Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

SSPH I, A Novel Anti-cancer Saponin, Inhibits EMT and Invasion and Migration of NSCLC by Suppressing MAPK/ERK1/2 and PI3K/AKT/ mTOR Signaling Pathways

Author(s): Jinling Zhou, Jian Luo, Rizhi Gan, Limin Zhi, Huan Zhou, Meixian Lv, Yinmei Huang and Gang Liang*

Volume 19, Issue 4, 2024

Published on: 17 January, 2024

Page: [543 - 555] Pages: 13

DOI: 10.2174/0115748928283132240103073039

Price: $65

Abstract

Background: Saponin of Schizocapsa plantaginea Hance I (SSPH I)a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer.

Objective: To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and in vivo.

Methods: The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage.

Results: The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways.

Conclusion: SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.

[1]
Nasim F, Sabath BF, Eapen GA. Lung Cancer. Med Clin North Am 2019; 103(3): 463-73.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[2]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[3]
Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018; 391(10124): 933.
[http://dx.doi.org/10.1016/S0140-6736(18)30533-6] [PMID: 29536852]
[4]
Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev 2014; 40(4): 558-66.
[http://dx.doi.org/10.1016/j.ctrv.2013.10.001] [PMID: 24176790]
[5]
Adachi Y, Ito K, Hayashi Y, et al. Epithelial-to-mesenchymal transition is a cause of both intrinsic and acquired resistance to kras G12C inhibitor in kras G12C–mutant non–small cell lung cancer. Clin Cancer Res 2020; 26(22): 5962-73.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2077] [PMID: 32900796]
[6]
Ni L, Li Z, Shi X, et al. Rosthorin A inhibits non-small cell lung cancer cell growth and metastasis through repressing epithelial-mesenchymal transition via downregulating Slug. Anticancer Drugs 2020; 31(10): 997-1003.
[http://dx.doi.org/10.1097/CAD.0000000000000973] [PMID: 33065690]
[7]
Chen L, Guo P, He Y, et al. HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis 2018; 9(5): 513.
[http://dx.doi.org/10.1038/s41419-018-0534-9] [PMID: 29725020]
[8]
Wang Y, Dong C, Zhou BP. Metabolic reprogram associated with epithelial-mesenchymal transition in tumor progression and metastasis. Genes Dis 2020; 7(2): 172-84.
[http://dx.doi.org/10.1016/j.gendis.2019.09.012] [PMID: 32215287]
[9]
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[10]
Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and posttranslational modifications. Mol Cancer 2016; 15(1): 18.
[http://dx.doi.org/10.1186/s12943-016-0502-x] [PMID: 26905733]
[11]
Lin K, Baritaki S, Militello L, Malaponte G, Bevelacqua Y, Bonavida B. The Role of B-RAF Mutations in Melanoma and the Induction of EMT via Dysregulation of the NF-B/Snail/RKIP/PTEN Circuit. Genes Cancer 2010; 1(5): 409-20.
[http://dx.doi.org/10.1177/1947601910373795] [PMID: 20827424]
[12]
Lin X, Zhang H, Dai J, et al. TFF3 contributes to epithelial-mesenchymal transition (EMT) in papillary thyroid carcinoma cells via the MAPK/ERK signaling pathway. J Cancer 2018; 9(23): 4430-9.
[http://dx.doi.org/10.7150/jca.24361] [PMID: 30519349]
[13]
Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes Migr 2015; 9(4): 317-24.
[http://dx.doi.org/10.1080/19336918.2015.1016686] [PMID: 26241004]
[14]
Takeda Y, Naka G, Yamaguchi Y, et al. Genetic diagnostic features after failure of initial treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors among non-small-cell lung cancer patients harboring EGFR mutations. BMC Cancer 2020; 20(1): 951.
[http://dx.doi.org/10.1186/s12885-020-07424-w] [PMID: 33008313]
[15]
Hsu WH, Yang JC, Mok TS, Loong HH. Overview of current systemic management of EGFR-mutant NSCLC. Ann Oncol 2018; 29(1): 3-9.
[16]
Zhu X, Chen L, Liu L, Niu X. EMT-mediated acquired EGFR-TKI resistance in NSCLC: Mechanisms and strategies. Front Oncol 2019; 9: 1044.
[http://dx.doi.org/10.3389/fonc.2019.01044] [PMID: 31681582]
[17]
He J, Huang Z, Han L, Gong Y, Xie C. Mechanisms and management of 3rd generation EGFR TKI resistance in advanced non small cell lung cancer (Review). Int J Oncol 2021; 59(5): 90.
[http://dx.doi.org/10.3892/ijo.2021.5270] [PMID: 34558640]
[18]
Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17(1): 53.
[http://dx.doi.org/10.1186/s12943-018-0793-1] [PMID: 29455669]
[19]
Xia X, Wang X, Zhang S, et al. miR-31 shuttled by halofuginoneinduced exosomes suppresses MFC-7 cell proliferation by modulating the HDAC2/cell cycle signaling axis. J Cell Physiol 2019; 234(10): 18970-84.
[http://dx.doi.org/10.1002/jcp.28537] [PMID: 30916359]
[20]
Xiang YC, Shen J, Si Y, et al. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer. Chin J Nat Med 2021; 19(3): 195-204.
[http://dx.doi.org/10.1016/S1875-5364(21)60021-3] [PMID: 33781453]
[21]
Teng JF, Mei QB, Zhou XG, et al. Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers 2020; 12(1): 193.
[http://dx.doi.org/10.3390/cancers12010193] [PMID: 31941010]
[22]
Yang Q, Zhai X, Lv Y. A bibliometric analysis of triptolide and the recent advances in treating non–small cell lung cancer. Front Pharmacol 2022; 13: 878726.
[http://dx.doi.org/10.3389/fphar.2022.878726] [PMID: 35721205]
[23]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[24]
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14(2): 111-29.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[25]
Kee JY, Han YH, Kim DS, et al. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine 2016; 23(13): 1680-90.
[http://dx.doi.org/10.1016/j.phymed.2016.09.011] [PMID: 27823633]
[26]
Antitumoral compounds US11713325, 2023.
[27]
Methods of treating ovarian cancer with hemp extract. US11654171, 2023.
[28]
Ultrasonic-microwave synergistic extraction method of total saponins in beautiful millettia root. US11708386, 2023.
[29]
Application of total Saponins of Schizocapsa plantaginea Hance in anti-hepatoma and anti-nasopharyngeal carcinoma. CN103142774A, 2014.
[30]
Qiu HC, Sun YW, Luo SR, et al. Effects of saponins from Schizocapsa plantaginea Hance on proliferation, migration and apoptosis of human hepatocellular carcinoma cells and its toxicity to normal hepatocytes. Shandong Yiyao 2017; 57: 1-4. [Reference in Chinese].
[31]
Shun-ren LUO, Han-chen QIU, Yan-yan CHEN, Xiu-ying HUANG, Zhi-hong LIAO, Bu-ming LIU, et al. The characteristic spectra of Saponins of Schizocapsa Plantaginea Hance and the antitumor activity of effective components in the total saponins. Natural Product Research and Development 2018; 30(2): 294-8. [J] [Reference in Chinese].
[32]
Sun YW, Qiu HC, Ou MC, Chen RL, Liang G. Saponins isolated from Schizocapsa plantaginea inhibit human hepatocellular carcinoma cell growth in vivo and in vitro via mitogen-activated protein kinase signaling. Chin J Nat Med 2018; 16(1): 29-40.
[http://dx.doi.org/10.1016/S1875-5364(18)30027-X] [PMID: 29425588]
[33]
Zhou J, Huang X, Qiu H, et al. SSPH I, a novel anti-cancer saponin, inhibits autophagy and induces apoptosis via ros accumulation and ERK1/2 signaling pathway in hepatocellular carcinoma cells. OncoTargets Ther 2020; 13: 5979-91.
[http://dx.doi.org/10.2147/OTT.S253234] [PMID: 32606806]
[34]
de Araújo RSA, Carmo JOS, de Omena Silva SL, et al. Coumarin derivatives exert anti-lung cancer activity by inhibition of epithelial–mesenchymal transition and migration in A549 cells. Pharmaceuticals 2022; 15(1): 104.
[http://dx.doi.org/10.3390/ph15010104] [PMID: 35056161]
[35]
Yuan Z, Li Y, Zhang S, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22(1): 48.
[http://dx.doi.org/10.1186/s12943-023-01744-8] [PMID: 36906534]
[36]
Wang L, Soria JC, Kemp BL, Liu DD, Mao L, Khuri FR. hTERT expression is a prognostic factor of survival in patients with stage I non-small cell lung cancer. Clin Cancer Res 2002; 8(9): 2883-9.
[PMID: 12231532]
[37]
Emmanouilidi A, Paladin D, Greening DW, Falasca M. Oncogenic and non-malignant pancreatic exosome cargo reveal distinct expression of oncogenic and prognostic factors involved in tumor invasion and metastasis. Proteomics 2019; 19(8): 1800158.
[http://dx.doi.org/10.1002/pmic.201800158] [PMID: 30893511]
[38]
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559-64.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[39]
Rezaie J, Ahmadi M, Ravanbakhsh R, et al. Tumor-derived extracellular vesicles: The metastatic organotropism drivers. Life Sci 2022; 289: 120216.
[http://dx.doi.org/10.1016/j.lfs.2021.120216] [PMID: 34890589]
[40]
Liu J, Wang Z, Yin Y, et al. Long noncoding RNA TPTE2P1 promotes the migration and invasion of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2019; 23(9): 3733-41.
[PMID: 31114999]
[41]
Chae YK, Chang S, Ko T, et al. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci Rep 2018; 8(1): 2918.
[http://dx.doi.org/10.1038/s41598-018-21061-1] [PMID: 29440769]
[42]
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29(3): 212-26.
[http://dx.doi.org/10.1016/j.tcb.2018.12.001] [PMID: 30594349]
[43]
Diepenbruck M, Christofori G. Epithelial–mesenchymal transition (EMT) and metastasis: Yes, no, maybe? Curr Opin Cell Biol 2016; 43: 7-13.
[http://dx.doi.org/10.1016/j.ceb.2016.06.002] [PMID: 27371787]
[44]
Datta A, Deng S, Gopal V, et al. Cytoskeletal dynamics in epithelial-mesenchymal transition: Insights into therapeutic targets for cancer metastasis. Cancers 2021; 13(8): 1882.
[http://dx.doi.org/10.3390/cancers13081882] [PMID: 33919917]
[45]
Sun M, Zhuang X, Lv G, et al. Ginsenoside CK Inhibits TGF-β-induced epithelial-mesenchymal transition in A549 cell via SIRT1. BioMed Res Int 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/9140191] [PMID: 34934771]
[46]
Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009; 28(1-2): 15-33.
[http://dx.doi.org/10.1007/s10555-008-9169-0] [PMID: 19169796]
[47]
Dart AE, Gordon-Weeks PR. The role of drebrin in cancer cell invasion. Adv Exp Med Biol 2017; 1006: 375-89.
[http://dx.doi.org/10.1007/978-4-431-56550-5_23] [PMID: 28865033]
[48]
Peng JM, Bera R, Chiou CY, et al. Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology 2018; 67(6): 2226-43.
[http://dx.doi.org/10.1002/hep.29678] [PMID: 29171033]
[49]
Wu B, Yang S, Sun H, et al. Keap1 inhibits metastatic properties of NSCLC cells by stabilizing architectures of F-Actin and focal adhesions. Mol Cancer Res 2018; 16(3): 508-16.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0544] [PMID: 29330291]
[50]
Chen Z, He S, Zhan Y, et al. TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine 2019; 47: 208-20.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.012] [PMID: 31420300]
[51]
Eastham AM, Spencer H, Soncin F, et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 2007; 67(23): 11254-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2253] [PMID: 18056451]
[52]
Wieland T. [50 years of phalloidine: Its discovery, characterization and current and future applications in cell research]. Naturwissenschaften 1987; 74(8): 367-73.
[http://dx.doi.org/10.1007/BF00405464] [PMID: 3309681]
[53]
Schmucker B, Ballhausen WG, Kressel M. Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin. Eur J Cell Biol 1997; 72(1): 46-53.
[PMID: 9013725]
[54]
Fu J, Yu J, Chen J, Xu H, Luo Y, Lu H. In vitro inhibitory properties of sesquiterpenes from Chloranthus serratus on cell motility via down-regulation of LIMK1 activation in human breast cancer. Phytomedicine 2018; 49: 23-31.
[http://dx.doi.org/10.1016/j.phymed.2018.06.009] [PMID: 30217259]
[55]
Li X, Wang J. Mechanical tumor microenvironment and transduction: Cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 2020; 16(12): 2014-28.
[http://dx.doi.org/10.7150/ijbs.44943] [PMID: 32549750]
[56]
Lu Y, Huang D, Wang B, et al. FAM21C promotes hepatocellular carcinoma invasion and metastasis by driving actin cytoskeleton remodeling via inhibiting capping ability of CAPZA1. Front Oncol 2022; 11: 809195.
[http://dx.doi.org/10.3389/fonc.2021.809195] [PMID: 35096613]
[57]
Jeong YJ, Hwang SK, Magae J, Chang YC. Ascofuranone suppresses invasion and F-actin cytoskeleton organization in cancer cells by inhibiting the mTOR complex 1 signaling pathway. Cell Oncol 2020; 43(5): 793-805.
[http://dx.doi.org/10.1007/s13402-020-00520-w] [PMID: 32488849]
[58]
Pattabiraman DR, Weinberg RA. Targeting the epithelial-to-mesenchymal transition: The case for differentiation-based therapy. Cold Spring Harb Symp Quant Biol 2016; 81: 11-9.
[http://dx.doi.org/10.1101/sqb.2016.81.030957] [PMID: 28057845]
[59]
Tessier CE, Dupuy AMM, Pelé T, Juin PP, Lees JA, Guen VJ. EMT and primary ciliogenesis: For better or worse in sickness and in health. Genesis 2023; e23568.
[http://dx.doi.org/10.1002/dvg.23568] [PMID: 37946671]
[60]
Lambert AW, Weinberg RA. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021; 21(5): 325-38.
[http://dx.doi.org/10.1038/s41568-021-00332-6] [PMID: 33547455]
[61]
Marcucci F, Stassi G, De Maria R. Epithelial–mesenchymal transition: A new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15(5): 311-25.
[http://dx.doi.org/10.1038/nrd.2015.13] [PMID: 26822829]
[62]
Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 2020; 9(1): 217.
[http://dx.doi.org/10.3390/cells9010217] [PMID: 31952344]
[63]
Cui Y, Song Y, Yan S, et al. CUEDC1 inhibits epithelial-mesenchymal transition via the TβRI/Smad signaling pathway and suppresses tumor progression in non-small cell lung cancer. Aging (Albany NY) 2020; 12(20): 20047-68.
[http://dx.doi.org/10.18632/aging.103329] [PMID: 33099540]
[64]
Yuan R, Fan Q, Liang X, et al. Cucurbitacin B inhibits TGF-β1-induced epithelial–mesenchymal transition (EMT) in NSCLC through regulating ROS and PI3K/Akt/mTOR pathways. Chin Med 2022; 17(1): 24.
[http://dx.doi.org/10.1186/s13020-022-00581-z] [PMID: 35183200]
[65]
Chen B, Song Y, Zhan Y, et al. Fangchinoline inhibits non-small cell lung cancer metastasis by reversing epithelial-mesenchymal transition and suppressing the cytosolic ROS-related Akt-mTOR signaling pathway. Cancer Lett 2022; 543: 215783.
[http://dx.doi.org/10.1016/j.canlet.2022.215783] [PMID: 35700820]
[66]
Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275(47): 36803-10.
[http://dx.doi.org/10.1074/jbc.M005912200] [PMID: 10969078]
[67]
Zhao N, He M, Chen W, et al. FAM96A suppresses epithelial–mesenchymal transition and tumor metastasis by inhibiting TGFβ1 signals. Life Sci 2022; 301: 120607.
[http://dx.doi.org/10.1016/j.lfs.2022.120607] [PMID: 35513087]
[68]
Zhang L, Zhang Y, Shen D, et al. RNA binding motif protein 3 promotes cell metastasis and epithelial–mesenchymal transition through STAT3 signaling pathway in hepatocellular carcinoma. J Hepatocell Carcinoma 2022; 9: 405-22.
[http://dx.doi.org/10.2147/JHC.S351886] [PMID: 35592242]
[69]
Chen Q, Guo H, Jiang H, et al. S100A2 induces epithelial–mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor β signaling in SMAD4-dependent manner. Cell Death Discov 2023; 9(1): 356.
[http://dx.doi.org/10.1038/s41420-023-01661-1] [PMID: 37758734]
[70]
Zhao R, Chen M, Jiang Z, et al. Platycodin-D induced autophagy in non-small cell lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathways. J Cancer 2015; 6(7): 623-31.
[http://dx.doi.org/10.7150/jca.11291] [PMID: 26078792]
[71]
Que Z, Luo B, Zhou Z, et al. Establishment and characterization of a patient-derived circulating lung tumor cell line in vitro and in vivo. Cancer Cell Int 2019; 19(1): 21.
[http://dx.doi.org/10.1186/s12935-019-0735-z] [PMID: 30718976]
[72]
Du B, Shim J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 2016; 21(7): 965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[73]
Erin N, Grahovac J, Brozovic A, Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53: 100715.
[http://dx.doi.org/10.1016/j.drup.2020.100715] [PMID: 32679188]
[74]
Ebrahimi N, Adelian S, Shakerian S, et al. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: Implications for inflammation and cancer therapy. Cytokine Growth Factor Rev 2022; 64: 33-45.
[http://dx.doi.org/10.1016/j.cytogfr.2022.01.006] [PMID: 35219587]
[75]
Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: Targeting epithelial–mesenchymal transition in colorectal cancer. Lancet Oncol 2021; 22(8): e358-68.
[http://dx.doi.org/10.1016/S1470-2045(21)00343-0] [PMID: 34339656]
[76]
Legras A, Pécuchet N, Imbeaud S, et al. Epithelial-to-mesenchymal transition and microRNAs in lung cancer. Cancers 2017; 9(12): 101.
[http://dx.doi.org/10.3390/cancers9080101] [PMID: 28771186]
[77]
Huang D, Dong X, Li J, et al. Steroidal saponin SSPH I induces ferroptosis in HepG2 cells via regulating iron metabolism. Med Oncol 2023; 40(5): 132.
[http://dx.doi.org/10.1007/s12032-023-02000-1] [PMID: 36977862]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy