Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Characterization of the Prognosis and Tumor Microenvironment of Cellular Senescence-related Genes through scRNA-seq and Bulk RNA-seq Analysis in GC

Author(s): Guoxiang Guo, Zhifeng Zhou, Shuping Chen, Jiaqing Cheng, Yang Wang, Tianshu Lan* and Yunbin Ye*

Volume 19, Issue 4, 2024

Published on: 03 October, 2023

Page: [530 - 542] Pages: 13

DOI: 10.2174/0115748928255417230924191157

Price: $65

Abstract

Background: Cellular senescence (CS) is thought to be the primary cause of cancer development and progression. This study aimed to investigate the prognostic role and molecular subtypes of CS-associated genes in gastric cancer (GC).

Materials and Methods: The CellAge database was utilized to acquire CS-related genes. Expression data and clinical information of GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were then grouped into distinct subtypes using the “Consesus- ClusterPlus” R package based on CS-related genes. An in-depth analysis was conducted to assess the gene expression, molecular function, prognosis, gene mutation, immune infiltration, and drug resistance of each subtype. In addition, a CS-associated risk model was developed based on Cox regression analysis. The nomogram, constructed on the basis of the risk score and clinical factors, was formulated to improve the clinical application of GC patients. Finally, several candidate drugs were screened based on the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset.

Results: According to the cluster result, patients were categorized into two molecular subtypes (C1 and C2). The two subtypes revealed distinct expression levels, overall survival (OS) and clinical presentations, mutation profiles, tumor microenvironment (TME), and drug resistance. A risk model was developed by selecting eight genes from the differential expression genes (DEGs) between two molecular subtypes. Patients with GC were categorized into two risk groups, with the high-risk group exhibiting a poor prognosis, a higher TME level, and increased expression of immune checkpoints. Function enrichment results suggested that genes were enriched in DNA repaired pathway in the low-risk group. Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that immunotherapy is likely to be more beneficial for patients in the low-risk group. Drug analysis results revealed that several drugs, including ML210, ML162, dasatinib, idronoxil, and temsirolimus, may contribute to the treatment of GC patients in the high-risk group. Moreover, the risk model genes presented a distinct expression in single-cell levels in the GSE150290 dataset.

Conclusion: The two molecular subtypes, with their own individual OS rate, expression patterns, and immune infiltration, lay the foundation for further exploration into the GC molecular mechanism. The eight gene signatures could effectively predict the GC prognosis and can serve as reliable markers for GC patients.

[1]
Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin 2021; 71(3): 264-79.
[http://dx.doi.org/10.3322/caac.21657] [PMID: 33592120]
[2]
Liu M, Fang X, Wang H, et al. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front Oncol 2023; 12: 1038932.
[http://dx.doi.org/10.3389/fonc.2022.1038932] [PMID: 36713557]
[3]
Tang YH, Ren LL, Mao T. Update on diagnosis and treatment of early signet-ring cell gastric carcinoma: A literature review. World J Gastrointest Endosc 2023; 15(4): 240-7.
[http://dx.doi.org/10.4253/wjge.v15.i4.240] [PMID: 37138936]
[4]
Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med Sci Monit 2019; 25: 3537-41.
[http://dx.doi.org/10.12659/MSM.916475] [PMID: 31080234]
[5]
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130(2): 223-33.
[http://dx.doi.org/10.1016/j.cell.2007.07.003] [PMID: 17662938]
[6]
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol Rev 2019; 99(2): 1047-78.
[http://dx.doi.org/10.1152/physrev.00020.2018] [PMID: 30648461]
[7]
Prieto LI, Baker DJ, Senescence C. Cellular senescence and the immune system in cancer. Gerontology 2019; 65(5): 505-12.
[http://dx.doi.org/10.1159/000500683] [PMID: 30032140]
[8]
Ooi CH, Ivanova T, Wu J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet 2009; 5(10): e1000676.
[http://dx.doi.org/10.1371/journal.pgen.1000676] [PMID: 19798449]
[9]
Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015; 21(5): 449-56.
[http://dx.doi.org/10.1038/nm.3850] [PMID: 25894828]
[10]
Yoon SJ, Park J, Shin Y, et al. Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. BMC Cancer 2020; 20(1): 314.
[http://dx.doi.org/10.1186/s12885-020-06814-4] [PMID: 32293340]
[11]
Tacutu R, Thornton D, Johnson E, et al. Human ageing genomic resources: New and updated databases. Nucleic Acids Res 2018; 46(D1): D1083-90.
[http://dx.doi.org/10.1093/nar/gkx1042] [PMID: 29121237]
[12]
Wilkerson MD, Hayes DN. Consensus cluster plus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010; 26(12): 1572-3.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[13]
Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 2018; 28(11): 1747-56.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[14]
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[15]
Charoentong P, Finotello F, Angelova M. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017; 18(1): 248-62.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019]
[16]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[17]
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[18]
Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 2018; 24(10): 1550-8.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[19]
Kim J, Park C, Kim K, et al. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity NPJ Precis Oncol 2022; 6(1): 9.
[http://dx.doi.org/10.1038/s41698-022-00251-1]
[20]
Cao Y, Fu L, Wu J, et al. Integrated analysis of multimodal single-cell data with structural similarity. Nucleic Acids Res 2022; 50(21): e121.
[http://dx.doi.org/10.1093/nar/gkac781] [PMID: 36130281]
[21]
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72.
[http://dx.doi.org/10.1038/s41590-018-0276-y] [PMID: 30643263]
[22]
Liu F, Yang Z, Zheng L, et al. A tumor progression related 7-gene signature indicates prognosis and tumor immune characteristics of gastric cancer. Front Oncol 2021; 11: 690129.
[http://dx.doi.org/10.3389/fonc.2021.690129] [PMID: 34195091]
[23]
Shao W, Yang Z, Fu Y, et al. The pyroptosis-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Front Cell Dev Biol 2021; 9: 676485.
[http://dx.doi.org/10.3389/fcell.2021.676485] [PMID: 34179006]
[24]
Araujo B, de Lima V, Borch A, Hansen M, et al. Common phenotypic dynamics of tumor-infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome. Cytotherapy 2020; 22(4): 204-13.
[http://dx.doi.org/10.1016/j.jcyt.2020.01.010] [PMID: 32201034]
[25]
Suzuki H, Oda I, Abe S, et al. High rate of 5-year survival among patients with early gastric cancer undergoing curative endoscopic submucosal dissection. Gastric Cancer 2015.
[PMID: 25616808]
[26]
di tucci C, Capone C, Galati G. et al.Immunotherapy in endometrial cancer: new scenarios on the horizon. J Gynecol Oncol 2019; 30(3): e46.
[http://dx.doi.org/10.3802/jgo.2019.30.e46]
[27]
Ribatti D, Solimando AG, Pezzella F. The Anti-VEGF(R) drug discovery legacy: improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers (Basel) 2021; 13(14): 3433.
[http://dx.doi.org/10.3390/cancers13143433] [PMID: 34298648]
[28]
Ma ES, Wang ZX, Zhu MQ, Zhao J. Immune evasion mechanisms and therapeutic strategies in gastric cancer. World J Gastrointest Oncol 2022; 14(1): 216-29.
[http://dx.doi.org/10.4251/wjgo.v14.i1.216] [PMID: 35116112]
[29]
Khan M, Lin J, Wang B, et al. A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma. Front Immunol 2022; 13: 968165.
[http://dx.doi.org/10.3389/fimmu.2022.968165] [PMID: 36389725]
[30]
Cai M, Sikong Y, Wang Q, Zhu S, Pang F, Cui X. Gpx3 prevents migration and invasion in gastric cancer by targeting NFкB/Wnt5a/JNK signaling. Int J Clin Exp Pathol 2019; 12(4): 1194-203.
[PMID: 31933934]
[31]
Brigelius-Flohe R. Selenium, glutathione peroxidases and cancer. 2009.
[32]
Seibt T, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 2018; 133.
[PMID: 30219704]
[33]
Takebe G, Yarimizu J, Saito Y, et al. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem 2002; 277(43): 41254-8.
[http://dx.doi.org/10.1074/jbc.M202773200] [PMID: 12185074]
[34]
Huang J, Sabater-Lleal M, Asselbergs F, et al. Genome-wide association study for circulating levels of plasminogen activator inhibitor-1 (PAI-1) provides novel insights into the regulation of PAI-1. Blood 2012; 120(24): 4873-81.
[35]
Li S, Wei X, He J, Tian X, Yuan S, Sun L. Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother 2018; 105: 83-94.
[http://dx.doi.org/10.1016/j.biopha.2018.05.119]
[36]
Zhai Y, Liu X, Huang Z, et al. Data mining combines bioinformatics discover immunoinfiltration-related gene SERPINE1 as a biomarker for diagnosis and prognosis of stomach adenocarcinoma. Sci Rep 2023; 13(1): 1373.
[http://dx.doi.org/10.1038/s41598-023-28234-7] [PMID: 36697459]
[37]
Zhang YW, Morita I, Ikeda M, Ma KW, Murota S. Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27. Oncogene 2001; 20(31): 4138-49.
[http://dx.doi.org/10.1038/sj.onc.1204563] [PMID: 11464280]
[38]
Ai Z, Fischer A, Spray DC, Brown AMC, Fishman GI. Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 2000; 105(2): 161-71.
[http://dx.doi.org/10.1172/JCI7798] [PMID: 10642594]
[39]
Huang RP, Hossain M, Gano J, Fan Y, Boynton A. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer 2001; 92(1): 130-8.
[40]
Meng S, Fan X, Zhang J, An R, Li S. GJA1 expression and its prognostic value in cervical cancer. BioMed Res Int 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/8827920] [PMID: 33299882]
[41]
DiGiacomo V, Maziarz M, Luebbers A, Norris JM, Laksono P, Garcia-Marcos M. Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci Signal 2020; 13(617): eaax8620.
[http://dx.doi.org/10.1126/scisignal.aax8620] [PMID: 32019900]
[42]
Lin C, Koval A, Tishchenko S, et al. Double suppression of the Gα protein activity by RGS proteins. Mol Cell 2014; 53(4): 663-71.
[http://dx.doi.org/10.1016/j.molcel.2014.01.014] [PMID: 24560274]
[43]
Cha PH, Cho YH, Lee SK, et al. Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation. Nat Chem Biol 2016; 12(8): 593-600.
[http://dx.doi.org/10.1038/nchembio.2103] [PMID: 27294323]
[44]
Huang D, Chen X, Zeng X, et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer. Nat Immunol 2021; 22(7): 865-79.
[http://dx.doi.org/10.1038/s41590-021-00939-9] [PMID: 34140678]
[45]
Yang S, Sun B, Li W, Yang H, Li N, Zhang X. Fatty acid metabolism is related to the immune microenvironment changes of gastric cancer and RGS2 is a new tumor biomarker. Front Immunol 2022; 13: 1065927.
[http://dx.doi.org/10.3389/fimmu.2022.1065927] [PMID: 36591293]
[46]
Tian L, Zhao Y, Truong MJ, Lagadec C, Bourette RP. Synuclein gamma expression enhances radiation resistance of breast cancer cells. Oncotarget 2018; 9(44): 27435-47.
[http://dx.doi.org/10.18632/oncotarget.25415] [PMID: 29937996]
[47]
Yang J, Pan Y, Peng L, et al. Upregulation of Synuclein-γ and Snai1 Contributes to Poor Clinical Prognosis in Oral Squamous Cell Carcinoma Patients. BioMed Res Int 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/6534626] [PMID: 35434126]
[48]
Shyamasundar LG, Loganathan L, Kumar A, Selina A, Madhuri V. MATN3 mutation causing spondyloepimetaphyseal dysplasia. Indian J Pediatr 2020; 87(3): 227-8.
[http://dx.doi.org/10.1007/s12098-019-03100-5] [PMID: 31724101]
[49]
García-Alvarado FJ, Delgado-Aguirre HA, Rosales-González M, et al. Analysis of Polymorphisms in the MATN3 and DOT1L Genes and CTX-II Urinary Levels in Patients with Knee Osteoarthritis in a Northeast Mexican-Mestizo Population. Genet Test Mol Biomarkers 2020; 24(2): 105-11.
[http://dx.doi.org/10.1089/gtmb.2019.0179] [PMID: 31999490]
[50]
Yang X, Trehan SK, Guan Y, et al. Matrilin-3 inhibits chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist. J Biol Chem 2014; 289(50): 34768-79.
[http://dx.doi.org/10.1074/jbc.M114.583104] [PMID: 25331953]
[51]
Wang P, Xiao W, Li Y, Wu X, Zhu H, Tan Y. Identification of MATN3 as a novel prognostic biomarker for gastric cancer through comprehensive TCGA and GEO data mining. Dis Markers 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/1769635] [PMID: 34900024]
[52]
Sheng L, Luo Q, Chen L. Amino acid solute carrier transporters in inflammation and autoimmunity. Drug Metab Dispos 2022; 50(9): 1228-37.
[http://dx.doi.org/10.1124/dmd.121.000705] [PMID: 35152203]
[53]
Lin Y, Huang K, Cai Z, et al. A novel exosome-relevant molecular classification uncovers distinct immune escape mechanisms and genomic alterations in gastric cancer. Front Pharmacol 2022; 13: 884090.
[http://dx.doi.org/10.3389/fphar.2022.884090] [PMID: 35721114]
[54]
Lee J, Roh JL. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants 2022; 11(12): 2444.
[http://dx.doi.org/10.3390/antiox11122444] [PMID: 36552652]
[55]
Ushiku T, Uozaki H, Shinozaki A, et al. Glypican 3-expressing gastric carcinoma: Distinct subgroup unifying hepatoid, clear-cell, and α-fetoprotein-producing gastric carcinomas. Cancer Sci 2009; 100(4): 626-32.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01108.x] [PMID: 19243386]
[56]
Luo T, Du Y, Duan J, et al. Development and validation of a scoring system based on 9 glycolysis-related genes for prognosis prediction in gastric cancer. Technol Cancer Res Treat 2020; 19.
[http://dx.doi.org/10.1177/1533033820971670] [PMID: 33161837]
[57]
Wang H, Lu Y, Wang M, et al. Src inhibitor dasatinib sensitized gastric cancer cells to cisplatin. Med Oncol 2022; 40(1): 49.
[http://dx.doi.org/10.1007/s12032-022-01879-6] [PMID: 36525117]
[58]
Maurya A, Vinayak M. PI-103 attenuates PI3K-AKT signaling and induces apoptosis in murine T-cell lymphoma. Leuk Lymphoma 2016; 58.
[PMID: 27658642]
[59]
Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol 2023; 62: 102703.
[http://dx.doi.org/10.1016/j.redox.2023.102703] [PMID: 37087975]
[60]
Xiao J, Zheng L, Liu J. Comprehensive analysis of the aberrance and functional significance of ferroptosis in gastric cancer. Front Pharmacol 2022; 13: 919490.
[http://dx.doi.org/10.3389/fphar.2022.919490] [PMID: 35903347]
[61]
Zanardi E, Verzoni E, Grassi P, et al. Clinical experience with temsirolimus in the treatment of advanced renal cell carcinoma. Ther Adv Urol 2015; 7(3): 152-61.
[http://dx.doi.org/10.1177/1756287215574457] [PMID: 26161146]
[62]
Evangelisti G, Barra F, Moioli M, et al. Prexasertib: an investigational checkpoint kinase inhibitor for the treatment of high-grade serous ovarian cancer. Expert Opin Investig Drugs 2020; 29(8): 779-92.
[http://dx.doi.org/10.1080/13543784.2020.1783238] [PMID: 32539469]
[63]
Konstantinopoulos P, Lee J-m, Gao B, et al. A Phase 2 study of prexasertib (LY2606368) in platinum resistant or refractory recurrent ovarian cancer. Gynecol Oncol 2022; S0090-8258(22): 01839-X.
[http://dx.doi.org/10.1016/j.ygyno.2022.09.019]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy