New additive as Li+ source for charge transfer improvement at triple-cation perovskite/Spiro-OMeTAD interface. Org. Electron., 2023, 113, 106674.
[http://dx.doi.org/10.1016/j.orgel.2022.106674]
[117]
Wengeler, B. Organic Electronics -New printed Electrodes Concepts; Institut Fur Thermische Verfahrenstechnik, 2020.
[118]
Talapin, D.V.; Steckel, J. Quantum dot light-emitting devices. MRS Bull., 2013, 38(9), 685-691.
[http://dx.doi.org/10.1557/mrs.2013.204]
[119]
Zhou, Y.; Herz, L.M.; Jen, A.K.Y.; Saliba, M. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy, 2022, 7(9), 794-807.
[http://dx.doi.org/10.1038/s41560-022-01096-5]
[120]
Kumar, A.; Dutta, S.; Kim, S.; Kwon, T.; Patil, S.S.; Kumari, N.; Jeevanandham, S.; Lee, I.S. Solid-state reaction synthesis of nanoscale materials: Strategies and applications. Chem. Rev., 2022, 122(15), 12748-12863.
[http://dx.doi.org/10.1021/acs.chemrev.1c00637] [PMID: 35715344]
[121]
Katbe, CR Synthesis and application of photoluminescent doped lanthanide oxide microspheres using the reaction-diffusion framework (RDF). In: Thesis; Faculty of Arts and Sciences; , 2023.
[122]
Ayachi, F.; Saidi, K.; Chaabani, W.; Dammak, M. Synthesis and luminescence properties of Er3+ doped and Er3+–Yb3+ codoped phosphovanadate YP0.5V0.5O4 phosphors. J. Lumin., 2021, 240, 118451.
[http://dx.doi.org/10.1016/j.jlumin.2021.118451]
[123]
Devi, H.J.; Loitongbam, R.S.; Singh, W.R. Luminescence switching in Ce 3+ ion sensitized YPO 4:Tb 3+ through Redox reaction. Mater. Res. Bull., 2017, 92, 74-84.
[http://dx.doi.org/10.1016/j.materresbull.2017.03.056]
[124]
Yan, Y.; Shang, M.; Huang, S.; Wang, Y.; Sun, Y.; Dang, P.; Lin, J. Photoluminescence properties of AScSi 2 O 6:Cr 3+ (A = Na and Li) phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources. ACS Appl. Mater. Interfaces, 2022, 14(6), 8179-8190.
[http://dx.doi.org/10.1021/acsami.1c23940] [PMID: 35113521]
[125]
Vishwakarma, P.K.; Rai, S.B.; Bahadur, A. Enhanced green up/down-conversion emissions through phase transformation in Ho3+/Yb3+ co-doped Y2O3:ZrO2 phosphors in presence of Na+ ions. Opt. Mater., 2023, 139, 113814.
[http://dx.doi.org/10.1016/j.optmat.2023.113814]
[126]
So Rui, A.; Alessandro, M.; Luis, S.; Rocío, E.R.H. Sol-Gel Derived Optical and Photonic Materials; Elsevier, 2020.
[http://dx.doi.org/10.1016/C2018-0-02962-X]
[127]
Feng, S.; Xu, R. New materials in hydrothermal synthesis. Acc. Chem. Res., 2001, 34(3), 239-247.
[http://dx.doi.org/10.1021/ar0000105] [PMID: 11263882]
[128]
Zhou, J.; Leaño, J.L., Jr; Liu, Z.; Jin, D.; Wong, K.L.; Liu, R.S.; Bünzli, J.C.G. Impact of lanthanide nanomaterials on photonic devices and smart applications. Small, 2018, 14(40), 1801882.
[http://dx.doi.org/10.1002/smll.201801882] [PMID: 30066496]
[129]
Xia, D.; Li, J.; Gao, M.; Zhou, T.; Zhao, S.; Zhang, J.; Li, G. Lanthanide-hydrogel with reversible dual-stimuli responsive luminescent switching property for data protection. Inorg. Chim. Acta, 2023, 556, 121633.
[http://dx.doi.org/10.1016/j.ica.2023.121633]
[130]
Staszak, K.; Wieszczycka, K.; Marturano, V.; Tylkowski, B. Lanthanides complexes – Chiral sensing of biomolecules. Coord. Chem. Rev., 2019, 397, 76-90.
[http://dx.doi.org/10.1016/j.ccr.2019.06.017]
[131]
Bottrill, M.; Kwok, L.; Long, N.J. Lanthanides in magnetic resonance imaging. Chem. Soc. Rev., 2006, 35(6), 557-571.
[http://dx.doi.org/10.1039/b516376p] [PMID: 16729149]
[132]
Zhao, C.; Gao, Y.; Zhou, D.; Zhu, F.; Chen, J.; Qiu, J. High-efficiency dual-mode luminescence of metal halide perovskite Cs3Bi2Cl9:Er3+ and its use in optical temperature measurement with high sensitivity. J. Alloys Compd., 2023, 944, 169134.
[http://dx.doi.org/10.1016/j.jallcom.2023.169134]
[133]
Zhang, Y.; Liu, S.; Zhao, Z.S.; Wang, Z.; Zhang, R.; Liu, L.; Han, Z-B. Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorg. Chem. Front., 2021, 8(3), 590-619.
[http://dx.doi.org/10.1039/D0QI01191F]
[134]
Zeng, M.; Ren, A.; Wu, W.; Zhao, Y.; Zhan, C.; Yao, J. Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chem. Sci., 2020, 11(34), 9154-9161.
[http://dx.doi.org/10.1039/D0SC02856H] [PMID: 34123164]
[135]
Dong, H.; Sun, L.D.; Yan, C.H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev., 2015, 44(6), 1608-1634.
[http://dx.doi.org/10.1039/C4CS00188E] [PMID: 25242465]
[136]
Lu, L.; Sun, M.; Lu, Q.; Wu, T.; Huang, B. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy, 2021, 79, 105437.
[http://dx.doi.org/10.1016/j.nanoen.2020.105437]
[137]
Kumar, A.; Kumar, A.; Chand, H.; Krishnan, V. Upconversion nanomaterials for photocatalytic applications. In: Upconversion Nanophosphors; Elsevier, 2022; pp. 391-406.
[http://dx.doi.org/10.1016/B978-0-12-822842-5.00014-5]
[138]
Singh, P.; Kachhap, S.; Singh, P.; Singh, S.K. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord. Chem. Rev., 2022, 472, 214795.
[http://dx.doi.org/10.1016/j.ccr.2022.214795]
[139]
Sarkar, D.; Ganguli, S.; Samanta, T.; Mahalingam, V. Design of lanthanide-doped colloidal nanocrystals: Applications as phosphors, sensors, and photocatalysts. Langmuir, 2019, 35(19), 6211-6230.
[http://dx.doi.org/10.1021/acs.langmuir.8b01593] [PMID: 30149717]
[140]
Li, H.; Bai, G.; Lian, Y.; Li, Y.; Chen, L.; Zhang, J.; Xu, S. Advances in near-infrared-activated lanthanide-doped optical nanomaterials: Imaging, sensing, and therapy. Mater. Des., 2023, 231, 112036.
[http://dx.doi.org/10.1016/j.matdes.2023.112036]
[141]
Ravina, P.K.; Poria, K.; Sahu, M.K.; Kumar, A.; Anu; Dahiya, S.; Deopa, N.; Rao, A.S. Energy transfer mechanisms and color-tunable luminescence of Tm 3+/Tb 3+/Eu 3+ co-doped Sr 4 Nb 2 O 9 phosphors for high-quality white light-emitting diodes. RSC Advances, 2023, 13(48), 33675-33687.
[http://dx.doi.org/10.1039/D3RA05519A] [PMID: 38020000]
[142]
Naresh, V.; Adusumalli, V.N.K.B.; Park, Y.I.; Lee, N. NIR triggered NaYF4:Yb3+,Tm3+@NaYF4/CsPb(Br1-x/Ix)3 composite for up-converted white-light emission and dual-model anti-counterfeiting applications. Mater. Today Chem., 2022, 23, 100752.
[http://dx.doi.org/10.1016/j.mtchem.2021.100752]
[143]
Kunti, A.K.; Banerjee, D. Lanthanide-doped phosphor: An overview. In: Phosphor Handbook; Elsevier, 2023; pp. 47-72.
[http://dx.doi.org/10.1016/B978-0-323-90539-8.00006-1]
[144]
Ayoub, I.; Sehgal, R.; Sharma, V.; Sehgal, R.; Swart, H.C.; Kumar, V. Rare-earth doped inorganic materials for light-emitting applications. In: Advanced Materials for Solid State Lighting; , 2023; pp. 1-30.
[http://dx.doi.org/10.1007/978-981-99-4145-2_1]
[145]
Bispo-Jr, A.G.; de Morais, A.J.; Calado, C.M.S.; Mazali, I.O.; Sigoli, F.A. Lanthanide-doped luminescent perovskites: A review of synthesis, properties, and applications. J. Lumin., 2022, 252, 119406.
[http://dx.doi.org/10.1016/j.jlumin.2022.119406]
[146]
Matakgane, M.; Mokoena, T.P.; Mhlongo, M.R. Recent trends of oxides heterostructures based upconversion phosphors for improving power efficiencies of solar cells: A review. Inorg. Chem. Commun., 2023, 156, 111202.
[http://dx.doi.org/10.1016/j.inoche.2023.111202]
[147]
Krishnan, R.; Swart, H.C. Luminescence properties of octahedrally and tetrahedrally coordinated Mo6+ in the solid solutions: Judd–Ofelt investigation. J. Phys. Chem. Solids, 2020, 144, 109519.
[http://dx.doi.org/10.1016/j.jpcs.2020.109519]
[148]
Saidi, K.; Hernández-Álvarez, C.; Runowski, M.; Dammak, M.; Rafael Martín Benenzuela, I. Temperature and pressure sensing using an optical platform based on upconversion luminescence in NaSrY(MoO 4) 3 codoped with Er 3+ and Yb 3+ nanophosphors. ACS Appl. Nano Mater., 2023, 6(20), 19431-19442.
[http://dx.doi.org/10.1021/acsanm.3c04031]
[149]
Hariyani, S.; Brgoch, J.; Garcia-Santamaria, F.; Sista, S.P.; Murphy, J.E.; Setlur, A.A. From lab to lamp: Understanding downconverter degradation in LED packages. J. Appl. Phys., 2022, 132(19), 190901.
[http://dx.doi.org/10.1063/5.0122735]
[150]
Peña-García, A.; Salata, F. The perspective of total lighting as a key factor to increase the sustainability of strategic activities. Sustainability, 2020, 12(7), 2751.
[http://dx.doi.org/10.3390/su12072751]
[151]
Chitnis, D.; Thejo kalyani, N.; Swart, H.C.; Dhoble, S.J. Escalating opportunities in the field of lighting. Renew. Sustain. Energy Rev., 2016, 64, 727-748.
[http://dx.doi.org/10.1016/j.rser.2016.06.041]
[152]
Datt, R.; Bishnoi, S.; Hughes, D.; Mahajan, P.; Singh, A.; Gupta, R.; Arya, S.; Gupta, V.; Tsoi, W.C. Downconversion materials for perovskite solar cells. Sol. RRL, 2022, 6(8), 2200266.
[http://dx.doi.org/10.1002/solr.202200266]
[153]
Zhao, M.; Liao, H.; Molokeev, M.S.; Zhou, Y.; Zhang, Q.; Liu, Q.; Xia, Z. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light Sci. Appl., 2019, 8(1), 38.
[http://dx.doi.org/10.1038/s41377-019-0148-8] [PMID: 30992988]
[154]
Mehare, M.D.; Mehare, C.M.; Swart, H.C.; Dhoble, S.J. Recent development in color tunable phosphors: A review. Prog. Mater. Sci., 2023, 133, 101067.
[http://dx.doi.org/10.1016/j.pmatsci.2022.101067]
[155]
Zhang, C.; Uchikoshi, T.; Takeda, T.; Hirosaki, N. Research progress on surface modifications for phosphors used in light-emitting diodes (LEDs). Phys. Chem. Chem. Phys., 2023, 25(36), 24214-24233.
[http://dx.doi.org/10.1039/D3CP01658G] [PMID: 37691583]
[156]
Limbu, S.; Singh, L.R. Downconverted significant luminescence enhancement and structural confinement of a dichromatic nanophosphor for potential applications in NUV-triggered cool pc-WLEDs. J. Mol. Struct., 2023, 1286, 135549.
[http://dx.doi.org/10.1016/j.molstruc.2023.135549]
[157]
Parauha, Y.R.; Dhoble, S.J. Enhancement of photoluminescence and tunable properties for Ce3+, Eu2+ activated Na2CaSiO4 downconversion phosphor: A novel approach towards spectral conversion. J. Lumin., 2022, 251, 119173.
[http://dx.doi.org/10.1016/j.jlumin.2022.119173]
[158]
Nair, G.B.; Tamboli, S.; Dhoble, S.J.; Swart, H.C. Conversion phosphors: An overview. Phosphor Handbook; Elsevier, 2023, pp. 73-98.
[http://dx.doi.org/10.1016/B978-0-323-90539-8.00012-7]
[159]
Yang, Y.; Li, F.; Lu, Y.; Du, Y.; Wang, L.; Chen, S.; Ouyang, X.; Li, Y.; Zhao, L.; Zhao, J.; Deng, B.; Yu, R. CaGdSbWO8:Sm3+: A deep-red tungstate phosphor with excellent thermal stability for horticultural and white lighting applications. J. Lumin., 2022, 251, 119234.
[http://dx.doi.org/10.1016/j.jlumin.2022.119234]
[160]
Kumar, P.; Singh, D.; Gupta, I.; Singh, S.; Nehra, S.; Kumar, R. Er3+-doped Y4Al2O9 nanophosphors for advance display applications: Synthesis, crystal chemistry and down conversion photoluminescent investigation. Mater. Chem. Phys., 2023, 301, 127610.
[http://dx.doi.org/10.1016/j.matchemphys.2023.127610]
[161]
Wei, J.; Liu, Z.; Sun, Z.; Li, Y.; Wu, C.; Zhao, L. Upconversion boosting pollutants degradation efficiency in wide-spectrum responsive photocatalysts. Chemosphere, 2022, 309(Pt 1), 136679.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136679] [PMID: 36195128]
[162]
Garcia, C.R.; Oliva, J.; Carranza, J.; Mtz-Enriquez, A.I.; Hdz-Garcia, H.M.; Santibañez, A.; Chavez, D. Green Upconversion of a SrLaAlO4:Yb,Er Phosphor and Its Application for LED Illumination. J. Electron. Mater., 2023, 52(2), 1357-1365.
[http://dx.doi.org/10.1007/s11664-022-10091-1]
[163]
Wang, Y.; Li, Y.; Ma, C.; Wen, Z.; Yuan, X.; Cao, Y. Temperature sensing properties of NaYTiO4: Yb/Tm phosphors based on near-infrared up-conversion luminescence. J. Lumin., 2022, 248, 118917.
[http://dx.doi.org/10.1016/j.jlumin.2022.118917]
[164]
Sun, X.; Jiang, S.; Huang, H.; Li, H.; Jia, B.; Ma, T. Solar energy catalysis. Angew. Chem. Int. Ed., 2022, 61(29), e202204880.
[http://dx.doi.org/10.1002/anie.202204880] [PMID: 35471594]
[165]
Chen, X.; Yao, W.; Wang, Q.; Wu, W. Designing multicolor dual‐mode lanthanide‐doped NaLuF4/Y2O3 composites for advanced anticounterfeiting. Adv. Opt. Mater., 2020, 8(2), 1901209.
[http://dx.doi.org/10.1002/adom.201901209]
[166]
Gou, H.; Wu, Q.; Luo, L.; Li, W.; Du, P. Reengineering the thermometric behaviors of Er3+/Yb3+-codoped Gd2Mo3O12 microparticles via dual-mode luminescence manipulation. Ceram. Int., 2023, 49(23), 38297-38304.
[http://dx.doi.org/10.1016/j.ceramint.2023.09.162]
[167]
Ayachi, F.; Saidi, K.; Dammak, M.; Chaabani, W.; Mediavilla-Martínez, I.; Jiménez, J. Dual-mode luminescence of Er3+/Yb3+ codoped LnP0.5V0.5O4 (Ln=Y, Gd, La) for highly sensitive optical nanothermometry. Mater. Today Chem., 2023, 27, 101352.
[http://dx.doi.org/10.1016/j.mtchem.2022.101352]
[168]
Bai, X.; Cun, Y.; Xu, Z.; Zi, Y.; Haider, A.A.; Ullah, A.; Khan, I.; Qiu, J.; Song, Z.; Yang, Z. Multiple Anti-Counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4: Yb3+, Er3+, Bi3+ phosphor. Chem. Eng. J., 2022, 429, 132333.
[http://dx.doi.org/10.1016/j.cej.2021.132333]
[169]
Kumar, P.; Kanika; Singh, S.; Lahon, R.; Gundimeda, A.; Gupta, G.; Gupta, B.K. A strategy to design lanthanide doped dual-mode phosphor mediated spectral convertor for solar cell applications. J. Lumin., 2018, 196, 207-213.
[http://dx.doi.org/10.1016/j.jlumin.2017.12.035]
[170]
Liu, L.; Peng, S.; Lin, P.; Wang, R.; Zhong, H.; Sun, X.; Song, L.; Shi, J.; Zhang, Y. High-level information encryption based on optical nanomaterials with multi-mode luminescence and dual-mode reading. Inorg. Chem. Front., 2022, 9(17), 4433-4441.
[http://dx.doi.org/10.1039/D2QI00889K]
[171]
Labaki, H.P.; Borges, F.H.; Caixeta, F.J.; Gonçalves, R.R. Widely dual tunable visible and near infrared emission in Pr3+-doped yttrium tantalate: Pr3+ concentration dependence on radiative transitions from 3P0 to the 1D2. J. Lumin., 2021, 236, 118073.
[http://dx.doi.org/10.1016/j.jlumin.2021.118073]
[172]
Dong, B.; Yuan, Y.; Ding, M.; Bai, W.; Wu, S.; Ji, Z. Efficient dual-mode luminescence from lanthanide-doped core–shell nanoarchitecture for anti-counterfeiting applications. Nanotechnology, 2020, 31(36), 365705.
[http://dx.doi.org/10.1088/1361-6528/ab9676] [PMID: 32454473]
[173]
Xu, L.; Li, Y.; Pan, Q.; Wang, D.; Li, S.; Wang, G.; Chen, Y.; Zhu, P.; Qin, W. Dual-mode light-emitting lanthanide metal–organic frameworks with high water and thermal stability and their application in white LEDs. ACS Appl. Mater. Interfaces, 2020, 12(16), 18934-18943.
[http://dx.doi.org/10.1021/acsami.0c02999] [PMID: 32233390]
[174]
Li, H.; Li, L.; Mei, L.; Zhao, W.; Zhou, X.; Wang, Y.; Hua, Y.; Du, P. Thermally stable rare-earth-free double perovskite phosphors toward dual-mode optical thermometry and dual-functional lighting sources. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2023, 11(37), 12637-12648.
[http://dx.doi.org/10.1039/D3TC02471G]
[175]
Chen, C.; Jin, M.; Xiang, J.; Zheng, J.; Guo, P.; Guo, C. Blue-red dual color emitting phosphor Cs2NaLuCl6: Sb3+, Ho3+ for plant growth LEDs. Ceram. Int., 2023, 49(15), 25232-25239.
[http://dx.doi.org/10.1016/j.ceramint.2023.05.056]
[176]
Wang, X.; Shi, J.; Li, P.; Zheng, S.; Sun, X.; Zhang, H. LuPO4:Nd3+ nanophosphors for dual-mode deep tissue NIR-II luminescence/CT imaging. J. Lumin., 2019, 209, 420-426.
[http://dx.doi.org/10.1016/j.jlumin.2019.02.028]
[177]
Zhu, G.; Chen, L.; Zeng, F.; Gu, L.; Yu, X.; Li, X.; Jiang, J.; Guo, G.; Cao, J.; Tang, K.; Zhu, H.; Daldrup-Link, H.E.; Wu, M. GdVO 4:Eu 3+, Bi 3+ nanoparticles as a contrast agent for MRI and luminescence bioimaging. ACS Omega, 2019, 4(14), 15806-15814.
[http://dx.doi.org/10.1021/acsomega.9b00444] [PMID: 31592157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy