Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Pyridazine (1, 2-diazine): A Versatile Pharmacophore Known for its Utility in Biological Systems

Author(s): Swati Sharma*

Volume 20, Issue 7, 2024

Published on: 19 January, 2024

Article ID: e190124225869 Pages: 30

DOI: 10.2174/0115734072271233231113070640

Price: $65

Abstract

The present review describes the biological essence of pyridazine scaffold. Around 142 biologically potential pyridazine entities are gathered in a pile from documented literature. Some of them are commercially available drugs, few are naturally occurring pyridazine compounds, and a wide variety of compounds containing pyridazine moiety are biologically tested, and some are under clinical trials. Rather than collecting large quantities of data, an attempt is made to compile valuable entities. However, efforts have been made to compile the maximum literature in brief. The main motto of this review is to provide a combination of therapeutically active pyridazine containing compounds for further drug design, discovery, and development to contribute to future medicinal chemistry. Our approach is to bring the most biologically potent pyridazine derivatives to medicinal chemists, biologists, pharmacists, and organic chemists. The present work encompasses the literature from 2000-2022 from different and authentic sources. The work is divided according to the bioactive nature of pyridazine nucleus.

Graphical Abstract

[1]
García-Valverde, M.; Torroba, T. Sulfur-nitrogen heterocycles. Molecules, 2005, 10(2), 318-320.
[http://dx.doi.org/10.3390/10020318]
[2]
Cox, R.A. Macromolecular structure and properties of ribonucleic acids. Q. Rev. Chem. Soc., 1968, 22(4), 499-526.
[http://dx.doi.org/10.1039/qr9682200499]
[3]
Mitsuya, H.; Weinhold, K.J.; Furman, P.A.; St Clair, M.H.; Lehrman, S.N.; Gallo, R.C.; Bolognesi, D.; Barry, D.W.; Broder, S. 3′-Azido-3′-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA, 1985, 82(20), 7096-7100.
[http://dx.doi.org/10.1073/pnas.82.20.7096] [PMID: 2413459]
[4]
Hertel, L.W.; Boder, G.B.; Kroin, J.S.; Rinzel, S.M.; Poore, G.A.; Todd, G.C.; Grindey, G.B. Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res., 1990, 50(14), 4417-4422.
[PMID: 2364394]
[5]
Newell, P.C.; Tucker, R.G. Precursors of the pyrimidine moiety of thiamine. Biochem. J., 1968, 106(1), 271-277.
[http://dx.doi.org/10.1042/bj1060271] [PMID: 4889363]
[6]
Rajurkar, R.M.; Agarwal, V.A.; Thonte, S.S.; Ingale, R.G. Heterocyclic chemistry of quinoxaline and potential activities of quinoxaline derivatives. Pharmacophore, 2010, 1, 65.
[7]
Deniz, S.D.; Tijen, O.; Semiha, O.; Selda, O.M.; Fethi, S. Synthesis and Antimicrobial Activity of Some 3(2H)-Pyridazinone and 1(2H)-. Phthalazinone Derivatives. Turk. J. Chem., 2008, 32, 469-479.
[8]
Gökçe, M.; Utku, S.; Küpeli, E. Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives. Eur. J. Med. Chem., 2009, 44(9), 3760-3764.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.048] [PMID: 19535179]
[9]
Unsal-tan, O.; Ozadali, K.; Yes, O. Synthesis and evaluation of the analgesic activity of some new isoxazolo[4,5-d]pyridazin-4(5H)-one derivatives. Turk. J. Chem., 2011, 35, 121-130.
[10]
Bhat, M.A.; Ahmed, A.F.; Wen, Z.H.; Al-Omar, M.A.; Abdel-Aziz, H.A. Synthesis, anti-inflammatory and neuroprotective activity of pyrazole and pyrazolo[3,4-d]pyridazine bearing 3,4,5-trimethoxyphenyl. Med. Chem. Res., 2017, 26(7), 1557-1566.
[http://dx.doi.org/10.1007/s00044-017-1870-5]
[11]
Cao, S.; Qian, X.; Song, G.; Chai, B.; Jiang, Z. Synthesis and antifeedant activity of new oxadiazolyl 3(2H)-pyridazinones. J. Agric. Food Chem., 2003, 51(1), 152-155.
[http://dx.doi.org/10.1021/jf0208029] [PMID: 12502400]
[12]
Rathish, I.G.; Javed, K.; Bano, S.; Ahmad, S.; Alam, M.S.; Pillai, K.K. Synthesis and blood glucose lowering effect of novel pyridazinone substituted benzenesulfonylurea derivatives. Eur. J. Med. Chem., 2009, 44(6), 2673-2678.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.013] [PMID: 19171410]
[13]
Xu, H.; Zou, X.M.; Zhu, Y.Q.; Liu, B.; Tao, H.L.; Hu, X.H.; Song, H.B.; Hu, F.Z.; Wang, Y.; Yang, H.Z. Synthesis and herbicidal activity of novel α,α,α‐trifluoro‐ m ‐tolyl pyridazinone derivatives. Pest Manag. Sci., 2006, 62(6), 522-530.
[http://dx.doi.org/10.1002/ps.1195] [PMID: 16602079]
[14]
Huang, Q.; Kong, Y.; Liu, M.; Feng, J.; Liu, Y. Effect of oxadiazolyl 3(2H)-pyridazinone on the larval growth and digestive physiology of the armyworm, Pseudaletia separata. J. Insect Sci., 2008, 8(19), 1-7.
[http://dx.doi.org/10.1673/031.008.1901] [PMID: 20337556]
[15]
Sotelo, E.; Coelho, A.; Raviña, E. Pyridazine derivatives 32: Stille-based approaches in the synthesis of 5-substituted-6-phenyl-3(2H)-pyridazinones. Chem. Pharm. Bull. (Tokyo), 2003, 51(4), 427-430.
[http://dx.doi.org/10.1248/cpb.51.427] [PMID: 12672999]
[16]
Malinka, W. Synthesis of some pyrrolo[3,4-d]pyridazinones and their preliminary anticancer, antimycobacterial and CNS screening. ChemInform, 2001, 32(32) no.
[http://dx.doi.org/10.1002/chin.200132154] [PMID: 11400553]
[17]
Malinka, W.; Redzicka, A.; Lozach, O. New derivatives of pyrrolo[3,4-d]pyridazinone and their anticancer effects. Farmaco, 2004, 59(6), 457-462.
[http://dx.doi.org/10.1016/j.farmac.2004.03.002] [PMID: 15178308]
[18]
Aggarwal, R. Mamta; Sumran, G.; Torralba, M.C. Synthesis and structural studies of 3,6-disubstituted-bis-1,2,4-triazolo-[4,3-b][3′,4′-f]pyridazines. J. Mol. Struct., 2019, 1185, 379-391.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.082]
[19]
El-Ansary, A.K.; Kamal, A.M.; Al-Ghorafi, M.A. Design and synthesis of some thieno[2,3-c]pyridazine derivatives of expected anticancer activity. Med. Chem. Res., 2013, 22(6), 2589-2601.
[http://dx.doi.org/10.1007/s00044-012-0258-9]
[20]
Islam, M.; Siddiqui, A.A.; Rajesh, R.; Bakht, A.; Goyal, S. Synthesis and antimicrobial activity of some novel oxadiazole derivatives. Acta Pol. Pharm., 2008, 65(4), 441-447.
[PMID: 19051585]
[21]
Zou, X.J.; Lai, L.H.; Jin, G.Y.; Zhang, Z.X. Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J. Agric. Food Chem., 2002, 50(13), 3757-3760.
[http://dx.doi.org/10.1021/jf0201677] [PMID: 12059155]
[22]
Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis and anticonvulsant activity of novel 1-substituted-1,2-dihydro-pyridazine-3,6-diones. Biol. Pharm. Bull., 2003, 26(10), 1407-1411.
[http://dx.doi.org/10.1248/bpb.26.1407] [PMID: 14519945]
[23]
Gößnitzer, E.; Krbavcic, A.; Wendelin, W.; Krbavcic, M. Synthesis and structure investigations of potential sedative and anticonvulsant hydroxy- and Acetoxy-N-(3-oxobutyl)-pyrido[2,3-d]pyridazinones a. Monatsh. Chem., 2002, 133(9), 1177-1185.
[http://dx.doi.org/10.1007/s00706-002-0473-z]
[24]
Siddiqui, A.A.; Abdullah, M.M.; Arora, M.; Islam, M.; Ahmad, S.R. Synthesis of novel pyridazinones possessing anticonvulsant activity. Indian Drugs, 2006, 43, 790-794.
[25]
Costas, T.; Besada, P.; Piras, A.; Acevedo, L.; Yañez, M.; Orallo, F.; Laguna, R.; Terán, C. New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorg. Med. Chem. Lett., 2010, 20(22), 6624-6627.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.031] [PMID: 20880705]
[26]
Kumar, D.; Carron, R.; La Calle, C.; Jindal, D.; Bansal, R. Synthesis and evaluation of 2-substituted-6-phenyl-4,5-dihydropyridazin-3(2H)-ones as potent inodilators. Acta Pharm., 2008, 58(4), 393-405.
[http://dx.doi.org/10.2478/v1007-008-0021-4] [PMID: 19103574]
[27]
Kaieda, A.; Takahashi, M.; Takai, T.; Goto, M.; Miyazaki, T.; Hori, Y.; Unno, S.; Kawamoto, T.; Tanaka, T.; Itono, S.; Takagi, T.; Hamada, T.; Shirasaki, M.; Okada, K.; Snell, G.; Bragstad, K.; Sang, B.C.; Uchikawa, O.; Miwatashi, S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg. Med. Chem., 2018, 26(3), 647-660.
[http://dx.doi.org/10.1016/j.bmc.2017.12.031] [PMID: 29291937]
[28]
Chambon, J.P.; Feltz, P.; Heaulme, M.; Restle, S.; Schlichter, R.; Biziere, K.; Wermuth, C.G. An arylaminopyridazine derivative of gamma-aminobutyric acid (GABA) is a selective and competitive antagonist at the GABAA receptor site. Proc. Natl. Acad. Sci. USA, 1985, 82(6), 1832-1836.
[http://dx.doi.org/10.1073/pnas.82.6.1832] [PMID: 2984669]
[29]
Asif, M.; Singh, A. Exploring potential, synthetic methods and general chemistry of pyridazine and pyridazinone: A brief introduction. Int. J. Chemtech Res., 2010, 2, 1112-1128.
[30]
Wermuth, C.G. Are pyridazines privileged structures? MedChemComm, 2011, 2(10), 935-941.
[http://dx.doi.org/10.1039/C1MD00074H]
[31]
Asif, M. The Study of pyridazine compounds on prostanoids: Inhibitors of COX, cAMP Phosphodiesterase, and TXA2 Synthase. J. of Chem. Article ID, 2014, 703238, 1-16.
[32]
Asif, M. Overview on Emorfazone and other related 3(2H) Pyridazinone Analogues Displaying Analgesic and Anti-inflammatory Activity. Ann. Med. Chem. Res., 2015, 1, 1004.
[33]
Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Verma, G.; Khan, M.F.; Alam, M.M. The therapeutic journey of pyridazinone. Eur. J. Med. Chem., 2016, 123, 256-281.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.061] [PMID: 27484513]
[34]
Asif, M. A brief review on Triazin-pyridazinones: Synthesis and biological activities. Mongolian J. Chem, 2017, 17(43), 28-33.
[http://dx.doi.org/10.5564/mjc.v17i43.743]
[35]
Asif, M. Various chemical and biological activities of pyridazinone derivatives. Cent. Euro. J. Exp. Bio., 2017, 5, 1-19.
[36]
Han, Y.T.; Jung, J.W.; Kim, N.J. Recent advances in the synthesis of biologically active cinnoline, phthalazine and quinoxaline derivatives. Curr. Org. Chem., 2017, 21(14), 1265-1291.
[http://dx.doi.org/10.2174/1385272821666170221150901]
[37]
Asif, M. Diverse biologically active pyridazine analogs: A scaffold for the highly functionalized heterocyclic compounds. Rev. J. Chem., 2018, 8(3), 280-300.
[http://dx.doi.org/10.1134/S2079978018030019]
[38]
Feraldi-Xypolia, A.; Gomez Pardo, D.; Cossy, J. Synthesis of α‐(Trifluoromethyl)pyridazine Derivatives. Eur. J. Org. Chem., 2018, 2018(27-28), 3541-3553.
[http://dx.doi.org/10.1002/ejoc.201701412]
[39]
Wojcicka, A.; Nowicka-Zuchowska, A. Synthesis and biological activity of pyridopyridazine: A mini review. Mini Rev. Org. Chem., 2018, 16(1), 3-11.
[http://dx.doi.org/10.2174/1570193X15666180220155119]
[40]
Dubey, S.; Bhosle, P.A. Pyridazinone: An important element of pharmacophore possessing broad spectrum of activity. Med. Chem. Res., 2015, 24(10), 3579-3598.
[http://dx.doi.org/10.1007/s00044-015-1398-5]
[41]
Jaballah, M.; Serya, R.; Abouzid, K. Pyridazine based scaffolds as privileged structures in anti-cancer therapy. Drug Res., 2017, 67(3), 138-148.
[http://dx.doi.org/10.1055/s-0042-119992] [PMID: 28073115]
[42]
He, Z.X.; Gong, Y.P.; Zhang, X.; Ma, L.Y.; Zhao, W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur. J. Med. Chem., 2021, 209, 112946.
[http://dx.doi.org/10.1016/j.ejmech.2020.112946] [PMID: 33129590]
[43]
Garrido, A.; Vera, G.; Delaye, P.O.; Enguehard-Gueiffier, C. Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. Eur. J. Med. Chem., 2021, 226, 113867.
[http://dx.doi.org/10.1016/j.ejmech.2021.113867] [PMID: 34607244]
[44]
Ohkuma, H.; Sakai, F.; Nishiyama, Y.; Ohbayashi, M.; Imanishi, H.; Konishi, M.; Miyaki, T.; Koshiyama, H.; Kawaguchi, H. BBM-928, a new antitumor antibiotic complex I. Production, isolation, characterization and antitumor activity. J. Antibiot., 1980, 33(10), 1087-1097.
[http://dx.doi.org/10.7164/antibiotics.33.1087] [PMID: 7451357]
[45]
Konishi, M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyama, H.; Naito, T.; Kawaguchi, H. BBM-928, a new antitumor antibiotic complex. III. Structure determination of BBM-928 A, B and C. J. Antibiot., 1981, 34(2), 148-159.
[http://dx.doi.org/10.7164/antibiotics.34.148] [PMID: 7298509]
[46]
Huang, C.H.; Mirabelli, C.K.; Mong, S.; Crooke, S.T. Intermolecular cross-linking of DNA through bifunctional intercalation of an antitumor antibiotic, luzopeptin A (BBM-928A). Cancer Res., 1983, 43(6), 2718-2724.
[PMID: 6303566]
[47]
Gause, G.F. Antibiotic monomycin and its medical use. Antibiot. Chemother., 1963, 11, 51-60.
[http://dx.doi.org/10.1159/000430567]
[48]
Cho, J.Y.; Kwon, H.C.; Williams, P.G.; Jensen, P.R.; Fenical, W. Azamerone, a terpenoid phthalazinone from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales). Org. Lett., 2006, 8(12), 2471-2474.
[http://dx.doi.org/10.1021/ol060630r] [PMID: 16737291]
[49]
Grote, R.; Chen, Y.; Zeeck, A.; Chen, Z.; Zähner, H.; Mischnick-Lübbecke, P.; König, W.A. Metabolic products of microorganisms. 243. Pyridazomycin, a new antifungal antibiotic produced by Streptomyces violaceoniger. J. Antibiot., 1988, 41(5), 595-601.
[http://dx.doi.org/10.7164/antibiotics.41.595] [PMID: 3384747]
[50]
Shimada, N.; Morimoto, K.; Naganawa, H.; Takita, T.; Hamada, M.; Maeda, K.; Takeuchi, T.; Umezawa, H. Antrimycin, a new peptide antibiotic. J. Antibiot., 1981, 34(12), 1613-1614.
[http://dx.doi.org/10.7164/antibiotics.34.1613] [PMID: 7333974]
[51]
Teruaki, S.; Naoyuki, E.; Kazuo, F.; Toyoshiege, E.; Haruo, S.; Noboru, O.J. Isolation and structures of new peptide antibiotics, cirratiomycin A and B. Agric. Biol. Chem., 1982, 46, 865-867.
[52]
Umezawa, K.; Ikeda, Y.; Uchihata, Y.; Naganawa, H.; Kondo, S. Chloptosin, an apoptosis-inducing dimeric cyclohexapeptide produced by Streptomyces. J. Org. Chem., 2000, 65(2), 459-463.
[http://dx.doi.org/10.1021/jo991314b] [PMID: 10813957]
[53]
Ergün, B.C.; Nuñez, M.T.; Labeaga, L.; Ledo, F.; Darlington, J.; Bain, G.; Cakir, B.; Banoglu, E. Synthesis of 1,5-diarylpyrazol-3-propanoic acids towards inhibition of cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4 formation. Arzneimittelforschung, 2010, 60(8), 497-505.
[PMID: 20863006]
[54]
Çalışkan, B.; Luderer, S.; Özkan, Y.; Werz, O.; Banoglu, E. Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils. Eur. J. Med. Chem., 2011, 46(10), 5021-5033.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.009] [PMID: 21868137]
[55]
Cesari, N.; Biancalani, C.; Vergelli, C.; Dal Piaz, V.; Graziano, A.; Biagini, P.; Ghelardini, C.; Galeotti, N.; Giovannoni, M.P. Arylpiperazinylalkylpyridazinones and analogues as potent and orally active antinociceptive agents: Synthesis and studies on mechanism of action. J. Med. Chem., 2006, 49(26), 7826-7835.
[http://dx.doi.org/10.1021/jm060743g] [PMID: 17181165]
[56]
Erden, B.; Murat, S.; Burcu, C.E.; Sultan, N.B.; Eda, A.; Mustafa, A.R.K. Synthesis of the amide derivatives of 3-[1-(3-Pyridazinyl)-5-phenyl-1H-pyrazole-3-yl]propanoic acids as potential analgesic compounds. Turk. J. Chem., 2007, 31, 677-687.
[57]
Chintakunta, V.K.; Akella, V.; Vedula, M.S.; Mamnoor, P.K.; Mishra, P.; Casturi, S.R.; Vangoori, A.; Rajagopalan, R. 3-O-Substituted benzyl pyridazinone derivatives as COX inhibitors. Eur. J. Med. Chem., 2002, 37(4), 339-347.
[http://dx.doi.org/10.1016/S0223-5234(02)01336-3] [PMID: 11960669]
[58]
Saeed, M.M.; Khalil, N.A.; Ahmed, E.M.; Eissa, K.I. Synthesis and anti-inflammatory activity of novel pyridazine and pyridazinone derivatives as non-ulcerogenic agents. Arch. Pharm. Res., 2012, 35(12), 2077-2092.
[http://dx.doi.org/10.1007/s12272-012-1205-5] [PMID: 23263802]
[59]
Kaila, N.; Huang, A.; Moretto, A.; Follows, B.; Janz, K.; Lowe, M.; Thomason, J.; Mansour, T.S.; Hubeau, C.; Page, K.; Morgan, P.; Fish, S.; Xu, X.; Williams, C.; Saiah, E. Diazine indole acetic acids as potent, selective, and orally bioavailable antagonists of chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2) for the treatment of allergic inflammatory diseases. J. Med. Chem., 2012, 55(11), 5088-5109.
[http://dx.doi.org/10.1021/jm300007n] [PMID: 22651823]
[60]
Pandit, S.S.; Kulkarni, M.R.; Pandit, Y.B.; Lad, N.P.; Khedkar, V.M. Synthesis and in vitro evaluations of 6-(hetero)-aryl-imidazo[1,2-b]pyridazine-3-sulfonamide’s as an inhibitor of TNF-α production. Bioorg. Med. Chem. Lett., 2018, 28(1), 24-30.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.026] [PMID: 29173945]
[61]
Rodríguez-Sanz, A.; Sánchez-Alonso, P.; Bellón, T.; Alajarín, R.; Martínez-Cabeza, V.; Selgas, R.; Vaquero, J.J.; Álvarez-Builla, J. Synthesis and biological evaluation of pyridazino[1′,6′:1,2]pyrido[3,4-b]indolinium and pyridazino[1,6-a]benzimidazolium salts as anti-inflammatory agents. Eur. J. Med. Chem., 2015, 93, 83-92.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.060] [PMID: 25659754]
[62]
Asano, T.; Yamazaki, H.; Kasahara, C.; Kubota, H.; Kontani, T.; Harayama, Y.; Ohno, K.; Mizuhara, H.; Yokomoto, M.; Misumi, K.; Kinoshita, T.; Ohta, M.; Takeuchi, M. Identification, synthesis, and biological evaluation of 6-[(6 R)-2-(4-Fluorophenyl)-6-(hydroxymethyl)-4,5,6,7-tetrahydropyrazolo[1,5- a]pyrimidin-3-yl]-2-(2-methylphenyl)pyridazin-3(2 H)-one (AS1940477), a Potent p38 MAP Kinase Inhibitor. J. Med. Chem., 2012, 55(17), 7772-7785.
[http://dx.doi.org/10.1021/jm3008008] [PMID: 22905713]
[63]
Aggarwal, R.; Kaushik, P.; Kumar, A.; Saini, D. Design, synthesis and biological evaluation of 5-amino-3-aryl-1-(6′-chloropyridazin-3′-yl)pyrazoles and their Derivatives as Analgesic Agents. Drug Res., 2020, 70(11), 493-502.
[http://dx.doi.org/10.1055/a-1202-9959]
[64]
Aggarwal, R.S.; Kumar, V.; Singh, R.; Kajal, A.; Saini, D. Design, synthesis, and biological evaluation of N-[1-(6′-chloropyridazin-3′-yl)-3-(4”- substitutedphenyl)-1H-pyrazole-5-yl]alkanamides as anti-inflammatory agents. Drug Dev. Res., 2022, 83, 811-822.
[65]
Zaher, A.F.A.; Khalil, O.M.; Refaat, H.M. Synthesis and antiinflammatory activity of certain benzothieno[3,2-d][1,2,4]triazolo[4,3-b] pyridazine derivatives. Med. Chem. Res., 2012, 21(10), 3146-3153.
[http://dx.doi.org/10.1007/s00044-011-9847-2]
[66]
Abouzid, K.A.M.; Khalil, N.A.; Ahmed, E.M.; Esmat, A.; Al-Abd, A.M. Design, synthesis, and evaluation of anti-inflammatory and ulcerogenicity of novel pyridazinone derivatives. Med. Chem. Res., 2012, 21(11), 3581-3590.
[http://dx.doi.org/10.1007/s00044-011-9895-7]
[67]
Khalil, N.A.; Ahmed, E.M.; Mohamed, K.O.; Nissan, Y.M.; Zaitone, S.A.B. Synthesis and biological evaluation of new pyrazolone–pyridazine conjugates as anti-inflammatory and analgesic agents. Bioorg. Med. Chem., 2014, 22(7), 2080-2089.
[http://dx.doi.org/10.1016/j.bmc.2014.02.042] [PMID: 24631365]
[68]
Özadalı, K.; Özkanlı, F.; Jain, S.; Rao, P.P.N.; Velázquez-Martínez, C.A. Synthesis and biological evaluation of isoxazolo[4,5-d]pyridazin-4-(5H)-one analogues as potent anti-inflammatory agents. Bioorg. Med. Chem., 2012, 20(9), 2912-2922.
[http://dx.doi.org/10.1016/j.bmc.2012.03.021] [PMID: 22475926]
[69]
Abdou, W.M.; Ganoub, N.A.; Sabry, E. Synthesis and quantitative structure–activity relationship study of substituted imidazophosphor ester based tetrazolo[1,5- b]pyridazines as antinociceptive/anti-inflammatory agents. Beilstein J. Org. Chem., 2013, 9, 1730-1736.
[http://dx.doi.org/10.3762/bjoc.9.199] [PMID: 24062835]
[70]
Ge, B.C.; Feng, H.F.; Cheng, Y.F.; Wang, H.T.; Xi, B.M.; Yang, X.M.; Xu, J.P.; Zhou, Z.Z. Design, synthesis and biological evaluation of substituted aminopyridazin-3(2 H)-ones as G0/G1-phase arresting agents with apoptosis-inducing activities. Eur. J. Med. Chem., 2017, 141, 440-445.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.077] [PMID: 29040954]
[71]
Xing, W.; Ai, J.; Jin, S.; Shi, Z.; Peng, X.; Wang, L.; Ji, Y.; Lu, D.; Liu, Y.; Geng, M.; Hu, Y. Enhancing the cellular anti-proliferation activity of pyridazinones as c-met inhibitors using docking analysis. Eur. J. Med. Chem., 2015, 95, 302-312.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.041] [PMID: 25827399]
[72]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[73]
Mohamed, M.S.; Abdelhamid, A.O.; Almutairi, F.M.; Ali, A.G.; Bishr, M.K. Induction of apoptosis by pyrazolo[3,4-d]pyridazine derivative in lung cancer cells via disruption of Bcl-2/Bax expression balance. Bioorg. Med. Chem., 2018, 26(3), 623-629.
[http://dx.doi.org/10.1016/j.bmc.2017.12.026] [PMID: 29290491]
[74]
Popovici, L.; Amarandi, R.M.; Mangalagiu, I.I.; Mangalagiu, V.; Danac, R. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2- b]pyridazine and pyrrolo[2,1- a]phthalazine derivatives. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 230-243.
[http://dx.doi.org/10.1080/14756366.2018.1550085] [PMID: 30734610]
[75]
Ibrahim, H.M.; Behbehani, H. The first Q-Tube based high-pressure synthesis of anti-cancer active thiazolo[4,5-c]pyridazines via the [4+2] cyclocondensation of 3-oxo-2-arylhydrazonopropanals with 4-thiazolidinones. Sci. Rep., 2020, 10(1), 6492.
[http://dx.doi.org/10.1038/s41598-020-63453-2] [PMID: 32300148]
[76]
Mao, B.; Gao, S.; Weng, Y.; Zhang, L.; Zhang, L. Design, synthesis, and biological evaluation of imidazo[1,2- b]pyridazine derivatives as mTOR inhibitors. Eur. J. Med. Chem., 2017, 129, 135-150.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.015] [PMID: 28235701]
[77]
Mamta, A.; Aggarwal, R.; Sadana, R.; Ilag, J.; Sumran, G. Synthesis and bioevaluation of 6-chloropyridazin-3-yl hydrazones and 6-chloro-3-substituted-[1,2,4]triazolo[4,3-b]pyridazines as cytotoxic agents. Bioorg. Chem., 2019, 86, 288-295.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.049] [PMID: 30735849]
[78]
Chen, Y.; Bai, G.; Ning, Y.; Cai, S.; Zhang, T.; Song, P.; Zhou, J.; Duan, W.; Ding, J.; Xie, H.; Zhang, H. Design and synthesis of Imidazo[1,2-b]pyridazine IRAK4 inhibitors for the treatment of mutant MYD88 L265P diffuse large B-cell lymphoma. Eur. J. Med. Chem., 2020, 190, 112092.
[http://dx.doi.org/10.1016/j.ejmech.2020.112092] [PMID: 32014679]
[79]
Albrecht, B.K.; Harmange, J.C.; Bauer, D.; Berry, L.; Bode, C.; Boezio, A.A.; Chen, A.; Choquette, D.; Dussault, I.; Fridrich, C.; Hirai, S.; Hoffman, D.; Larrow, J.F.; Kaplan-Lefko, P.; Lin, J.; Lohman, J.; Long, A.M.; Moriguchi, J.; O’Connor, A.; Potashman, M.H.; Reese, M.; Rex, K.; Siegmund, A.; Shah, K.; Shimanovich, R.; Springer, S.K.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S.F. Discovery and optimization of triazolopyridazines as potent and selective inhibitors of the c-Met kinase. J. Med. Chem., 2008, 51(10), 2879-2882.
[http://dx.doi.org/10.1021/jm800043g] [PMID: 18426196]
[80]
Boezio, A.A.; Berry, L.; Albrecht, B.K.; Bauer, D.; Bellon, S.F.; Bode, C.; Chen, A.; Choquette, D.; Dussault, I.; Hirai, S.; Kaplan-Lefko, P.; Larrow, J.F.; Lin, M-H.J.; Lohman, J.; Potashman, M.H.; Rex, K.; Santostefano, M.; Shah, K.; Shimanovich, R.; Springer, S.K.; Teffera, Y.; Yang, Y.; Zhang, Y.; Harmange, J-C.; Zhang, Y.; Harmange, J.C. Discovery and optimization of potent and selective triazolopyridazine series of c-Met inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(22), 6307-6312.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.096] [PMID: 19819693]
[81]
Egile, C.; Kenigsberg, M.; Delaisi, C.; Bégassat, F.; Do-Vale, V.; Mestadier, J.; Bonche, F.; Bénard, T.; Nicolas, J.P.; Valence, S.; Lefranc, C.; Francesconi, E.; Castell, C.; Lefebvre, A.M.; Nemecek, C.; Calvet, L.; Goulaouic, H. The selective intravenous inhibitor of the MET tyrosine kinase SAR125844 inhibits tumor growth in MET-amplified cancer. Mol. Cancer Ther., 2015, 14(2), 384-394.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0428] [PMID: 25504634]
[82]
Antonio, U.; Mireille, K.; Alexey, R.; Francois, V.; Jacques, H.; Maryse, L.; Cecile, C.; Jean, K.; Eva, A.; Nathalie, M.; Conception, N.; Sandrine, G.; Eric, B.; Manfred, R.; Christine, D.; Loreley, C.; Fabrice, B.; Dorothee, S.; Coumaran, E.; Helene, G.; Laurent, S. Discovery and Pharmacokinetic and Pharmacological Properties of the Potent and Selective MET Kinase Inhibitor 1-{6-[6-(4-Fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazin-3-ylsulfanyl]benzothiazol-2-yl}-3-(2-morpholin-4-ylethyl)urea (SAR125844). J. Med. Chem., 2016, 59, 7066-7074.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00280] [PMID: 27355974]
[83]
Jae, W.R.; Sun-Young, H.; Jeong, Y.; Sang-Un, C.; Heejung, J.; Jae, D.H.; Sung, Y.C.; Chong, O.L.; Nam, S.K.; Jong, S.K.; Hyoung, R.K.; Jongkook, L. Design and synthesis of triazolopyridazines substituted with methylisoquinolinone as selective c-Met kinase inhibitors. Bioorg. & Med. Chem. Lett., 2011, 21, 71-85.
[84]
Park, B.H.; Jung, K.H.; Yun, S.M.; Hong, S.W.; Ryu, J.W.; Jung, H.; Ha, J.D.; Lee, J.; Hong, S.S. KRC-327, a selective novel inhibitor of c-Met receptor tyrosine kinase with anticancer activity. Cancer Lett., 2013, 331(2), 158-166.
[http://dx.doi.org/10.1016/j.canlet.2012.12.025] [PMID: 23340177]
[85]
Cui, J.J.; Shen, H.; Tran-Dubé, M.; Nambu, M.; McTigue, M.; Grodsky, N.; Ryan, K.; Yamazaki, S.; Aguirre, S.; Parker, M.; Li, Q.; Zou, H.; Christensen, J. Lessons from (S)-6-(1-(6-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)ethyl)quinoline (PF-04254644), an inhibitor of receptor tyrosine kinase c-Met with high protein kinase selectivity but broad phosphodiesterase family inhibition leading to myocardial degeneration in rats. J. Med. Chem., 2013, 56(17), 6651-6665.
[http://dx.doi.org/10.1021/jm400926x] [PMID: 23944843]
[86]
Buchanan, S.G.; Hendle, J.; Lee, P.S.; Smith, C.R.; Bounaud, P.Y.; Jessen, K.A.; Tang, C.M.; Huser, N.H.; Felce, J.D.; Froning, K.J.; Peterman, M.C.; Aubol, B.E.; Gessert, S.F.; Sauder, J.M.; Schwinn, K.D.; Russell, M.; Rooney, I.A.; Adams, J.; Leon, B.C.; Do, T.H.; Blaney, J.M.; Sprengeler, P.A.; Thompson, D.A.; Smyth, L.; Pelletier, L.A.; Atwell, S.; Holme, K.; Wasserman, S.R.; Emtage, S.; Burley, S.K.; Reich, S.H. SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo. Mol. Cancer Ther., 2009, 8(12), 3181-3190.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0477] [PMID: 19934279]
[87]
Benvenuti, S.; Lazzari, L.; Arnesano, A.; Li Chiavi, G.; Gentile, A.; Comoglio, P.M. Ron kinase transphosphorylation sustains MET oncogene addiction. Cancer Res., 2011, 71(5), 1945-1955.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2100] [PMID: 21212418]
[88]
Martijn, P. L.; Hilde, H. B.; Hendrik-Tobias, A.; Ann, L.; Erio, B.; Maja, J. A. J. The c-Met Tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation. Clinical research therapy, 2015, 21, 2297-2304.
[89]
Hong, D.S.; Rosen, P.; Lockhart, A.C.; Fu, S.; Janku, F.; Kurzrock, R.; Khan, R.; Amore, B.; Caudillo, I.; Deng, H.; Hwang, Y.C.; Loberg, R.; Ngarmchamnanrith, G.; Beaupre, D.M.; Lee, P. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget, 2015, 6(21), 18693-18706.
[http://dx.doi.org/10.18632/oncotarget.4472] [PMID: 26155941]
[90]
Ahmed, E.M.; Khalil, N.A.; Taher, A.T.; Refaey, R.H.; Nissan, Y.M. Triazolopyridazine derivatives: Synthesis, cytotoxic evaluation, c-Met kinase activity and molecular docking. Bioorg. Chem., 2019, 92, 103272.
[http://dx.doi.org/10.1016/j.bioorg.2019.103272] [PMID: 31539742]
[91]
Xu, Q.; Wang, Y.; Xu, J.; Sun, M.; Tian, H.; Zuo, D.; Guan, Q.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and Bioevaluation of 3,6-Diaryl-[1,2,4]triazolo[4,3- b] Pyridazines as Antitubulin Agents. ACS Med. Chem. Lett., 2016, 7(12), 1202-1206.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00252] [PMID: 27994764]
[92]
Liscio, P.; Carotti, A.; Asciutti, S.; Karlberg, T.; Bellocchi, D.; Llacuna, L.; Macchiarulo, A.; Aaronson, S.A.; Schüler, H.; Pellicciari, R.; Camaioni, E. Design, synthesis, crystallographic studies, and preliminary biological appraisal of new substituted triazolo[4,3-b]pyridazin-8-amine derivatives as tankyrase inhibitors. J. Med. Chem., 2014, 57(6), 2807-2812.
[http://dx.doi.org/10.1021/jm401356t] [PMID: 24527792]
[93]
Bradbury, R.H.; Callis, R.; Carr, G.R.; Chen, H.; Clark, E.; Feron, L.; Glossop, S.; Graham, M.A.; Hattersley, M.; Jones, C.; Lamont, S.G.; Ouvry, G.; Patel, A.; Patel, J.; Rabow, A.A.; Roberts, C.A.; Stokes, S.; Stratton, N.; Walker, G.E.; Ward, L.; Whalley, D.; Whittaker, D.; Wrigley, G.; Waring, M.J. Optimization of a series of bivalent triazolopyridazine based bromodomain and extraterminal inhibitors: The discovery of (3 R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3- b]pyridazin-6-yl)-4-piperidyl]phenoxy]ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153). J. Med. Chem., 2016, 59(17), 7801-7817.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00070] [PMID: 27528113]
[94]
Bradbury, R.H.; Acton, D.G.; Broadbent, N.L.; Brooks, A.N.; Carr, G.R.; Hatter, G.; Hayter, B.R.; Hill, K.J.; Howe, N.J.; Jones, R.D.O.; Jude, D.; Lamont, S.G.; Loddick, S.A.; McFarland, H.L.; Parveen, Z.; Rabow, A.A.; Sharma-Singh, G.; Stratton, N.C.; Thomason, A.G.; Trueman, D.; Walker, G.E.; Wells, S.L.; Wilson, J.; Wood, J.M. Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer. Bioorg. Med. Chem. Lett., 2013, 23(7), 1945-1948.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.056] [PMID: 23466225]
[95]
Park, C.H.; Kim, D.; Jung, H.; Jeon, J.H.; Achary, R.; Lee, J-Y.; Kim, P.; Jung, H.; Hwang, J.Y.; Ryu, D.H.; Du Ha, J.; Cho, S.Y. Design and synthesis of novel 3‐(2‐Aminopyridin‐3‐yl)‐1,2,4‐Triazolo[4,3‐ b]Pyridazine derivatives as a reversible bruton’s tyrosine kinase inhibitors. Bull. Korean Chem. Soc., 2018, 39(7), 853-857.
[http://dx.doi.org/10.1002/bkcs.11485]
[96]
Ujjinamatada, R.K.; Phatak, P.; Burger, A.M.; Hosmane, R.S. Inhibition of adenosine deaminase by analogues of adenosine and inosine, incorporating a common heterocyclic base, 4(7)-amino-6(5)H-imidazo[4,5-d]pyridazin-7(4)one. J. Med. Chem., 2008, 51(3), 694-698.
[http://dx.doi.org/10.1021/jm700931t] [PMID: 18173230]
[97]
Marwa, F.; Ahmed, E.Y.; Santali, E.M.; Mohi, E.; Ibrahim, A.; Naguib, R.E. Development of pyridazine derivatives as potential EGFR inhibitors and apoptosis inducers: Design, synthesis, anticancer evaluation, and molecular modeling studies. Bioorg. Chem., 2020.
[http://dx.doi.org/10.1016/j.bioorg.2020.104473] [PMID: 33243490]
[98]
Xiang, H.Y.; Chen, J.Y.; Huan, X.J.; Chen, Y.; Gao, Z.; Ding, J.; Miao, Z.H.; Yang, C.H. Identification of 2-substituted pyrrolo[1,2-b]pyridazine derivatives as new PARP-1 inhibitors. Bioorg. Med. Chem. Lett., 2021, 31, 127710.
[http://dx.doi.org/10.1016/j.bmcl.2020.127710] [PMID: 33246105]
[99]
Sharma, R.K.; Singh, M.; Ghimeray, K.; Juneja, P.; Dev, G.; Pulavarthi, S.; Reddy, S.R.; Akundi, R.S. Imidazopyridazine acetylcholinesterase inhibitors display potent anti-proliferative effects in the human neuroblastoma cell-line, IMR-32. Molecules, 2021, 26(17), 5319.
[http://dx.doi.org/10.3390/molecules26175319] [PMID: 34500749]
[100]
Kusakabe, K.; Ide, N.; Daigo, Y.; Itoh, T.; Yamamoto, T.; Hashizume, H.; Nozu, K.; Yoshida, H.; Tadano, G.; Tagashira, S.; Higashino, K.; Okano, Y.; Sato, Y.; Inoue, M.; Iguchi, M.; Kanazawa, T.; Ishioka, Y.; Dohi, K.; Kido, Y.; Sakamoto, S.; Ando, S.; Maeda, M.; Higaki, M.; Baba, Y.; Nakamura, Y. Discovery of imidazo[1,2-b]pyridazine derivatives: Selective and orally available Mps1 (TTK) kinase inhibitors exhibiting remarkable antiproliferative activity. J. Med. Chem., 2015, 58(4), 1760-1775.
[http://dx.doi.org/10.1021/jm501599u] [PMID: 25625617]
[101]
Elmeligie, S.; Ahmed, E.M.; Abuel-Maaty, S.M.; Zaitone, S.A.B.; Mikhail, D.S. Design and synthesis of pyridazine containing compounds with promising anticancer activity. Chem. Pharm. Bull., 2017, 65(3), 236-247.
[http://dx.doi.org/10.1248/cpb.c16-00532] [PMID: 28250345]
[102]
Rathish, I.G.; Javed, K.; Ahmad, S.; Bano, S.; Alam, M.S.; Akhter, M.; Pillai, K.K.; Ovais, S.; Samim, M. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones. Eur. J. Med. Chem., 2012, 49, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.026] [PMID: 22305543]
[103]
Bouchmaa, N.; Tilaoui, M.; Boukharsa, Y.; Jaâfari, A.; Mouse, H.A.; Ali Oukerrou, M.; Taoufik, J.; Ansar, M.; Zyad, A. In vitro antitumor activity of newly synthesized pyridazin-3(2h)-one derivatives via apoptosis induction. Pharm. Chem. J., 2018, 51(10), 893-901.
[http://dx.doi.org/10.1007/s11094-018-1712-x]
[104]
Sruthi, K.; Sumakanth, M.; Kumar, M. Design, Synthesis of N-(Substituted Imidazo[1, 2-b] Pyridazine) Acetamides and Their Anti-Proliferative Studies on BRAFV600E Mutated A375 and Colo-205 Cell Lines. J. Pharm. Biol. Sci., 2017, 12, 84-91.
[105]
Volkova, Y.A.; Antonov, Y.S.; Komkov, A.V.; Scherbakov, A.M.; Shashkov, A.S.; Menchikov, L.G.; Chernoburova, E.I.; Zavarzin, I.V. Access to steroidal pyridazines via modified thiohydrazides. J. Name, 2013, 00, 1-3.
[106]
Asif, M.; Singh, A.; Lakshmayya, L. In-vivo Anticonvulsant and in-vitro Antimycobacterial Activities of 6-Aryl Pyridazine-3(2H)-One Derivatives. Am. J. Pharmacol. Sci., 2014, 2(1), 1-6.
[http://dx.doi.org/10.12691/ajps-2-1-1]
[107]
Rimoli, M.G.; Russo, E.; Cataldi, M.; Citraro, R.; Ambrosino, P.; Melisi, D.; Curcio, A.; De Lucia, S.; Patrignani, P.; De Sarro, G.; Abignente, E. T-type channel blocking properties and antiabsence activity of two imidazo[1,2-b]pyridazine derivatives structurally related to indomethacin. Neuropharmacology, 2009, 56(3), 637-646.
[http://dx.doi.org/10.1016/j.neuropharm.2008.11.003] [PMID: 19071141]
[108]
Le Manach, C.; Gonzàlez Cabrera, D.; Douelle, F.; Nchinda, A.T.; Younis, Y.; Taylor, D.; Wiesner, L.; White, K.L.; Ryan, E.; March, C.; Duffy, S.; Avery, V.M.; Waterson, D.; Witty, M.J.; Wittlin, S.; Charman, S.A.; Street, L.J.; Chibale, K. Medicinal chemistry optimization of antiplasmodial imidazopyridazine hits from high throughput screening of a SoftFocus kinase library: part 1. J. Med. Chem., 2014, 57(6), 2789-2798.
[http://dx.doi.org/10.1021/jm500098s] [PMID: 24568587]
[109]
Cheuka, P.M.; Lawrence, N.; Taylor, D.; Wittlin, S.; Chibale, K. Antiplasmodial imidazopyridazines: structure–activity relationship studies lead to the identification of analogues with improved solubility and hERG profiles. MedChemComm, 2018, 9(10), 1733-1745.
[http://dx.doi.org/10.1039/C8MD00382C] [PMID: 30429978]
[110]
Ashish, B.; Ravi, K.; Rajesh, K.S. Synthesis of some bioactive sulfonamide and amide derivatives of piperazine incorporating imidazo[1,2-b] Pyridazine Moiety. Med. Chem., 2016, 6, 257-263.
[111]
Ashish, B.; Ravi, K.; Rajesh, K.S. Synthesis of novel Imidazo[1,2-b] pyridazine derivatives and study of their biomedicinal efficacy. Chem. Biol. Lett., 2016, 3, 38-43.
[112]
Ashish, B.; Rajesh, K.S.; Ravi, K. Synthesis, antimicrobial and antimalarial study of novel 1,3,4-thiadiazole derivatives incorporating imidazo[1,2-b] pyridazine and thiazolidinone moieties. Chem. Biol. Lett., 2017, 4, 73-80.
[113]
Schaenzer, A.J.; Wlodarchak, N.; Drewry, D.H.; Zuercher, W.J.; Rose, W.E.; Ferrer, C.A.; Sauer, J.D.; Striker, R. GW779439X and its pyrazolopyridazine derivatives inhibit the serine/threonine kinase stk1 and act as antibiotic adjuvants against β-Lactam-Resistant Staphylococcus aureus. ACS Infect. Dis., 2018, 4(10), 1508-1518.
[http://dx.doi.org/10.1021/acsinfecdis.8b00136] [PMID: 30059625]
[114]
Velezheva, V.S.; Brennan, P.J.; Marshakov, V.Y.; Gusev, D.V.; Lisichkina, I.N.; Peregudov, A.S.; Tchernousova, L.N.; Smirnova, T.G.; Andreevskaya, S.N.; Medvedev, A.E. Novel pyridazino[4,3- b]indoles with dual inhibitory activity against Mycobacterium t uberculosis and Monoamine Oxidase. J. Med. Chem., 2004, 47(13), 3455-3461.
[http://dx.doi.org/10.1021/jm030479g] [PMID: 15189042]
[115]
Faidallah, H.M.; Rostom, S.A.F.; Basaif, S.A.; Makki, M.S.T.; Khan, K.A. Synthesis and biological evaluation of some novel urea and thiourea derivatives of isoxazolo[4,5-d]pyridazine and structurally related thiazolo[4,5-d]pyridazine as antimicrobial agents. Arch. Pharm. Res., 2013, 36(11), 1354-1368.
[http://dx.doi.org/10.1007/s12272-013-0144-0] [PMID: 23657806]
[116]
Aggarwal, R. Synthesis, designing and biological evaluation of 4-(1′-(6”-chloro/substitutedpyridazin-3”-yl)-3′-methyl-1H-pyrazol-5′-yl)-3-methyl-1-phenyl-1H-pyrazol-5-ols as antimicrobial agents. Chem. Bio. Int., 2018, 8, 11-21.
[117]
Deeb, A.A.H.; El-Eraky, W.I.; Mohamed, S.M. Pyridazine and its related compounds. Part 35 [1]: Synthesis, characterization and antimicrobial activity of some novel pyridazine and triazolopyridazine containing sulfonamides. Eur. J. Chem., 2015, 6(1), 88-92.
[http://dx.doi.org/10.5155/eurjchem.6.1.88-92.1166]
[118]
Aggarwal, R. Design, Synthesis and Biological Testing of 3-(4”-Substitutedphenyl)-1-(6′-chloropyridazin-3′-yl)- pyrazole Based Schiff Bases as Antimicrobial Agents. Chem. Sci. Trans., 2021, 10, 73-84.
[119]
Paidi, K.R.; Tatipamula, V.B.; Kolli, M.K.; Pedakotla, V.R. Benzohydrazide incorporated Imidazo[1,2-b] pyridazine: Synthesis, characterization and in vitro anti-tubercular activity. Int. J. Chem. Sci., 2017, 15, 172.
[120]
Othman, I.M.M.; Nasr, H.M.; Hassan, M.I. Synthesis of some novel pyridazine, thienopyridazine, pyrazolopyridine, pyridopyrazolopyrimidine and pyridopyrazolotriazine derivatives with their antimicrobial activity. Can. Chem. Trans., 2014, 2, 504-517.
[121]
Nagle, P.; Pawar, Y.; Sonawane, A.; Bhosale, S.; More, D. Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents. Med. Chem. Res., 2014, 23(2), 918-926.
[http://dx.doi.org/10.1007/s00044-013-0685-2]
[122]
Utku, S.; Gokce, M.; Aslan, G.; Bayram, G.; Ulger, M.; Emekdas, G. Synthesis and in vitro antimycobacterial activities of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/nonsubstituted acetophenone)hydrazine. Turk. J. Chem., 2011, 35, 331-339.
[123]
Husain, A.; Ahmad, A.; Bhandari, A.; Ram, V. Synthesis and antitubercular activity of pyridazinone derivatives. J. Chil. Chem. Soc., 2011, 56(3), 778-780.
[http://dx.doi.org/10.4067/S0717-97072011000300013]
[124]
Levent, S.; Çalışkan, B.; Çiftçi, M.; Özkan, Y.; Yenicesu, İ.; Ünver, H.; Banoglu, E. Pyrazole derivatives as inhibitors of arachidonic acid-induced platelet aggregation. Eur. J. Med. Chem., 2013, 64, 42-53.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.048] [PMID: 23639653]
[125]
Coelho, A.; Raviña, E.; Fraiz, N.; Yáñez, M.; Laguna, R.; Cano, E.; Sotelo, E. Design, synthesis, and structure-activity relationships of a novel series of 5-alkylidenepyridazin-3(2H)-ones with a non-cAMP-based antiplatelet activity. J. Med. Chem., 2007, 50(26), 6476-6484.
[http://dx.doi.org/10.1021/jm061401d] [PMID: 18031002]
[126]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel pyridazines. Eur. J. Med. Chem., 2012, 54, 33-41.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.020] [PMID: 22608761]
[127]
Flefel, E.; Tantawy, W.; El-Sofany, W.; El-Shahat, M.; El-Sayed, A.; Abd-Elshafy, D. Synthesis of some new pyridazine derivatives for anti-HAV evaluation. Molecules, 2017, 22(1), 148.
[http://dx.doi.org/10.3390/molecules22010148] [PMID: 28106751]
[128]
Enguehard-Gueiffier, C.; Musiu, S.; Henry, N.; Véron, J.B.; Mavel, S.; Neyts, J.; Leyssen, P.; Paeshuyse, J.; Gueiffier, A. 3-Biphenylimidazo[1,2-a]pyridines or [1,2-b]pyridazines and analogues, novel Flaviviridae inhibitors. Eur. J. Med. Chem., 2013, 64, 448-463.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.054] [PMID: 23665801]
[129]
Hamdouchi, C.; Sanchez-Martinez, C.; Gruber, J.; del Prado, M.; Lopez, J.; Rubio, A.; Heinz, B.A. Imidazo[1,2-b]pyridazines, novel nucleus with potent and broad spectrum activity against human picornaviruses: design, synthesis, and biological evaluation. J. Med. Chem., 2003, 46(20), 4333-4341.
[http://dx.doi.org/10.1021/jm020583i] [PMID: 13678411]
[130]
Borowski, P.; Lang, M.; Haag, A.; Schmitz, H.; Choe, J.; Chen, H.M.; Hosmane, R.S. Characterization of imidazo[4,5-d]pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase: evidence for activity on the level of substrate and/or enzyme. Antimicrob. Agents Chemother., 2002, 46(5), 1231-1239.
[http://dx.doi.org/10.1128/AAC.46.5.1231-1239.2002] [PMID: 11959550]
[131]
Shamroukh, A.H.; Ali, M.A. Anti-HAV activity of some newly synthesized triazolo[4,3-b]pyridazines. Arch. Pharm., 2008, 341(4), 223-230.
[http://dx.doi.org/10.1002/ardp.200700181] [PMID: 18214848]
[132]
Chelini, A.; Brogi, S.; Paolino, M.; Di Capua, A.; Cappelli, A.; Giorgi, G.; Farzad, M.; Di Cesare Mannelli, L.; Micheli, L.; Ghelardini, C.; Anzini, M. Synthesis and biological evaluation of novel neuroprotective pyridazine derivatives as excitatory amino acid transporter 2 (EAAT2) activators. J. Med. Chem., 2017, 60(12), 5216-5221.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00383] [PMID: 28525717]
[133]
Kunitomo, J.; Yoshikawa, M.; Fushimi, M.; Kawada, A.; Quinn, J.F.; Oki, H.; Kokubo, H.; Kondo, M.; Nakashima, K.; Kamiguchi, N.; Suzuki, K.; Kimura, H.; Taniguchi, T. Discovery of 1-[2-Fluoro-4-(1 H -pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1 H -pyrazol-5-yl)pyridazin-4(1 H)-one (TAK-063), a Highly Potent, Selective, and Orally Active Phosphodiesterase 10A (PDE10A). Inhibitor. J. Med. Chem., 2014, 57(22), 9627-9643.
[http://dx.doi.org/10.1021/jm5013648] [PMID: 25384088]
[134]
Hondo, T.; Warizaya, M.; Niimi, T.; Namatame, I.; Yamaguchi, T.; Nakanishi, K.; Hamajima, T.; Harada, K.; Sakashita, H.; Matsumoto, Y.; Orita, M.; Takeuchi, M. 4-Hydroxypyridazin-3(2H)-one derivatives as novel D-amino acid oxidase inhibitors. J. Med. Chem., 2013, 56(9), 3582-3592.
[http://dx.doi.org/10.1021/jm400095b] [PMID: 23566269]
[135]
Contreras, J.M.; Rival, Y.M.; Chayer, S.; Bourguignon, J.J.; Wermuth, C.G. Aminopyridazines as acetylcholinesterase inhibitors. J. Med. Chem., 1999, 42(4), 730-741.
[http://dx.doi.org/10.1021/jm981101z] [PMID: 10052979]
[136]
Contreras, J.M.; Parrot, I.; Sippl, W.; Rival, Y.M.; Wermuth, C.G. Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. J. Med. Chem., 2001, 44(17), 2707-2718.
[http://dx.doi.org/10.1021/jm001088u] [PMID: 11495583]
[137]
Xing, W.; Fu, Y.; Shi, Z.; Lu, D.; Zhang, H.; Hu, Y. Discovery of novel 2,6-disubstituted pyridazinone derivatives as acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 63, 95-103.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.056] [PMID: 23466605]
[138]
Frédérick, R.; Dumont, W.; Ooms, F.; Aschenbach, L.; Van der Schyf, C.J.; Castagnoli, N.; Wouters, J.; Krief, A. Synthesis, structural reassignment, and biological activity of type B MAO inhibitors based on the 5H-indeno[1,2-c]pyridazin-5-one core. J. Med. Chem., 2006, 49(12), 3743-3747.
[http://dx.doi.org/10.1021/jm051091j] [PMID: 16759116]
[139]
Reniers, J.; Meinguet, C.; Moineaux, L.; Masereel, B.; Vincent, S.P.; Frederick, R.; Wouters, J. Synthesis and inhibition study of monoamine oxidase, indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase by 3,8-substituted 5H-indeno[1,2-c]pyridazin-5-one derivatives. Eur. J. Med. Chem., 2011, 46(12), 6104-6111.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.042] [PMID: 22018876]
[140]
Costas-Lago, M.C.; Besada, P.; Rodríguez-Enríquez, F.; Viña, D.; Vilar, S.; Uriarte, E.; Borges, F.; Terán, C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem., 2017, 139, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.045] [PMID: 28797881]
[141]
Rodríguez-Enríquez, F.; Costas-Lago, M.C.; Besada, P.; Alonso-Pena, M.; Torres-Terán, I.; Viña, D.; Fontenla, J.Á.; Sturlese, M.; Moro, S.; Quezada, E.; Terán, C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy. Bioorg. Chem., 2020, 104, 104203.
[http://dx.doi.org/10.1016/j.bioorg.2020.104203] [PMID: 32932120]
[142]
Mylari, B.L.; Armento, S.J.; Beebe, D.A.; Conn, E.L.; Coutcher, J.B.; Dina, M.S.; O’Gorman, M.T.; Linhares, M.C.; Martin, W.H.; Oates, P.J.; Tess, D.A.; Withbroe, G.J.; Zembrowski, W.J. A highly selective, non-hydantoin, non-carboxylic acid inhibitor of aldose reductase with potent oral activity in diabetic rat models: 6-(5-chloro-3-methylbenzofuran- 2-sulfonyl)-2-H-pyridazin-3-one. J. Med. Chem., 2003, 46(12), 2283-2286.
[http://dx.doi.org/10.1021/jm034065z] [PMID: 12773033]
[143]
Mylari, B.L.; Armento, S.J.; Beebe, D.A.; Conn, E.L.; Coutcher, J.B.; Dina, M.S.; O’Gorman, M.T.; Linhares, M.C.; Martin, W.H.; Oates, P.J.; Tess, D.A.; Withbroe, G.J.; Zembrowski, W.J. A novel series of non-carboxylic acid, non-hydantoin inhibitors of aldose reductase with potent oral activity in diabetic rat models: 6-(5-chloro-3-methylbenzofuran-2-sulfonyl)-2H-pyridazin-3-one and congeners. J. Med. Chem., 2005, 48(20), 6326-6339.
[http://dx.doi.org/10.1021/jm050462t] [PMID: 16190759]
[144]
Tavares, F.X.; Boucheron, J.A.; Dickerson, S.H.; Griffin, R.J.; Preugschat, F.; Thomson, S.A.; Wang, T.Y.; Zhou, H.Q. N-Phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amines as potent and selective inhibitors of glycogen synthase kinase 3 with good cellular efficacy. J. Med. Chem., 2004, 47(19), 4716-4730.
[http://dx.doi.org/10.1021/jm040063i] [PMID: 15341487]
[145]
Faryal, C.; Abdul, Q.A.; Mohammad, J.A.; Ayesha, S.; Mohammad, A.; Mariya, R.; Munawar, A.M.; Misbahul, A.K. Green synthesis, inhibition studies of yeast α-glucosidase and molecular docking of pyrazolylpyridazine amines. Bioorg. Chem., 2017, 71, 170-180.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.003]
[146]
Moghimi, S.; Salarinejad, S.; Toolabi, M.; Firoozpour, L.; Esmaeil Sadat Ebrahimi, S.; Safari, F.; Madani-Qamsari, F.; Mojtabavi, S.; Faramarzi, M.A.; Karima, S.; Pakrad, R.; Foroumadi, A. Synthesis, in-vitro evaluation, molecular docking, and kinetic studies of pyridazine-triazole hybrid system as novel α-glucosidase inhibitors. Bioorg. Chem., 2021, 109, 104670.
[http://dx.doi.org/10.1016/j.bioorg.2021.104670] [PMID: 33588241]
[147]
Giovannoni, M.P.; Piaz, V.D.; Kwon, B.M.; Kim, M.K.; Kim, Y.K.; Toma, L.; Barlocco, D.; Bernini, F.; Canavesi, M. 5,6-Diphenylpyridazine derivatives as acyl-CoA:cholesterol acyltransferase inhibitors. J. Med. Chem., 2001, 44(24), 4292-4295.
[http://dx.doi.org/10.1021/jm010807h] [PMID: 11708931]
[148]
Gelain, A.; Bettinelli, I.; Barlocco, D.; Kwon, B.M.; Jeong, T.S.; Cho, K.H.; Toma, L. Mono- or diphenylpyridazines connected to N-(2,4-difluorophenyl)-N′-heptylurea as acyl-CoA:cholesterol acyltransferase inhibitors. J. Med. Chem., 2005, 48(24), 7708-7713.
[http://dx.doi.org/10.1021/jm050703x] [PMID: 16302810]
[149]
Moslin, R.; Zhang, Y.; Wrobleski, S.T.; Lin, S.; Mertzman, M.; Spergel, S.; Tokarski, J.S.; Strnad, J.; Gillooly, K.; McIntyre, K.W.; Zupa-Fernandez, A.; Cheng, L.; Sun, H.; Chaudhry, C.; Huang, C.; D’Arienzo, C.; Heimrich, E.; Yang, X.; Muckelbauer, J.K.; Chang, C.; Tredup, J.; Mulligan, D.; Xie, D.; Aranibar, N.; Chiney, M.; Burke, J.R.; Lombardo, L.; Carter, P.H.; Weinstein, D.S. Identification of N -Methyl Nicotinamide and N -methyl pyridazine-3-carboxamide pseudokinase domain ligands as highly selective allosteric inhibitors of tyrosine kinase 2 (TYK2). J. Med. Chem., 2019, 62(20), 8953-8972.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00443] [PMID: 31314518]
[150]
Giovannoni, M.P.; Vergelli, C.; Biancalani, C.; Cesari, N.; Graziano, A.; Biagini, P.; Gracia, J.; Gavaldà, A.; Dal Piaz, V. Novel pyrazolopyrimidopyridazinones with potent and selective phosphodiesterase 5 (PDE5) inhibitory activity as potential agents for treatment of erectile dysfunction. J. Med. Chem., 2006, 49(17), 5363-5371.
[http://dx.doi.org/10.1021/jm060265+] [PMID: 16913726]
[151]
Liu, G.; Lynch, J.K.; Freeman, J.; Liu, B.; Xin, Z.; Zhao, H.; Serby, M.D.; Kym, P.R.; Suhar, T.S.; Smith, H.T.; Cao, N.; Yang, R.; Janis, R.S.; Krauser, J.A.; Cepa, S.P.; Beno, D.W.A.; Sham, H.L.; Collins, C.A.; Surowy, T.K.; Camp, H.S. Discovery of potent, selective, orally bioavailable stearoyl-CoA desaturase 1 inhibitors. J. Med. Chem., 2007, 50(13), 3086-3100.
[http://dx.doi.org/10.1021/jm070219p] [PMID: 17530838]
[152]
Yoshikazu, U.; Yuko, U.; Yohei, K.; Yuriko, M.; Hitoshi, K.; Tsuneaki, O.; Makiko, Y.; Tsuneo, D.; Masahiro, K.; Toshiyuki, T.; Satoko, W.; Jun, O. Synthesis and evaluation of novel stearoyl-CoA desaturase 1 inhibitors: 1′-{6-[5-(pyridin-3-ylmethyl)-1,3,4-oxadiazol-2-yl]pyridazin-3-yl}-3,4-dihydrospiro[chromene-2,4′-piperidine] analogs. Eur. J. Med. Chem., 2010, 45, 4788-4796.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.044] [PMID: 20801551]
[153]
Franzini, M.; Ye, X.M.; Adler, M.; Aubele, D.L.; Garofalo, A.W.; Gauby, S.; Goldbach, E.; Probst, G.D.; Quinn, K.P.; Santiago, P.; Sham, H.L.; Tam, D.; Truong, A.; Ren, Z. Triazolopyridazine LRRK2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 1967-1973.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.043] [PMID: 23454015]
[154]
Okaniwa, M.; Hirose, M.; Imada, T.; Ohashi, T.; Hayashi, Y.; Miyazaki, T.; Arita, T.; Yabuki, M.; Kakoi, K.; Kato, J.; Takagi, T.; Kawamoto, T.; Yao, S.; Sumita, A.; Tsutsumi, S.; Tottori, T.; Oki, H.; Sang, B.C.; Yano, J.; Aertgeerts, K.; Yoshida, S.; Ishikawa, T. Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. 1. Exploration of [5,6]-fused bicyclic scaffolds. J. Med. Chem., 2012, 55(7), 3452-3478.
[http://dx.doi.org/10.1021/jm300126x] [PMID: 22376051]
[155]
Tao, M.; Aimone, L.D.; Huang, Z.; Mathiasen, J.; Raddatz, R.; Lyons, J.; Hudkins, R.L. Optimization of 5-pyridazin-3-one phenoxypropylamines as potent, selective histamine H3 receptor antagonists with potent cognition enhancing activity. J. Med. Chem., 2012, 55(1), 414-423.
[http://dx.doi.org/10.1021/jm201295j] [PMID: 22107017]
[156]
Murineddu, G.; Deligia, F.; Ragusa, G.; García-Toscano, L.; Gómez-Cañas, M.; Asproni, B.; Satta, V.; Cichero, E.; Pazos, R.; Fossa, P.; Loriga, G.; Fernández-Ruiz, J.; Pinna, G.A. Novel sulfenamides and sulfonamides based on pyridazinone and pyridazine scaffolds as CB 1 receptor ligand antagonists. Bioorg. Med. Chem., 2018, 26(1), 295-307.
[http://dx.doi.org/10.1016/j.bmc.2017.11.051] [PMID: 29229226]
[157]
Ferguson, G.N.; Valant, C.; Horne, J.; Figler, H.; Flynn, B.; Linden, J.; Chalmers, D.K. Aminothienopyridazines as novel adenosine a1 receptor allosteric modulators and antagonists. J. Med. Chem., 2008, 51, 6165-6172.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy