Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

An Insight into the Mechanism, Safety and Efficacy for Photoprotection and Dermatological Conditions of Polypodium leucotomos Extract

Author(s): Darthan Mawia, Aparoop Das, Yasangam Umbon, Riya Saikia*, Kalyani Pathak and Manash Pratim Pathak

Volume 14, Issue 7, 2024

Published on: 19 January, 2024

Article ID: e190124225828 Pages: 25

DOI: 10.2174/0122103155268659231129071641

Price: $65

Abstract

Numerous photoprotective techniques have been employed to successfully shield against the harmful effects of ultraviolet radiation. Current photoprotective techniques have limitations due to the amount of topical application, insufficient physical protection, and adverse responses to topical agents. A newer option that offers a promising defense against solar radiation is systemic agents, the well-researched Polypodium leucotomos is significant in this category, and several studies have found to be effective ―oral sunscreen. Polypodium leucotomos (PL) extract has gained significant attention as a potential therapeutic agent in the field of dermatology, particularly in the photoprotection and management of various dermatological conditions. This abstract provides a comprehensive overview of the mechanism, safety, and efficacy of Polypodium leucotomos extract in relation to photoprotection and dermatological conditions. Our primary aim is to review Polypodium leucotomos' photoprotective results from studies that are currently available, and our secondary goal is to describe Polypodium leucotomos' applications in different dermatological conditions. Articles discussing Polypodium leucotomos uses in photoprotection and dermatologic conditions are searched and downloaded from publicly available databases such as PubMed, JSTOR, PLOS, Science Direct, DOAJ, Google Scholar, and Web of Science and evaluate the outcomes of the Polypodium leucotomos effect. Firstly, we delve into the mechanisms underlying the photoprotective properties of PL extract. Extensive research has demonstrated that PL extract exerts its protective effects through multiple pathways, including antioxidant activity, DNA repair stimulation, immunomodulation, and inhibition of inflammatory mediators. These mechanisms collectively contribute to the prevention of photodamage, such as sunburn, DNA damage, and photoaging. Furthermore, we explore the safety profile of PL extract, emphasizing its remarkable tolerability and minimal adverse effects reported in clinical studies. The absence of systemic absorption and its compatibility with other treatments make PL extract a promising option for long-term use in photoprotection and dermatological care. A promising alternative to traditional photoprotection may be Polypodium leucotomos. Additional thorough clinical trials are necessary to ascertain its role and effectiveness more accurately. The efficacy of PL extract in managing various dermatological conditions is also discussed. Multiple studies have demonstrated its beneficial effects in conditions such as vitiligo, melasma, psoriasis, and atopic dermatitis. The anti-inflammatory and immunomodulatory properties of PL extract have shown promise in reducing disease severity, improving skin symptoms, and enhancing the quality of life for patients. Additionally, the abstract highlights the potential future directions and areas of research for PL extract. Investigating its combination therapy with other photoprotective agents, exploring optimal dosage regimens, and further elucidating the molecular mechanisms are areas that warrant attention. In conclusion, this abstract provides an insightful overview of the mechanisms, safety, and efficacy of PL extract in photoprotection and dermatological conditions. The remarkable properties of PL extract, combined with its favorable safety profile, position it as a promising therapeutic intervention in dermatology. Further research and clinical trials are needed to fully exploit its potential and establish its place in the management of various skin conditions.

Graphical Abstract

[1]
Maleš, Ž.; Drvar, D.L.; Duka, I.; Žužul, K. Application of medicinal plants in several dermatovenerological entities. Acta Pharm., 2019, 69(4), 525-531.
[http://dx.doi.org/10.2478/acph-2019-0045] [PMID: 31639095]
[2]
Rabinovich, L.; Kazlouskaya, V. Herbal sun protection agents: Human studies. Clin. Dermatol., 2018, 36(3), 369-375.
[http://dx.doi.org/10.1016/j.clindermatol.2018.03.014] [PMID: 29908579]
[3]
Baumann, L.S. Less-known botanical cosmeceuticals. Dermatol. Ther., 2007, 20(5), 330-342.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00147.x] [PMID: 18045358]
[4]
Tuong, W.; Kuo, S.; Sivamani, R.K. Photoprotective effect of botanicals and vitamins: A systematic review of clinical trials. J. Dermatolog. Treat., 2015, 26(6), 558-570.
[http://dx.doi.org/10.3109/09546634.2015.1027647] [PMID: 25865615]
[5]
Cao, H.; Chai, T.T.; Wang, X.; Morais-Braga, M.F.B.; Yang, J.H.; Wong, F.C.; Wang, R.; Yao, H.; Cao, J.; Cornara, L.; Burlando, B.; Wang, Y.; Xiao, J.; Coutinho, H.D.M. Phytochemicals from fern species: Potential for medicine applications. Phytochem. Rev., 2017, 16(3), 379-440.
[http://dx.doi.org/10.1007/s11101-016-9488-7] [PMID: 32214919]
[6]
Torres, A.E.; Luk, K.M.; Lim, H.W. Botanicals for photoprotection. Plast. Aesthet. Res., 2020, 2020(57)
[http://dx.doi.org/10.20517/2347-9264.2020.87]
[7]
Taylor, C.R.; Sober, A.J. Sun exposure and skin disease. Annu. Rev. Med., 1996, 47(1), 181-191.
[http://dx.doi.org/10.1146/annurev.med.47.1.181] [PMID: 8712772]
[8]
Diffey, B.L. When should sunscreen be reapplied? J. Am. Acad. Dermatol., 2001, 45(6), 882-885.
[http://dx.doi.org/10.1067/mjd.2001.117385] [PMID: 11712033]
[9]
De Villa, D.; da Silva Nagatomi, A.R.; Paese, K.; Guterres, S.; Cestari, T.F. Reapplication improves the amount of sunscreen, not its regularity, under real life conditions. Photochem. Photobiol., 2011, 87(2), 457-460.
[http://dx.doi.org/10.1111/j.1751-1097.2010.00856.x] [PMID: 21143606]
[10]
Parrado, C.; Philips, N.; Gilaberte, Y.; Juarranz, A.; González, S. Oral photoprotection: Effective agents and potential candidates. Front. Med., 2018, 5(JUN), 188.
[http://dx.doi.org/10.3389/fmed.2018.00188] [PMID: 29998107]
[11]
Adamson, A.S.; Shinkai, K. Systemic absorption of sunscreen. JAMA, 2020, 323(3), 223-224.
[http://dx.doi.org/10.1001/jama.2019.20143] [PMID: 31961400]
[12]
DiNardo, J.C.; Downs, C.A. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone‐3. J. Cosmet. Dermatol., 2018, 17(1), 15-19.
[http://dx.doi.org/10.1111/jocd.12449] [PMID: 29086472]
[13]
Yuan, S.; Huang, J.; Jiang, X.; Huang, Y.; Zhu, X.; Cai, Z. Environmental fate and toxicity of sunscreen-derived inorganic ultraviolet filters in aquatic environments: A review. Nanomaterials, 2022, 12(4), 699.
[http://dx.doi.org/10.3390/nano12040699] [PMID: 35215026]
[14]
Saewan, N.; Jimtaisong, A. Natural products as photoprotection. J. Cosmet. Dermatol., 2015, 14(1), 47-63.
[http://dx.doi.org/10.1111/jocd.12123] [PMID: 25582033]
[15]
Serafini, M.R.; Guimarães, A.G.; Quintans, J.S.S.; Araújo, A.A.S.; Nunes, P.S.; Quintans-Júnior, L.J. Natural compounds for solar photoprotection: A patent review. Expert Opin. Ther. Pat., 2015, 25(4), 467-478.
[http://dx.doi.org/10.1517/13543776.2014.1000863] [PMID: 25576326]
[16]
Yarnell, E.; Abascal, K. Herbal sunscreens and ultraviolet protectants. Altern. Complement. Ther., 2012, 18(3), 141-144.
[http://dx.doi.org/10.1089/act.2012.18307]
[17]
Smith, A.R.; Pryer, K.M.; Schuettpelz, E.; Korall, P.; Schneider, H.; Wolf, P.G. A classification for extant ferns. Taxon, 2006, 55(3), 705-731.
[http://dx.doi.org/10.2307/25065646]
[18]
N.C. Cooperative Extension. Common Name(s): Cabbage Palm Fern Golden Polypody Gold Foot Fern Hare Foot Fern Rabbits Foot Fern. Available from: https://plants.ces.ncsu.edu/plants/phlebodium-aureum/
[19]
United States Department of Agriculture. Phlebodium aureum (L.) J. Sm. GRIN-Global. Available from: npgsweb.ars-grin.gov Available from: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=27742 (Accessed on: March 12, 2022).
[20]
Wikimedia Foundation. Phlebodium aureum (habit). Location: Maui, Waikamoi trail. Available from: https://en.wikipedia.org/wiki/Phlebodium_aureum#/media/File:Starr_050107-2831_Phlebodium_aureum.jpg
[21]
Useful Tropical Plants Database. Phlebodium aureum - Useful Tropical Plants. Available from: http://tropical.theferns.info/viewtropical.php?id=Phlebodium+aureum
[22]
Pulikkottil, A.J. Phlebodium aureum., Available from: wiki.medicinalplants-uses.com Available from: https://wiki.medicinalplants-uses.com/index.php/Phlebodium_aureum
[23]
Krishnan, A.; K.R. Diversity of pteridophytes in western ghats- a review. Plant Arch., 2021, 21(1), 1115-1129.
[http://dx.doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.148]
[24]
Prakash, L. A contribution to fern flora of Anaikatty Hills, Western Ghats, Tamil Nadu, India. Indian J Plant Sci, 2020, 9, 71-79.
[25]
Aher, S.; Adsul, A.; Shelke, P. SR L. Phytodiversity studies of Shri Mulikadevi Mahavidyalaya Nighoj, Dist. Ahmnednagar (MS), India. Int. J. Recent Sci. Res., 2020, 11(04), 38254-38259.
[http://dx.doi.org/10.24327/IJRSR]
[26]
Un Mondo Ecosostenibile. Phlebodium aureum. Available from: https://antropocene.it/en/2022/01/03/phlebodium-aureum/ (Accessed on: March 23, 2022).
[27]
Thomas, B.A. Some commercial uses of pteridophytes in Central America. Am. Fern J., 1999, 89(2), 101-105.
[http://dx.doi.org/10.2307/1547344]
[28]
Cáceres, A.; Cruz, S.M. Application of Calahuala (Phlebodium spp) fern complex for the formulation of diverse medicinal and cosmetic products. IJPNI, 2018, 5(1), 11-11.
[http://dx.doi.org/10.15171/ijpni.2018.11]
[29]
Riefner, R.E.J. New and noteworthy epiphytic ferns from the urban forests of coastal Southern California, USA. Phytologia, 2019, 101(1), 81-112.
[30]
Sureshkumar, J.; Silambarasan, R.; Bharati, K.A.; Krupa, J.; Amalraj, S.; Ayyanar, M. A review on ethnomedicinally important pteridophytes of India. J. Ethnopharmacol., 2018, 219, 269-287.
[http://dx.doi.org/10.1016/j.jep.2018.03.024] [PMID: 29578072]
[31]
Parrado, C.; Mascaraque, M.; Gilaberte, Y.; Juarranz, A.; Gonzalez, S. Fernblock (Polypodium leucotomos Extract): Molecular mechanisms and pleiotropic effects in light-related skin conditions, photoaging and skin cancers, a review. Int. J. Mol. Sci., 2016, 17(7), 1026.
[http://dx.doi.org/10.3390/ijms17071026] [PMID: 27367679]
[32]
Rodríguez-Yanes, E.; Juarranz, Á.; Cuevas, J.; Gonzalez, S.; Mallol, J. P olypodium leucotomos decreases UV ‐induced epidermal cell proliferation and enhances p53 expression and plasma antioxidant capacity in hairless mice. Exp. Dermatol., 2012, 21(8), 638-640.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01544.x] [PMID: 22776002]
[33]
Palomino, O.M. Current knowledge in Polypodium leucotomos effect on skin protection. Arch. Dermatol. Res., 2015, 307(3), 199-209.
[http://dx.doi.org/10.1007/s00403-014-1535-x] [PMID: 25539991]
[34]
Segars, K.; McCarver, V.; Miller, R.A. Dermatologic applications of polypodium leucotomos: A literature review. J. Clin. Aesthet. Dermatol., 2021, 14(2), 50-60.
[PMID: 34221229]
[35]
Salvador, G.; Silvia, R.L.; Pablo, D.; Angeles, J. Comparison of several hydrophilic extracts of Polypodium leucotomos reveals different antioxidant moieties and photoprotective effects in vitro. J. Med. Plants Res., 2018, 12(22), 336-345.
[http://dx.doi.org/10.5897/JMPR2018.6651]
[36]
National Center for Biotechnology Information. Quinic acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Quinic-acid
[37]
Zeng, K.; Thompson, K.E.; Yates, C.R.; Miller, D.D. Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2009, 19(18), 5458-5460.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.096] [PMID: 19674895]
[38]
Åkesson, C.; Lindgren, H.; Pero, R.W.; Leanderson, T.; Ivars, F. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100®. Int. Immunopharmacol., 2005, 5(1), 219-229.
[http://dx.doi.org/10.1016/j.intimp.2004.09.028] [PMID: 15589483]
[39]
Wang, G.F.; Shi, L.P.; Ren, Y.D.; Liu, Q.F.; Liu, H.F.; Zhang, R.J.; Li, Z.; Zhu, F.H.; He, P.L.; Tang, W.; Tao, P.Z.; Li, C.; Zhao, W.M.; Zuo, J.P. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res., 2009, 83(2), 186-190.
[http://dx.doi.org/10.1016/j.antiviral.2009.05.002] [PMID: 19463857]
[40]
National Center for Biotechnology Information. Shikimic acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Shikimic-acid (Accessed on: May 5, 2022).
[41]
Estévez, A.M.; Estévez, R.J. A short overview on the medicinal chemistry of (-)-shikimic acid. Mini Rev. Med. Chem., 2012, 12(14), 1443-1454.
[http://dx.doi.org/10.2174/138955712803832735] [PMID: 22827174]
[42]
Al-Malki, A.L. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats. Int. J. Biol. Macromol., 2019, 122, 1212-1216.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.072] [PMID: 30227208]
[43]
Rabelo, T.K.; Zeidán-Chuliá, F.; Caregnato, F.F.; Schnorr, C.E.; Gasparotto, J.; Serafini, M.R.; de Souza Araújo, A.A.; Quintans-Junior, L.J.; Moreira, J.C.F.; Gelain, D.P. In vitro neuroprotective effect of shikimic acid against hydrogen peroxide-induced oxidative stress. J. Mol. Neurosci., 2015, 56(4), 956-965.
[http://dx.doi.org/10.1007/s12031-015-0559-9] [PMID: 25862258]
[44]
Borah, J.C. Shikimic acid: A highly prospective molecule in pharmaceutical industry. Curr. Sci., 2015, 109(9), 1672-1679.
[http://dx.doi.org/10.18520/v109/i9/1672-1679]
[45]
National Center for Biotechnology Information. D-Glucuronic Acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/D-Glucuronic-Acid (Accessed on: May 5, 2022).
[46]
Martínez-Leal, J.; Ponce-García, N.; Escalante-Aburto, A. Recent evidence of the beneficial effects associated with glucuronic acid contained in kombucha beverages. Curr. Nutr. Rep., 2020, 9(3), 163-170.
[http://dx.doi.org/10.1007/s13668-020-00312-6] [PMID: 32415557]
[47]
Vina, I.; Linde, R.; Patetko, A.; Semjonovs, P. Glucuronic acid from fermented beverages: biochemical functions in humans and its role in health protection. Int J Res Rev Appl Sci, 2013, 14(February), 217-230.
[48]
National Center for Biotechnology Information. Malic Acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Malic-acid (Accessed on: May 5, 2022).
[49]
Smith, W.P. Comparative effectiveness of α-hydroxy acids on skin properties. Int. J. Cosmet. Sci., 1996, 18(2), 75-83.
[http://dx.doi.org/10.1111/j.1467-2494.1996.tb00137.x] [PMID: 19245467]
[50]
National Center for Biotechnology Information. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/4-Hydroxycinnamic-acid
[51]
Kiliç, I.; Yeşiloğlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 719-724.
[http://dx.doi.org/10.1016/j.saa.2013.06.110] [PMID: 23892112]
[52]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p ‐Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[53]
Ferreira, P.S.; Victorelli, F.D.; Fonseca-Santos, B.; Chorilli, M. A review of analytical methods for p -coumaric acid in plant-based products, beverages, and biological matrices. Crit. Rev. Anal. Chem., 2019, 49(1), 21-31.
[http://dx.doi.org/10.1080/10408347.2018.1459173] [PMID: 29757687]
[54]
Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p ‐coumaric acid and rutin, using food systems. J. Sci. Food Agric., 2013, 93(13), 3205-3208.
[http://dx.doi.org/10.1002/jsfa.6156] [PMID: 23553578]
[55]
Ragupathi Raja Kannan, R.; Arumugam, R.; Thangaradjou, T.; Anantharaman, P. Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Res. Int., 2013, 54(1), 1229-1236.
[http://dx.doi.org/10.1016/j.foodres.2013.01.027]
[56]
Kong, C.S.; Jeong, C.H.; Choi, J.S.; Kim, K.J.; Jeong, J.W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res., 2013, 27(3), 317-323.
[http://dx.doi.org/10.1002/ptr.4718] [PMID: 22585412]
[57]
Jorge, R.; Furtado, N.A.J.C.; Sousa, J.P.B.; da Silva Filho, A.A.; Gregório Junior, L.E.; Martins, C.H.G.; Soares, A.E.E.; Bastos, J.K.; Cunha, W.R.; Silva, M.L.A. Brazilian propolis: Seasonal variation of the prenylated p -coumaric acids and antimicrobial activity. Pharm. Biol., 2008, 46(12), 889-893.
[http://dx.doi.org/10.1080/13880200802370373]
[58]
Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 2012, 25(2), 550-554.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.022]
[59]
Boo, Y.C. p-coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants, 2019, 8(8), 275.
[http://dx.doi.org/10.3390/antiox8080275] [PMID: 31382682]
[60]
Seo, Y.K.; Kim, S.J.; Boo, Y.C.; Baek, J.H.; Lee, S.H.; Koh, J.S. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol., 2011, 36(3), 260-266.
[http://dx.doi.org/10.1111/j.1365-2230.2010.03983.x] [PMID: 21198798]
[61]
Larrosa, M.; Lodovici, M.; Morbidelli, L.; Dolara, P. Hydrocaffeic and p -coumaric acids, natural phenolic compounds, inhibit UV-B damage in WKD human conjunctival cells in vitro and rabbit eye in vivo. Free Radic. Res., 2008, 42(10), 903-910.
[http://dx.doi.org/10.1080/10715760802510077] [PMID: 18985489]
[62]
Ferulic acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ferulic-acid (Accessed on: May 5, 2022).
[63]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep., 2014, 4, 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[64]
Chaudhary, A.; Jaswal, V.S.; Choudhary, S.; Sonika; Sharma, A.; Beniwal, V.; Tuli, H.S.; Sharma, S. Ferulic acid: A promising therapeutic phytochemical and recent patents advances. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 115-123.
[http://dx.doi.org/10.2174/1872213X13666190621125048] [PMID: 31223096]
[65]
Touaibia, M.; Jean-François, J.; Doiron, J. Caffeic Acid, a versatile pharmacophore: An overview. Mini Rev. Med. Chem., 2011, 11(8), 695-713.
[http://dx.doi.org/10.2174/138955711796268750] [PMID: 21679136]
[66]
Paiva, L.B.; Goldbeck, R.; Santos, W.D.; Squina, F.M. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci., 2013, 49(3), 395-411.
[http://dx.doi.org/10.1590/S1984-82502013000300002]
[67]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[68]
Svobodová, A.; Psotová, J.; Walterová, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2003, 147(2), 137-145.
[http://dx.doi.org/10.5507/bp.2003.019] [PMID: 15037894]
[69]
Chaiprasongsuk, A.; Onkoksoong, T.; Pluemsamran, T.; Limsaengurai, S.; Panich, U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol., 2016, 8, 79-90.
[http://dx.doi.org/10.1016/j.redox.2015.12.006] [PMID: 26765101]
[70]
Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol., 2014, 65, 185-195.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[71]
National Center for Biotechnology Information. Caffeic Acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Caffeic-acid (Accessed on: May 5, 2022).
[72]
Morishita, H.; Ohnishi, M. Absorption, metabolism and biological activities of chlorogenic acids and related compounds. Stud Nat Prod Chem., 2001, 25, 919-953.
[http://dx.doi.org/10.1016/S1572-5995(01)80024-7]
[73]
Sidoryk, K.; Jaromin, A.; Filipczak, N.; Cmoch, P.; Cybulski, M. Synthesis and antioxidant activity of caffeic acid derivatives. Molecules, 2018, 23(9), 2199.
[http://dx.doi.org/10.3390/molecules23092199] [PMID: 30200272]
[74]
Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci., 2020, 21(16), 5712.
[http://dx.doi.org/10.3390/ijms21165712] [PMID: 32784935]
[75]
Prasad, N.R.; Jeyanthimala, K.; Ramachandran, S. Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J. Photochem. Photobiol. B, 2009, 95(3), 196-203.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.03.007] [PMID: 19386510]
[76]
Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods, 2014, 6(10), 3203-3210.
[http://dx.doi.org/10.1039/C3AY41807C]
[77]
Edreva, A. The importance of non-photosynthetic pigments and cinnamic acid derivatives in photoprotection. Agric. Ecosyst. Environ., 2005, 106(2-3), 135-146.
[http://dx.doi.org/10.1016/j.agee.2004.10.002]
[78]
National Center for Biotechnology Information. Vanillic Acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Vanillic-acid (Accessed on: May 5, 2022).
[79]
Kaur, J.; Gulati, M.; Singh, S.K.; Kuppusamy, G.; Kapoor, B.; Mishra, V.; Gupta, S.; Arshad, M.F.; Porwal, O.; Jha, N.K.; Chaitanya, M.V.N.L.; Chellappan, D.K.; Gupta, G.; Gupta, P.K.; Dua, K.; Khursheed, R.; Awasthi, A.; Corrie, L. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci. Technol., 2022, 122(February), 187-200.
[http://dx.doi.org/10.1016/j.tifs.2022.02.023]
[80]
Calixto-Campos, C.; Carvalho, T.T.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Fattori, V.; Manchope, M.F.; Zarpelon, A.C.; Baracat, M.M.; Georgetti, S.R.; Casagrande, R.; Verri, W.A., Jr Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J. Nat. Prod., 2015, 78(8), 1799-1808.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00246] [PMID: 26192250]
[81]
National Center for Biotechnology Information. 4-Hydroxybenzoic acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/4-Hydroxybenzoic-acid (Accessed on: May 5, 2022).
[82]
Manuja, R.; Sachdeva, S.; Jain, A.; Chaudhary, J. A comprehensive review on biological activities of P-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res., 2013, 22(2), 109-115.
[83]
National Center for Biotechnology Information. 3,4-Dihydroxybenzoic acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/3_4-Dihydroxybenzoic-acid (Accessed on: May 5, 2022).
[84]
Khan, A.K.; Rashid, R.; Fatima, N.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological activities of procatechuic acid. Acta Pol. Pharm., 2015, 72(4), 643-650.
[PMID: 26647619]
[85]
Masella, R.; Santangelo, C.; D’Archivio, M. LiVolti, G.; Giovannini, C.; Galvano, F. Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Curr. Med. Chem., 2012, 19(18), 2901-2917.
[http://dx.doi.org/10.2174/092986712800672102] [PMID: 22519395]
[86]
Habib, S.A.; Suddek, G.M.; Abdel Rahim, M.; Abdelrahman, R.S. The protective effect of protocatechuic acid on hepatotoxicity induced by cisplatin in mice. Life Sci., 2021, 277(January), 119485.
[http://dx.doi.org/10.1016/j.lfs.2021.119485] [PMID: 33864821]
[87]
Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: Old wine in a new bottle. In: Evidence-Based Complement Altern Med; Youssef, F.S., Ed.; , 2021; pp. 1-19.
[http://dx.doi.org/10.1155/2021/6139308]
[88]
Kakkar, S.; Bais, S. A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol., 2014, 2014(4), 1-9.
[http://dx.doi.org/10.1155/2014/952943] [PMID: 25006494]
[89]
Shin, S.; Cho, S.H.; Park, D.; Jung, E. Anti‐skin aging properties of protocatechuic acid in vitro and in vivo. J. Cosmet. Dermatol., 2020, 19(4), 977-984.
[http://dx.doi.org/10.1111/jocd.13086] [PMID: 31389672]
[90]
Tanaka, T.; Tanaka, T.; Tanaka, M. Potential Cancer Chemopreventive Activity of Protocatechuic Acid. J. Exp. Clin. Med., 2011, 3(1), 27-33.
[http://dx.doi.org/10.1016/j.jecm.2010.12.005]
[91]
National Center for Biotechnology Information. Chlorogenic Acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chlorogenic-acid (Accessed on: May 5, 2022).
[92]
Upadhyay, R.; Mohan Rao, L.J. An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 968-984.
[http://dx.doi.org/10.1080/10408398.2011.576319] [PMID: 23768188]
[93]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97(97), 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[94]
Yan, Y.; Liu, N.; Hou, N.; Dong, L.; Li, J. Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. J. Nutr. Biochem., 2017, 46, 68-73.
[http://dx.doi.org/10.1016/j.jnutbio.2017.04.007] [PMID: 28458139]
[95]
Wigley, C.B. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed; Standring, S., Ed.; Elsevier Ltd, 2016.
[96]
Mescher, A.L. Junqueira’s Basic Histology: Text and Atlas, 14th ed; McGraw-Hill Education, 2016.
[97]
Gilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and function of the skin. In: Nanoscience in Dermatology; Hamblin, M.R.; Avci, P.; Prow, T.W., Eds.; Academic Press, 2016; pp. 1-14.
[http://dx.doi.org/10.1016/B978-0-12-802926-8.00001-X]
[98]
Lewis, J.R.; Reiter, A.M. Skin Anatomy and Physiology. In: Crabs; Princeton University Press, 2010.
[http://dx.doi.org/10.1515/9780691230139-004]
[99]
Gallagher, R.P.; Lee, T.K.; Bajdik, C.D.; Borugian, M. Ultraviolet radiation. Chronic Dis. Inj. Can., 2010, 29(S1), 51-68.
[http://dx.doi.org/10.24095/hpcdp.29.S1.04] [PMID: 21199599]
[100]
World Health Organization. Radiation: Ultraviolet (UV) radiation. 2016. Available from: https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv) (Accessed on: May 30, 2022).
[101]
Sliney, D.H. What is light? The visible spectrum and beyond. Eye, 2016, 30(2), 222-229.
[http://dx.doi.org/10.1038/eye.2015.252] [PMID: 26768917]
[102]
Maverakis, E.; Miyamura, Y.; Bowen, M.P.; Correa, G.; Ono, Y.; Goodarzi, H. Light, including ultraviolet. J. Autoimmun., 2010, 34(3), J247-J257.
[http://dx.doi.org/10.1016/j.jaut.2009.11.011] [PMID: 20018479]
[103]
Frederick, J.E. Ultraviolet sunlight reaching the earth’s surface: A review of recent research. Photochem. Photobiol., 1993, 57(1), 175-178.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb02274.x]
[104]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[105]
Jablonski, N.G.; Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci., 2010, 107(S2), 8962-8968.
[http://dx.doi.org/10.1073/pnas.0914628107] [PMID: 20445093]
[106]
Chaplin, G. Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol., 2004, 125(3), 292-302.
[http://dx.doi.org/10.1002/ajpa.10263] [PMID: 15386260]
[107]
Del Bino, S.; Duval, C.; Bernerd, F. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. Int. J. Mol. Sci., 2018, 19(9), 2668.
[http://dx.doi.org/10.3390/ijms19092668] [PMID: 30205563]
[108]
Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, 84(3), 539-549.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[109]
Polefka, T.G.; Meyer, T.A.; Agin, P.P.; Bianchini, R.J. Effects of solar radiation on the skin. J. Cosmet. Dermatol., 2012, 11(2), 134-143.
[http://dx.doi.org/10.1111/j.1473-2165.2012.00614.x] [PMID: 22672278]
[110]
Young, A.R. Acute effects of UVR on human eyes and skin. Prog. Biophys. Mol. Biol., 2006, 92(1), 80-85.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.005] [PMID: 16600340]
[111]
Gonzaga, E.R. Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection. Am. J. Clin. Dermatol., 2009, 10(Suppl. 1), 19-24.
[http://dx.doi.org/10.2165/0128071-200910001-00004] [PMID: 19209950]
[112]
Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA, 2012, 109(42), 17111-17116.
[http://dx.doi.org/10.1073/pnas.1206851109] [PMID: 23027968]
[113]
Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol., 2002, 138(11), 1462-1470.
[http://dx.doi.org/10.1001/archderm.138.11.1462] [PMID: 12437452]
[114]
Takema, Y.; Hattori, M.; Aizawa, K. The relationship between quantitative changes in collagen and formation of wrinkles on hairless mouse skin after chronic UV irradiation. J. Dermatol. Sci., 1996, 12(1), 56-63.
[http://dx.doi.org/10.1016/0923-1811(95)00467-X] [PMID: 8740462]
[115]
Moloney, S.J.; Edmonds, S.H.; Giddens, L.D.; Learn, D.B. The hairless mouse model of photoaging: evaluation of the relationship between dermal elastin, collagen, skin thickness and wrinkles. Photochem. Photobiol., 1992, 56(4), 505-511.
[http://dx.doi.org/10.1111/j.1751-1097.1992.tb02194.x] [PMID: 1454880]
[116]
Podda, M.; Traber, M.G.; Weber, C.; Yan, L.J.; Packer, L. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic. Biol. Med., 1998, 24(1), 55-65.
[http://dx.doi.org/10.1016/S0891-5849(97)00142-1] [PMID: 9436614]
[117]
Labani, S.; Asthana, S.; Rathore, K.; Sardana, K. Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions. J. Cancer Res. Ther., 2021, 17(4), 906-911.
[http://dx.doi.org/10.4103/jcrt.JCRT_785_19] [PMID: 34528540]
[118]
Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin Cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol. Ther., 2017, 7(S1), 5-19.
[http://dx.doi.org/10.1007/s13555-016-0165-y] [PMID: 28150105]
[119]
Ananthaswamy, H.N.; Ouhtit, A.; Ananthaswamy, O.N. Mechanisms of induction of skin cancer by UV radiation. Front. Biosci., 1997, 2(4), A211.
[http://dx.doi.org/10.2741/A211] [PMID: 9343491]
[120]
Linos, E.; Katz, K.A.; Colditz, G.A. Skin cancer—the importance of prevention. JAMA Intern. Med., 2016, 176(10), 1435-1436.
[http://dx.doi.org/10.1001/jamainternmed.2016.5008] [PMID: 27459394]
[121]
Gupta, A.K.; Bharadwaj, M.; Mehrotra, R. Skin Cancer concerns in people of color: Risk factors and prevention. Asian Pac. J. Cancer Prev., 2016, 17(12), 5257-5264.
[http://dx.doi.org/10.22034/APJCP.2016.17.12.5257] [PMID: 28125871]
[122]
Maitra, S.; Chatterjee, D.; Bandyopadhyay, A.R. Skin color variation: A study on Eastern and North East India. Asian J. Med. Sci., 2019, 10(3), 13-16.
[http://dx.doi.org/10.3126/ajms.v10i3.23256]
[123]
Balasubramanian, A. India-Topography and Slope, 2007. Available from: https://www.researchgate.net/publication/314152843_India-Topography_and_Slope
[124]
Blumthaler, M.; Ambach, W.; Ellinger, R. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. B, 1997, 39(2), 130-134.
[http://dx.doi.org/10.1016/S1011-1344(96)00018-8]
[125]
Pustisek, N.; Situm, M. UV-radiation, apoptosis and skin. Coll. Antropol., 2011, 35(S2), 339-341.
[PMID: 22220467]
[126]
Ichihashi, M.; Ueda, M.; Budiyanto, A.; Bito, T.; Oka, M.; Fukunaga, M.; Tsuru, K.; Horikawa, T. UV-induced skin damage. Toxicology, 2003, 189(1-2), 21-39.
[http://dx.doi.org/10.1016/S0300-483X(03)00150-1] [PMID: 12821280]
[127]
Cleaver, J.E.; Crowley, E. UV damage DNA repair and skin carcinogenesis. Front. Biosci., 2002, 7(4), A829.
[http://dx.doi.org/10.2741/A829] [PMID: 11897551]
[128]
de Gruijl, F.R. Skin cancer and solar UV radiation. Eur. J. Cancer, 1999, 35(14), 2003-2009.
[http://dx.doi.org/10.1016/S0959-8049(99)00283-X] [PMID: 10711242]
[129]
Chen, H.; Weng, Q.Y.; Fisher, D.E. UV signaling pathways within the skin. J. Invest. Dermatol., 2014, 134(8), 2080-2085.
[http://dx.doi.org/10.1038/jid.2014.161] [PMID: 24759085]
[130]
National Cancer Institute. Sunscreen. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/sunscreen (Accessed June 7, 2022).
[131]
Mancuso, J.B.; Maruthi, R.; Wang, S.Q.; Lim, H.W. Sunscreens: An Update. Am. J. Clin. Dermatol., 2017, 18(5), 643-650.
[http://dx.doi.org/10.1007/s40257-017-0290-0] [PMID: 28510141]
[132]
Sambandan, D.R.; Ratner, D. Sunscreens: An overview and update. J. Am. Acad. Dermatol., 2011, 64(4), 748-758.
[http://dx.doi.org/10.1016/j.jaad.2010.01.005] [PMID: 21292345]
[133]
Latha, M.S.; Martis, J.; Shobha, V.; Sham Shinde, R.; Bangera, S.; Krishnankutty, B.; Bellary, S.; Varughese, S.; Rao, P.; Naveen Kumar, B.R. Sunscreening agents: A review. J. Clin. Aesthet. Dermatol., 2013, 6(1), 16-26.
[PMID: 23320122]
[134]
Gasparro, F.P.; Mitchnick, M.; Nash, J.F. A review of sunscreen safety and efficacy. Photochem. Photobiol., 1998, 68(3), 243-256.
[http://dx.doi.org/10.1111/j.1751-1097.1998.tb09677.x] [PMID: 9747581]
[135]
Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm. J., 2019, 27(7), 1009-1018.
[http://dx.doi.org/10.1016/j.jsps.2019.08.003] [PMID: 31997908]
[136]
Kullavanijaya, P.; Lim, H.W. Photoprotection. J. Am. Acad. Dermatol., 2005, 52(6), 937-958.
[http://dx.doi.org/10.1016/j.jaad.2004.07.063] [PMID: 15928611]
[137]
Gabros, S.; Nessel, T.A.; Zito, P.M. Sunscreens and Photoprotection 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537164/#_NBK537164_pubdet_ (Accessed on: June 7, 2022).
[138]
Maier, T.; Korting, H.C. Sunscreens - which and what for? Skin Pharmacol. Physiol., 2005, 18(6), 253-262.
[http://dx.doi.org/10.1159/000087606] [PMID: 16113595]
[139]
Pustisek, N.; Lipozencić, J.; Ljubojević, S. A review of sunscreens and their adverse reactions. Acta Dermatovenerol. Croat., 2005, 13(1), 28-35.
[PMID: 15788144]
[140]
Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection. J. Am. Acad. Dermatol., 2013, 69(6), 867.e1-867.e14.
[http://dx.doi.org/10.1016/j.jaad.2013.08.022] [PMID: 24238180]
[141]
Shanbhag, S.; Nayak, A.; Narayan, R.; Nayak, U.Y. Anti-aging and Sunscreens: Paradigm Shift in Cosmetics. Adv. Pharm. Bull., 2019, 9(3), 348-359.
[http://dx.doi.org/10.15171/apb.2019.042] [PMID: 31592127]
[142]
Ouchene, L.; Litvinov, I.V.; Netchiporouk, E. Hawaii and other jurisdictions ban oxybenzone or octinoxate sunscreens based on the confirmed adverse environmental effects of sunscreen ingredients on aquatic environments. J. Cutan. Med. Surg., 2019, 23(6), 648-649.
[http://dx.doi.org/10.1177/1203475419871592] [PMID: 31729915]
[143]
Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The banned sunscreen ingredients and their impact on human health: A systematic review. Int. J. Dermatol., 2020, 59(9), 1033-1042.
[http://dx.doi.org/10.1111/ijd.14824] [PMID: 32108942]
[144]
Stokes, R.; Diffey, B. How well are sunscreen users protected? Photodermatol. Photoimmunol. Photomed., 1997, 13(5-6), 186-188.
[http://dx.doi.org/10.1111/j.1600-0781.1997.tb00227.x] [PMID: 9542755]
[145]
Petersen, B.; Wulf, H.C. Application of sunscreen − theory and reality. Photodermatol. Photoimmunol. Photomed., 2014, 30(2-3), 96-101.
[http://dx.doi.org/10.1111/phpp.12099] [PMID: 24313722]
[146]
Draelos, Z.D. Compliance and sunscreens. Dermatol. Clin., 2006, 24(1), 101-104.
[http://dx.doi.org/10.1016/j.det.2005.09.001] [PMID: 16311172]
[147]
Schilling, K.; Bradford, B.; Castelli, D.; Dufour, E.; Nash, J.F.; Pape, W.; Schulte, S.; Tooley, I.; van den Bosch, J.; Schellauf, F. Human safety review of “nano” titanium dioxide and zinc oxide. Photochem. Photobiol. Sci., 2010, 9(4), 495-509.
[http://dx.doi.org/10.1039/b9pp00180h] [PMID: 20354643]
[148]
Weller, P.; Freeman, S. Photocontact allergy to octyldimethyl PABA. Australas. J. Dermatol., 1984, 25(2), 73-76.
[http://dx.doi.org/10.1111/j.1440-0960.1984.tb00630.x] [PMID: 6335653]
[149]
de Groot, A.C.; van der Walle, H.B.; Jagtman, B.A.; Weyland, J.W. Contact allergy to 4-isopropyl dibenzoylmethane and 3-(4′-methylbenzylidene) camphor in the sunscreen Eusolex 8021. Contact Dermat., 1987, 16(5), 249-254.
[http://dx.doi.org/10.1111/j.1600-0536.1987.tb01447.x] [PMID: 3621925]
[150]
Lenique, P.; Machet, L.; Vaillant, L.; Bensaïd, P.; Muller, C.; Khallouf, R.; Lorette, G. Contact and photocontact allergy to oxybenzone. Contact Dermat., 1992, 26(3), 177-181.
[http://dx.doi.org/10.1111/j.1600-0536.1992.tb00289.x] [PMID: 1505183]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy