Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Formulation and Evaluation of Glipizide-loaded Mucoadhesive Microparticle Using Salvia hispanica Seeds Mucilage as Co-polymer

Author(s): Smriti Ojha, Stuti Tripathi, Shivendra Mani Tripathi and Sudhanshu Mishra*

Volume 20, Issue 8, 2024

Published on: 22 January, 2024

Article ID: e220124225836 Pages: 11

DOI: 10.2174/0115734072282524240101065517

Price: $65

Abstract

Aim: Chia seed (Salvia hispanica L.) gum is a mucoadhesive, biodegradable polymer with sustained release properties.

Objective: The objective of this study was to compare different formulations of glipizide-loaded microparticles using chia seed mucilage and sodium alginate, focusing on sustained release and mucoadhesive properties.

Background: The present study aimed to comparatively evaluate various eco-friendly formulations of glipizide-loaded microparticles prepared using chia seed mucilage and sodium alginate.

Materials and Methods: Gum was extracted from chia seeds and lyophilized, and preformulation studies were performed according to established protocols. Microparticles were formulated using the ionic gelation method, with sodium alginate as a copolymer and zinc chloride as a cross-linking agent. The prepared microparticles were evaluated using scanning electron microscopy (SEM) for size and particle aggregation, and Fourier Transform infrared spectroscopy (FTIR) for drug-polymer interaction, entrapment efficiency, swelling index, and in vitro drug release.

Results: The % yield of chia seed mucilage was 27.35%. The pH of the mucilaginous suspension was 4.67 ± 0.50. The moisture content value was 14.56 % ± 0.50. The values of Carr's index and Hausner's ratio were 22.58 ± 1.89 and 1.38 ± 0.05, respectively. FTIR spectra showed no interaction between pure glipizide and chia seed mucilage, confirming no possible change in glipizide's pharmacology. SEM studies have confirmed the shape of the microparticles to be spherical, with average sizes ranging from 1235.18 ± 8.7 to 1423.25 ± 9.5 μm, and the drug entrapment efficiency ranged from 64.25 ± 2.52 to 81.82 ± 7.56%. The release of glipizide from the microparticles was sustained, and the Higuchi and Korsmeyer-Peppas models were found to be the best-fit kinetic models.

Conclusion: The promising copolymer blend of chia seed mucilage and sodium alginate was used for the development of sustained-release dosage forms. A copolymer blend with a ratio of 1:1 produced glipizide-loaded microparticles with sustained release profiles and good mucoadhesive ability, along with a high percentage of drug entrapment efficiency.

Graphical Abstract

[1]
Raza, S.; Ghasali, E.; Orooji, Y.; Lin, H.; Karaman, C.; Dragoi, E.N.; Erk, N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. Environ. Res., 2023, 219, 114998.
[http://dx.doi.org/10.1016/j.envres.2022.114998] [PMID: 36481367]
[2]
Raza, S.; Ghasali, E.; Raza, M.; Chen, C.; Li, B.; Orooji, Y.; Lin, H.; Karaman, C.; Karimi Maleh, H.; Erk, N. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. Environ. Res., 2023, 220, 115135.
[http://dx.doi.org/10.1016/j.envres.2022.115135] [PMID: 36566962]
[3]
Yaacob, B.; Amin, M.C.I.M.; Hashim, K.; Bakar, B.A. Optimization of reaction conditions for carboxymethylated sago starch. Iran. Polym. J., 2011, 20(3), 195-204.
[4]
Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym., 2013, 92(2), 1685-1699.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.021] [PMID: 23399207]
[5]
Singh, N.; Maurta, R.; Mishra, S.; Jain, D. Preparation and evaluation of medicated formulation for dry eye. Nanosci. Nanotechnol. Asia, 2023, 13(4), e260523217386.
[http://dx.doi.org/10.2174/2210681213666230526152322]
[6]
Alwosais, E.Z.M.; Al-Ozairi, E.; Zafar, T.A.; Alkandari, S. Chia seed (Salvia hispanica L.) supplementation to the diet of adults with type 2 diabetes improved systolic blood pressure: A randomized controlled trial. Nutr. Health, 2021, 27(2), 181-189.
[http://dx.doi.org/10.1177/0260106020981819] [PMID: 33530854]
[7]
Khalid, W.; Arshad, M.S.; Aziz, A.; Rahim, M.A.; Qaisrani, T.B.; Afzal, F.; Ali, A.; Ranjha, M.M.A.N.; Khalid, M.Z.; Anjum, F.M. Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Sci. Nutr., 2023, 11(1), 3-16.
[http://dx.doi.org/10.1002/fsn3.3035] [PMID: 36655089]
[8]
de Souza Ferreira, C.; dd Sousa Fomes, Lde.F.; da Silva, G.E.; Rosa, G. Effect of chia seed (Salvia hispanica L) consumption on cardiovascular risk factors in humans: A systematic review. Nutr. Hosp., 2015, 32(5), 1909-1918.
[PMID: 26545644]
[9]
Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seed (Salvia hispanica): An ancient grain and new functional food. Food Rev. Int., 2013, 29(4), 394-408.
[http://dx.doi.org/10.1080/87559129.2013.818014]
[10]
Dollery, C.; Livingstone, C. Eds.;Therapeutic drugs, 2nd ed; , 1999, 1, pp. G56-G59.
[11]
Verma, R.K.; Garg, S. Development and evaluation of osmotically controlled oral drug delivery system of glipizide. Eur. J. Pharm. Biopharm., 2004, 57(3), 513-525.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.003] [PMID: 15093601]
[12]
Nazir, S.; Wani, I.A.; Masoodi, F.A. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. J. Adv. Res., 2017, 8(3), 235-244.
[http://dx.doi.org/10.1016/j.jare.2017.01.003] [PMID: 28239494]
[13]
Auwal, M.S.; Saka, S.; Mairiga, I.A.; Sanda, K.A.; Shuaibu, A.; Ibrahim, A. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet. Res. Forum, 2014, 5(2), 95-100.
[PMID: 25568701]
[14]
Shah, B.N.; Seth, A.K. Textbook of Pharmacognosy and Phytochemistry, 1st edn; Elsevier Publishers: New Delhi, 2010, pp. 189, 233-189-234.
[15]
Punia, S.; Dhull, S.B. Chia seed (Salvia hispanica L.) mucilage (a heteropolysaccharide): Functional, thermal, rheological behaviour and its utilization. Int. J. Biol. Macromol., 2019, 140, 1084-1090.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.205] [PMID: 31465801]
[16]
Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; Rios, A.O.; Flôres, S.H. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym., 2015, 130, 198-205.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.040] [PMID: 26076617]
[17]
Fernandes, S.S.; Romani, V.P.; da Silva Filipini, G.; G Martins, V. Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polym. Eng. Sci., 2020, 60(9), 2214-2223.
[http://dx.doi.org/10.1002/pen.25464]
[18]
Burruel-Ibarra, S.E.; Esquer-Osuna, R.A.; Valdez-Melchor, R.G.; Cuevas-Acuña, D.A.; Cota, L.Q.; Juárez, J.; Campos-García, J.C.; Valbuena-Gregorio, E.; López-Mata, M.A. Novel pectin/chiamucilage membranes: Human serum albumin adsorption, biocompatibility, and physical-chemical properties. J. Renew. Mater., 2023, 11(6)
[http://dx.doi.org/10.32604/jrm.2023.027372]
[19]
Ojha, S.; Sharma, S.; Mishra, S. Hydrogels as potential controlled drug delivery system: Drug release mechanism and applications. Nanosci. Nanotechnol. Asia, 2023, 13(3), 42-50.
[20]
da Silveira Ramos, I.F.; Magalhães, L.M.; do O Pessoa, C.; Pinheiro Ferreira, P.M.; dos Santos Rizzo, M.; Osajima, J.A.; Silva-Filho, E.C.; Nunes, C.; Raposo, F.; Coimbra, M.A.; Ribeiro, A.B.; Costa, M.P. New properties of chia seed mucilage (Salvia hispanica L.) and potential application in cosmetic and pharmaceutical products. Ind. Crops Prod., 2021, 171, 113981.
[http://dx.doi.org/10.1016/j.indcrop.2021.113981]
[21]
Brax, M.; Schaumann, G.E.; Diehl, D. Gel formation mechanism and gel properties controlled by Ca 2+ in chia seed mucilage and model substances. J. Plant Nutr. Soil Sci., 2019, 182(1), 92-103.
[http://dx.doi.org/10.1002/jpln.201800430]
[22]
Jain, P.S.; Chaudhari, A.J.; Patel, S.A.; Patel, Z.N.; Patel, D.T. Development and validation of the UV-spectrophotometric method for determination of terbinafine hydrochloride in bulk and in formulation. Pharm. Methods, 2011, 2(3), 198-202.
[http://dx.doi.org/10.4103/2229-4708.90364] [PMID: 23781456]
[23]
Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng., 2012, 108(1), 216-224.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.06.037]
[24]
Tavares, L.S.; Junqueira, L.A.; de Oliveira Guimarães, Í.C.; de Resende, J.V. Cold extraction method of chia seed mucilage (Salvia hispanica L.): effect on yield and rheological behavior. J. Food Sci. Technol., 2018, 55(2), 457-466.
[http://dx.doi.org/10.1007/s13197-017-2954-4] [PMID: 29391609]
[25]
Nyström, J.; Dahlquist, E. Methods for determination of moisture content in woodchips for power plants—a review. Fuel, 2004, 83(7-8), 773-779.
[http://dx.doi.org/10.1016/j.fuel.2003.11.002]
[26]
Contreras-Padilla, M.; Rodríguez-García, M.E.; Gutiérrez-Cortez, E.; Valderrama-Bravo, M.C.; Rojas-Molina, J.I.; Rivera-Muñoz, E.M. Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode. Eur. Polym. J., 2016, 78, 226-234.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.03.024]
[27]
Husain, M.; Wadud, A.; Sofi, G.; Perveen, S.; Hafeez, K.A. Physicochemical standardization of mucilage obtained from Althaea officinalis Linn–Root. Pharmacogn. Mag., 2019, 15(S1), S155-S161.
[28]
Monrroy, M.; García, E.; Ríos, K.; García, J.R. Extraction and physicochemical characterization of mucilage from Opuntia cochenillifera (L.) Miller. J. Chem., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/4301901]
[29]
Kumar, S. Physicochemical, Phytochemical and toxicity studies on gum and mucilage from plant Abelmoschus esculentus. Extraction., 2014, 55(5)
[30]
Quinzio, C.; Ayunta, C.; Alancay, M.; de Mishima, B.L.; Iturriaga, L. Physicochemical and rheological properties of mucilage extracted from Opuntia ficus indica (L. Miller). Comparative study with guar gum and xanthan gum. J. Food Meas. Charact., 2018, 12(1), 459-470.
[http://dx.doi.org/10.1007/s11694-017-9659-2]
[31]
Azubuike, C.P.; Rodríguez, H.; Okhamafe, A.O.; Rogers, R.D. Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose, 2012, 19(2), 425-433.
[http://dx.doi.org/10.1007/s10570-011-9631-y]
[32]
Odeku, O.A.; Okunlola, A.; Lamprecht, A. Formulation and <i>in vitro</i> evaluation of natural gum-based microbeads for delivery of Ibuprofen. Trop. J. Pharm. Res., 2014, 13(10), 1577.
[http://dx.doi.org/10.4314/tjpr.v13i10.2]
[33]
Mahor, S.; Chandra, P.; Prasad, N. Design and in-vitro evaluation of float-adhesive famotidine microspheres by using natural polymers for gastroretentive properties. Indian J. Pharm. Educ. Res., 2021, 55(2), 407-417.
[http://dx.doi.org/10.5530/ijper.55.2.78]
[34]
Bachmann, K.; Sullivan, T.J.; Reese, J.H.; Jauregui, L.; Miller, K.; Scott, M.; Yeh, K.C.; Stepanavage, M.; King, J.D.; Schwartz, J. Controlled study of the putative interaction between famotidine and theophylline in patients with chronic obstructive pulmonary disease. J. Clin. Pharmacol., 1995, 35(5), 529-535.
[http://dx.doi.org/10.1002/j.1552-4604.1995.tb04100.x] [PMID: 7657856]
[35]
Ramteke, K.H.; Jadhav, V.B.; Dhole, S.N. Microspheres: As carrieres used for novel drug delivery system. Iosrphr., 2012, 2(4), 44-48.
[http://dx.doi.org/10.9790/3013-24204448]
[36]
Ojha, S.; Kumar, B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. Journal of Cellular Immunotherapy, 2018, 4(2), 56-64.
[http://dx.doi.org/10.1016/j.jocit.2017.12.001]
[37]
Ojha, S.; Kumar, B. Preparation and statistical modelling of solid lipid nanoparticles of dimethyl fumarate for better management of Multiple Sclerosis. Adv. Pharm. Bull., 2018, 8(2), 225-233.
[http://dx.doi.org/10.15171/apb.2018.027] [PMID: 30023324]
[38]
Ojha, S.; Kumar, B. Formulation and optimization of chitosan nanoparticles of Dimethyl Fumarate using Box-behnken design. Int. J. App. Pharm., 2016, 8(4), 10-17.
[39]
Ojha, S.; Kumar, B.; Chadha, H. Neuroprotective potential of dimethyl Fumarate Loaded Polymeric nanoparticles against Multiple Sclerosis. Indian J. Pharm. Sci., 2019, 81(3), 496-502.
[40]
Gaur, P.K.; Mishra, S.; Bajpai, M. Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study. Yao Wu Shi Pin Fen Xi, 2014, 22(4), 542-548.
[PMID: 28911472]
[41]
Waters, L.J.; Pavlakis, E. In vitro controlled drug release from loaded microspheres - dose regulation through formulation. J. Pharm. Pharm. Sci., 2007, 10(4), 464-472.
[http://dx.doi.org/10.18433/J3CC7T] [PMID: 18261368]
[42]
Singhvi, G.; Singh, M. In-vitro drug release characterization models. Int J Pharm Stud Res., 2011, 2(1), 77-84.
[43]
Ojha, S.; Kumar, B. In vitro and in vivo neuroprotective study of Solid Lipid Nanoparticles loaded with Dimethyl Fumarate. Asian J. Pharm., 2018, 12(1), 81-86.
[44]
Bustamante, M.; Laurie-Martínez, L.; Vergara, D.; Campos-Vega, R.; Rubilar, M.; Shene, C. Effect of three polysaccharides (inulin, and mucilage from chia and flax seeds) on the survival of probiotic bacteria encapsulated by spray drying. Appl. Sci., 2020, 10(13), 4623.
[http://dx.doi.org/10.3390/app10134623]
[45]
British PharmacopoeiaBritish Pharmacopoeia Commission. The Stationery Office; TSO: London, United Kingdom, 2009.
[46]
Ajala, T.O.; Akin-Ajani, O.D.; Ihuoma-Chidi, C.; Odeku, O.A. Chrysophyllum albidum mucilage as a binding agent in paracetamol tablet formulations. J. Pharm. Investig., 2016, 46(6), 565-573.
[http://dx.doi.org/10.1007/s40005-016-0266-8]
[47]
Bord, N.; Crétier, G.; Rocca, J.L.; Bailly, C.; Souchez, J.P. Determination of diethanolamine or N-methyldiethanolamine in high ammonium concentration matrices by capillary electrophoresis with indirect UV detection: application to the analysis of refinery process waters. Anal. Bioanal. Chem., 2004, 380(2), 325-332.
[http://dx.doi.org/10.1007/s00216-004-2754-3] [PMID: 15338092]
[48]
Careri, M.; Elviri, L.; Mangia, A. Development and validation of a method using on-line solid-phase extraction and liquid chromatography with ultraviolet detection for the determination of bisphenol A, octylphenol, and nonylphenol in groundwater. J. AOAC Int., 2001, 84(5), 1383-1392.
[http://dx.doi.org/10.1093/jaoac/84.5.1383] [PMID: 11601457]
[49]
Rathore, S.S.S.; Geetha, M.; Manjula, B.P.; Joshi, V.G.; Setty, S.R. Formulation of stomach-specific floating microparticles of nizatidine and their radiographic evaluation. Braz. J. Pharm. Sci., 2022, 58, e191009.
[http://dx.doi.org/10.1590/s2175-97902022e191009]
[50]
Ilyas, S.; Maheen, S.; Andleeb, M.; Khan, H.U.; Shah, S.; Abbas, G.; Shabbir, S. Development, optimization and in vitro-in vivo evaluation of solid lipid microparticles for improved pharmacokinetic profile of bisoprolol. Mater. Today Commun., 2023, 37, 107097.
[51]
Zaghloul, N.; Mahmoud, A.A.; Elkasabgy, N.A.; El Hoffy, N.M. PLGA-modified Syloid® based microparticles for the ocular delivery of terconazole: In-vitro and in-vivo investigations. Drug Deliv., 2022, 29(1), 2117-2129.
[http://dx.doi.org/10.1080/10717544.2022.2092239] [PMID: 35838555]
[52]
Sharma, D.K.; Pattnaik, G.; Behera, A. Preparation and in-vitro, in vivo characterisation of pioglitazone loaded chitosan/] PEG blended PLGA biocompatible nanoparticles. J. Biomater. Sci. Polym. Ed., 2022, 33(13), 1623-1643.
[http://dx.doi.org/10.1080/09205063.2022.2068947] [PMID: 35446225]
[53]
Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Peterchristoper, G.V. Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol., 2018, 8(1), 12-20.
[54]
Frutos, P.; Pabón, C.; Lastres, J.L.; Frutos, G. In vitro release of metoclopramide from hydrophobic matrix tablets. Influence of hydrodynamic conditions on kinetic release parameters. Chem. Pharm. Bull., 2001, 49(10), 1267-1271.
[http://dx.doi.org/10.1248/cpb.49.1267] [PMID: 11605652]
[55]
Bajaj, S.; Singla, D.; Sakhuja, N. Stability testing of pharmaceutical products. J. Appl. Pharm. Sci., 2012, 30, 129-138.
[56]
Chavda, H. In-use stability studies: Guidelines and challenges. Drug Dev. Ind. Pharm., 2021, 47(9), 1373-1391.
[http://dx.doi.org/10.1080/03639045.2021.1994991] [PMID: 34663148]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy