Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Theaflavins Induce Autophagy in Ehrlich’s Ascites Carcinoma Cells both In vivo and In vitro

Author(s): Arijit Kumar Ghosh, Aanchal Verma, Debabrata Majumder, Debasish Maiti, Tathagata Choudhuri, Antara Banerjee and Samiran Saha*

Volume 20, Issue 7, 2024

Published on: 17 January, 2024

Article ID: e170124225746 Pages: 11

DOI: 10.2174/0115734072277726240102062944

Price: $65

Abstract

Aims: To investigate the autophagy-inducing and tumoricidal efficacy of Theaflavins on Ehrlich’s Ascites Carcinoma (EAC) cells.

Background: The apoptosis-inducing role of Theaflavins against cancer is reported. Autophagy, a cellular mechanism under stress, occurs either as a survival process or Type-II programmed-cell death in the presence/absence of apoptosis. The report of Theaflavins inducing autophagy against cancer is poor.

Objective: Here, for the first time, the investigation for the anti-tumor efficacy of Theaflavins via autophagy in EAC was attempted.

Methods: EAC-bearing mice were treated orally with Theaflavins (10 mg/kg b.w.) every alternate day with a total of 27 doses. Body weight, tumor volume and survivability were recorded. Tumoricidal and cellular dehydrogenase activity, in vivo and in vitro, were studied using Trypan-blue exclusion and MTT assay respectively. Theaflavins-treated EAC cells were subjected to Monodansylcadaverine- staining. LC3II turnover and LC3I conversion were detected by western blotting. Apoptosis up to 12 h TF-treatment was estimated by AnnexinV binding.

Results: This is the first report of Theaflavins inducing autophagy in EAC cells in vivo and in vitro. Oral Theaflavins treatment restricted excessive body-weight increase due to tumors, reduced tumor volume, and increased survivability of tumor-bearing mice. Theaflavins caused EAC cell death (~8% in vitro, ~30% in vivo), significantly reduced metabolic activity, and created conspicuous vacuolization in surviving cells. Resultant vacuoles (in vitro, 6 h) were marked as autophagosomes by Monodansylcadaverine-staining. Autophagy was confirmed by LC3II augmentation. No significant apoptosis was observed up to 12 h TF-treatment in vitro.

Conclusion: Theaflavins were efficient inducing autophagy and Type-II PCD in EAC cells. Notably, Theaflavins induced autophagy prior to apoptosis in vitro.

Graphical Abstract

[1]
Takemoto, M.; Takemoto, H. Synthesis of theaflavins and their functions. Molecules, 2018, 23(4), 918.
[http://dx.doi.org/10.3390/molecules23040918] [PMID: 29659496]
[2]
Pan, M.H.; Lai, C.S.; Wang, H.; Lo, C.Y.; Ho, C.T.; Li, S. Black tea in chemo-prevention of cancer and other human diseases. Food Sci. Hum. Wellness, 2013, 2(1), 12-21.
[http://dx.doi.org/10.1016/j.fshw.2013.03.004]
[3]
Koňariková, K.; Ježovičová, M.; Keresteš, J.; Gbelcová, H.; Ďuračková, Z.; Žitňanová, I. Anticancer effect of black tea extract in human cancer cell lines. Springerplus, 2015, 4(1), 127.
[http://dx.doi.org/10.1186/s40064-015-0871-4] [PMID: 25825685]
[4]
Sun, S.; Pan, S.; Miao, A.; Ling, C.; Pang, S.; Tang, J.; Chen, D.; Zhao, C. Active extracts of black tea (Camellia Sinensis) induce apoptosis of PC-3 prostate cancer cells via mitochondrial dysfunction. Oncol. Rep., 2013, 30(2), 763-772.
[http://dx.doi.org/10.3892/or.2013.2504] [PMID: 23715786]
[5]
Patel, R.; Ingle, A.; Maru, G.B. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway. Toxicol. Appl. Pharmacol., 2008, 227(1), 136-146.
[http://dx.doi.org/10.1016/j.taap.2007.10.009] [PMID: 18037152]
[6]
Bhattacharyya, A.; Choudhuri, T.; Pal, S.; Chattopadhyay, S.; K Datta, G.; Sa, G.; Das, T. Apoptogenic effects of black tea on Ehrlich’s ascites carcinoma cell. Carcinogenesis, 2003, 24(1), 75-80.
[http://dx.doi.org/10.1093/carcin/24.1.75] [PMID: 12538351]
[7]
Bhattacharyya, A.; Lahiry, L.; Mandal, D.; Sa, G.; Das, T. Black tea induces tumor cell apoptosis by Bax translocation, loss in mitochondrial transmembrane potential, cytochrome c release and caspase activation. Int. J. Cancer, 2005, 117(2), 308-315.
[http://dx.doi.org/10.1002/ijc.21075] [PMID: 15880367]
[8]
Mandal, D.; Lahiry, L.; Bhattacharyya, A.; Chattopadhyay, S.; Siddiqi, M.; Sa, G.; Das, T. Black tea protects thymocytes in tumor-bearing animals by differential regulation of intracellular ROS in tumor cells and thymocytes. J. Environ. Pathol. Toxicol., 2005, 24(2), 91-104.
[http://dx.doi.org/10.1615/JEnvPathToxOncol.v24.i2.30]
[9]
Mandal, D.; Lahiry, L.; Bhattacharyya, A.; Bhattacharyya, S.; Sa, G.; Das, T. Tumor-induced thymic involution via inhibition of IL-7Rα and its JAK-STAT signaling pathway: Protection by black tea. Int. Immunopharmacol., 2006, 6(3), 433-444.
[http://dx.doi.org/10.1016/j.intimp.2005.09.005] [PMID: 16428079]
[10]
O’Neill, E.J.; Termini, D.; Albano, A.; Tsiani, E. Anti-cancer properties of theaflavins. Molecules, 2021, 26(4), 987.
[http://dx.doi.org/10.3390/molecules26040987] [PMID: 33668434]
[11]
Roberts, E.A.H. The chemistry of tea manufacture. J. Sci. Food Agric., 1958, 9(7), 381-390.
[http://dx.doi.org/10.1002/jsfa.2740090701]
[12]
Harbowy, M.E.; Balentine, D.A.; Davies, A.P.; Cai, Y. Tea chemistry. Crit. Rev. Plant Sci., 1997, 16(5), 415-480.
[http://dx.doi.org/10.1080/07352689709701956]
[13]
Shan, Z.; Nisar, M.F.; Li, M.; Zhang, C.; Wan, C.C. Theaflavin chemistry and its health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/6256618] [PMID: 34804369]
[14]
Truong, V.L.; Jeong, W.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int. J. Mol. Sci., 2021, 22(17), 9109.
[http://dx.doi.org/10.3390/ijms22179109] [PMID: 34502017]
[15]
Gao, Y.; Rankin, G.O.; Tu, Y.; Chen, Y.C. Inhibitory effects of the four main theaflavin derivatives found in black tea on ovarian cancer cells. Anticancer Res., 2016, 36(2), 643-651.
[PMID: 26851019]
[16]
Schuck, A. G.; Ausubel, M. B.; Zuckerbraun, H. L.; Babich, H. Theaflavin-3,3'-digallate, a component of black tea: an inducer of oxidative stress and apoptosis. Toxicology in vitro : An international journal published in association with BIBRA, 2008, 22(3), 598-609.
[17]
Lahiry, L.; Saha, B.; Chakraborty, J.; Bhattacharyya, S.; Chattopadhyay, S.; Banerjee, S.; Choudhuri, T.; Mandal, D.; Bhattacharyya, A.; Sa, G.; Das, T. Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis, 2008, 13(6), 771-781.
[http://dx.doi.org/10.1007/s10495-008-0213-x] [PMID: 18454316]
[18]
Lahiry, L.; Saha, B.; Chakraborty, J.; Adhikary, A.; Mohanty, S.; Hossain, D.M.S.; Banerjee, S.; Das, K.; Sa, G.; Das, T. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis, 2010, 31(2), 259-268.
[http://dx.doi.org/10.1093/carcin/bgp240] [PMID: 19969555]
[19]
Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(16), 2891-2906.
[http://dx.doi.org/10.1038/sj.onc.1207521] [PMID: 15077152]
[20]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[21]
Linder, B.; Kögel, D. Autophagy in cancer cell death. Biology, 2019, 8(4), 82.
[http://dx.doi.org/10.3390/biology8040082] [PMID: 31671879]
[22]
Shintani, T.; Klionsky, D.J. Autophagy in health and disease: A double-edged sword. Science, 2004, 306(5698), 990-995.
[http://dx.doi.org/10.1126/science.1099993] [PMID: 15528435]
[23]
Jung, S.; Jeong, H.; Yu, S.W. Autophagy as a decisive process for cell death. Exp. Mol. Med., 2020, 52(6), 921-930.
[http://dx.doi.org/10.1038/s12276-020-0455-4] [PMID: 32591647]
[24]
Das, G.; Shravage, B.V.; Baehrecke, E.H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a008813.
[http://dx.doi.org/10.1101/cshperspect.a008813] [PMID: 22661635]
[25]
Sekiyama, K.; Nakai, M.; Fujita, M.; Takenouchi, T.; Waragai, M.; Wei, J.; Sekigawa, A.; Takamatsu, Y.; Sugama, S.; Kitani, H.; Hashimoto, M. Theaflavins stimulate autophagic degradation of a-synuclein in neuronal cells., 2012, 2, 1.
[26]
Ozaslan, M.; Karagoz, I.D.; Kilic, I.H.; Guldur, M.E. Ehrlich ascites carcinoma. Afr. J. Biotechnol., 2011, 10(13), 2375-2378.
[27]
Murugan, S.; Amaravadi, R.K. Methods for studying autophagy within the tumor microenvironment. Adv. Exp. Med. Biol., 2016, 899, 145-166.
[http://dx.doi.org/10.1007/978-3-319-26666-4_9] [PMID: 27325266]
[28]
Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem., 2018, 120(3), 159-167.
[http://dx.doi.org/10.1016/j.acthis.2018.02.005] [PMID: 29496266]
[29]
Majumder, N.; Ganguly, S.; Ghosh, A.K.; Kundu, S.; Banerjee, A.; Saha, S. Chlorogenic acid acts upon Leishmania donovani arresting cell cycle and modulating cytokines and nitric oxide in vitro. Parasite Immunol., 2020, 42(6), e12719.
[http://dx.doi.org/10.1111/pim.12719] [PMID: 32248547]
[30]
Klionsky, D.J.; Abdalla, F.C.; Abeliovich, H.; Abraham, R.T.; Acevedo-Arozena, A.; Adeli, K.; Agholme, L.; Agnello, M.; Agostinis, P.; Aguirre-Ghiso, J.A.; Ahn, H.J.; Ait-Mohamed, O.; Ait-Si-Ali, S.; Akematsu, T.; Akira, S.; Al-Younes, H.M.; Al-Zeer, M.A.; Albert, M.L.; Albin, R.L.; Alegre-Abarrategui, J.; Aleo, M.F.; Alirezaei, M.; Almasan, A.; Almonte-Becerril, M.; Amano, A.; Amaravadi, R.K.; Amarnath, S.; Amer, A.O.; Andrieu-Abadie, N.; Anantharam, V.; Ann, D.K.; Anoopkumar-Dukie, S.; Aoki, H.; Apostolova, N.; Arancia, G.; Aris, J.P.; Asanuma, K.; Asare, N.Y.O.; Ashida, H.; Askanas, V.; Askew, D.S.; Auberger, P.; Baba, M.; Backues, S.K.; Baehrecke, E.H.; Bahr, B.A.; Bai, X.Y.; Bailly, Y.; Baiocchi, R.; Baldini, G.; Balduini, W.; Ballabio, A.; Bamber, B.A.; Bampton, E.T.W.; Juhász, G.; Bartholomew, C.R.; Bassham, D.C.; Bast, R.C., Jr; Batoko, H.; Bay, B.H.; Beau, I.; Béchet, D.M.; Begley, T.J.; Behl, C.; Behrends, C.; Bekri, S.; Bellaire, B.; Bendall, L.J.; Benetti, L.; Berliocchi, L.; Bernardi, H.; Bernassola, F.; Besteiro, S.; Bhatia-Kissova, I.; Bi, X.; Biard-Piechaczyk, M.; Blum, J.S.; Boise, L.H.; Bonaldo, P.; Boone, D.L.; Bornhauser, B.C.; Bortoluci, K.R.; Bossis, I.; Bost, F.; Bourquin, J.P.; Boya, P.; Boyer-Guittaut, M.; Bozhkov, P.V.; Brady, N.R.; Brancolini, C.; Brech, A.; Brenman, J.E.; Brennand, A.; Bresnick, E.H.; Brest, P.; Bridges, D.; Bristol, M.L.; Brookes, P.S.; Brown, E.J.; Brumell, J.H.; Brunetti-Pierri, N.; Brunk, U.T.; Bulman, D.E.; Bultman, S.J.; Bultynck, G.; Burbulla, L.F.; Bursch, W.; Butchar, J.P.; Buzgariu, W.; Bydlowski, S.P.; Cadwell, K.; Cahová, M.; Cai, D.; Cai, J.; Cai, Q.; Calabretta, B.; Calvo-Garrido, J.; Camougrand, N.; Campanella, M.; Campos-Salinas, J.; Candi, E.; Cao, L.; Caplan, A.B.; Carding, S.R.; Cardoso, S.M.; Carew, J.S.; Carlin, C.R.; Carmignac, V.; Carneiro, L.A.M.; Carra, S.; Caruso, R.A.; Casari, G.; Casas, C.; Castino, R.; Cebollero, E.; Cecconi, F.; Celli, J.; Chaachouay, H.; Chae, H.J.; Chai, C.Y.; Chan, D.C.; Chan, E.Y.; Chang, R.C.C.; Che, C.M.; Chen, C.C.; Chen, G.C.; Chen, G.Q.; Chen, M.; Chen, Q.; Chen, S.S.L.; Chen, W.; Chen, X.; Chen, X.; Chen, X.; Chen, Y.G.; Chen, Y.; Chen, Y.; Chen, Y.J.; Chen, Z.; Cheng, A.; Cheng, C.H.K.; Cheng, Y.; Cheong, H.; Cheong, J.H.; Cherry, S.; Chess-Williams, R.; Cheung, Z.H.; Chevet, E.; Chiang, H.L.; Chiarelli, R.; Chiba, T.; Chin, L.S.; Chiou, S.H.; Chisari, F.V.; Cho, C.H.; Cho, D.H.; Choi, A.M.K.; Choi, D.; Choi, K.S.; Choi, M.E.; Chouaib, S.; Choubey, D.; Choubey, V.; Chu, C.T.; Chuang, T.H.; Chueh, S.H.; Chun, T.; Chwae, Y.J.; Chye, M.L.; Ciarcia, R.; Ciriolo, M.R.; Clague, M.J.; Clark, R.S.B.; Clarke, P.G.H.; Clarke, R.; Codogno, P.; Coller, H.A.; Colombo, M.I.; Comincini, S.; Condello, M.; Condorelli, F.; Cookson, M.R.; Coombs, G.H.; Coppens, I.; Corbalan, R.; Cossart, P.; Costelli, P.; Costes, S.; Coto-Montes, A.; Couve, E.; Coxon, F.P.; Cregg, J.M.; Crespo, J.L.; Cronjé, M.J.; Cuervo, A.M.; Cullen, J.J.; Czaja, M.J.; D’Amelio, M.; Darfeuille-Michaud, A.; Davids, L.M.; Davies, F.E.; De Felici, M.; de Groot, J.F.; de Haan, C.A.M.; De Martino, L.; De Milito, A.; De Tata, V.; Debnath, J.; Degterev, A.; Dehay, B.; Delbridge, L.M.D.; Demarchi, F.; Deng, Y.Z.; Dengjel, J.; Dent, P.; Denton, D.; Deretic, V.; Desai, S.D.; Devenish, R.J.; Di Gioacchino, M.; Di Paolo, G.; Di Pietro, C.; Díaz-Araya, G.; Díaz-Laviada, I.; Diaz-Meco, M.T.; Diaz-Nido, J.; Dikic, I.; Dinesh-Kumar, S.P.; Ding, W.X.; Distelhorst, C.W.; Diwan, A.; Djavaheri-Mergny, M.; Dokudovskaya, S.; Dong, Z.; Dorsey, F.C.; Dosenko, V.; Dowling, J.J.; Doxsey, S.; Dreux, M.; Drew, M.E.; Duan, Q.; Duchosal, M.A.; Duff, K.E.; Dugail, I.; Durbeej, M.; Duszenko, M.; Edelstein, C.L.; Edinger, A.L.; Egea, G.; Eichinger, L.; Eissa, N.T.; Ekmekcioglu, S.; El-Deiry, W.S.; Elazar, Z.; Elgendy, M.; Ellerby, L.M.; Eng, K.E.; Engelbrecht, A.M.; Engelender, S.; Erenpreisa, J.; Escalante, R.; Esclatine, A.; Eskelinen, E.L.; Espert, L.; Espina, V.; Fan, H.; Fan, J.; Fan, Q.W.; Fan, Z.; Fang, S.; Fang, Y.; Fanto, M.; Fanzani, A.; Farkas, T.; Farré, J.C.; Faure, M.; Fechheimer, M.; Feng, C.G.; Feng, J.; Feng, Q.; Feng, Y.; Fésüs, L.; Feuer, R.; Figueiredo-Pereira, M.E.; Fimia, G.M.; Fingar, D.C.; Finkbeiner, S.; Finkel, T.; Finley, K.D.; Fiorito, F.; Fisher, E.A.; Fisher, P.B.; Flajolet, M.; Florez-McClure, M.L.; Florio, S.; Fon, E.A.; Fornai, F.; Fortunato, F.; Fotedar, R.; Fowler, D.H.; Fox, H.S.; Franco, R.; Frankel, L.B.; Fransen, M.; Fuentes, J.M.; Fueyo, J.; Fujii, J.; Fujisaki, K.; Fujita, E.; Fukuda, M.; Furukawa, R.H.; Gaestel, M.; Gailly, P.; Gajewska, M.; Galliot, B.; Galy, V.; Ganesh, S.; Ganetzky, B.; Ganley, I.G.; Gao, F.B.; Gao, G.F.; Gao, J.; Garcia, L.; Garcia-Manero, G.; Garcia-Marcos, M.; Garmyn, M.; Gartel, A.L.; Gatti, E.; Gautel, M.; Gawriluk, T.R.; Gegg, M.E.; Geng, J.; Germain, M.; Gestwicki, J.E.; Gewirtz, D.A.; Ghavami, S.; Ghosh, P.; Giammarioli, A.M.; Giatromanolaki, A.N.; Gibson, S.B.; Gilkerson, R.W.; Ginger, M.L.; Ginsberg, H.N.; Golab, J.; Goligorsky, M.S.; Golstein, P.; Gomez-Manzano, C.; Goncu, E.; Gongora, C.; Gonzalez, C.D.; Gonzalez, R.; González-Estévez, C.; González-Polo, R.A.; Gonzalez-Rey, E.; Gorbunov, N.V.; Gorski, S.; Goruppi, S.; Gottlieb, R.A.; Gozuacik, D.; Granato, G.E.; Grant, G.D.; Green, K.N.; Gregorc, A.; Gros, F.; Grose, C.; Grunt, T.W.; Gual, P.; Guan, J.L.; Guan, K.L.; Guichard, S.M.; Gukovskaya, A.S.; Gukovsky, I.; Gunst, J.; Gustafsson, Å.B.; Halayko, A.J.; Hale, A.N.; Halonen, S.K.; Hamasaki, M.; Han, F.; Han, T.; Hancock, M.K.; Hansen, M.; Harada, H.; Harada, M.; Hardt, S.E.; Harper, J.W.; Harris, A.L.; Harris, J.; Harris, S.D.; Hashimoto, M.; Haspel, J.A.; Hayashi, S.; Hazelhurst, L.A.; He, C.; He, Y.W.; Hébert, M.J.; Heidenreich, K.A.; Helfrich, M.H.; Helgason, G.V.; Henske, E.P.; Herman, B.; Herman, P.K.; Hetz, C.; Hilfiker, S.; Hill, J.A.; Hocking, L.J.; Hofman, P.; Hofmann, T.G.; Höhfeld, J.; Holyoake, T.L.; Hong, M.H.; Hood, D.A.; Hotamisligil, G.S.; Houwerzijl, E.J.; Høyer-Hansen, M.; Hu, B.; Hu, C.A.; Hu, H.M.; Hua, Y.; Huang, C.; Huang, J.; Huang, S.; Huang, W.P.; Huber, T.B.; Huh, W.K.; Hung, T.H.; Hupp, T.R.; Hur, G.M.; Hurley, J.B.; Hussain, S.N.A.; Hussey, P.J.; Hwang, J.J.; Hwang, S.; Ichihara, A.; Ilkhanizadeh, S.; Inoki, K.; Into, T.; Iovane, V.; Iovanna, J.L.; Ip, N.Y.; Isaka, Y.; Ishida, H.; Isidoro, C.; Isobe, K.; Iwasaki, A.; Izquierdo, M.; Izumi, Y.; Jaakkola, P.M.; Jäättelä, M.; Jackson, G.R.; Jackson, W.T.; Janji, B.; Jendrach, M.; Jeon, J.H.; Jeung, E.B.; Jiang, H.; Jiang, H.; Jiang, J.X.; Jiang, M.; Jiang, Q.; Jiang, X.; Jiang, X.; Jiménez, A.; Jin, M.; Jin, S.V.; Joe, C.O.; Johansen, T.; Johnson, D.E.; Johnson, G.V.W.; Jones, N.L.; Joseph, B.; Joseph, S.K.; Joubert, A.M.; Juhász, G.; Juillerat-Jeanneret, L.; Jung, C.H.; Jung, Y.K.; Kaarniranta, K.; Kaasik, A.; Kabuta, T.; Kadowaki, M.; Kågedal, K.; Kamada, Y.; Kaminskyy, V.O.; Kampinga, H.H.; Kanamori, H.; Kang, C.; Kang, K.B.; Kang, K.I.; Kang, R.; Kang, Y.A.; Kanki, T.; Kanneganti, T.D.; Kanno, H.; Kanthasamy, A.G.; Kanthasamy, A.; Karantza, V.; Kaushal, G.P.; Kaushik, S.; Kawazoe, Y.; Ke, P.Y.; Kehrl, J.H.; Kelekar, A.; Kerkhoff, C.; Kessel, D.H.; Khalil, H.; Kiel, J.A.K.W.; Kiger, A.A.; Kihara, A.; Kim, D.R.; Kim, D.H.; Kim, D.H.; Kim, E.K.; Kim, H.R.; Kim, J.S.; Kim, J.H.; Kim, J.C.; Kim, J.K.; Kim, P.K.; Kim, S.W.; Kim, Y.S.; Kim, Y.; Kimchi, A.; Kimmelman, A.C.; King, J.S.; Kinsella, T.J.; Kirkin, V.; Kirshenbaum, L.A.; Kitamoto, K.; Kitazato, K.; Klein, L.; Klimecki, W.T.; Klucken, J.; Knecht, E.; Ko, B.C.B.; Koch, J.C.; Koga, H.; Koh, J.Y.; Koh, Y.H.; Koike, M.; Komatsu, M.; Kominami, E.; Kong, H.J.; Kong, W.J.; Korolchuk, V.I.; Kotake, Y.; Koukourakis, M.I.; Flores, J.B.K.; Kovács, A.L.; Kraft, C.; Krainc, D.; Krämer, H.; Kretz-Remy, C.; Krichevsky, A.M.; Kroemer, G.; Krüger, R.; Krut, O.; Ktistakis, N.T.; Kuan, C.Y.; Kucharczyk, R.; Kumar, A.; Kumar, R.; Kumar, S.; Kundu, M.; Kung, H.J.; Kurz, T.; Kwon, H.J.; La Spada, A.R.; Lafont, F.; Lamark, T.; Landry, J.; Lane, J.D.; Lapaquette, P.; Laporte, J.F.; László, L.; Lavandero, S.; Lavoie, J.N.; Layfield, R.; Lazo, P.A.; Le, W.; Le Cam, L.; Ledbetter, D.J.; Lee, A.J.X.; Lee, B.W.; Lee, G.M.; Lee, J. lee, J.; Lee, M.; Lee, M.S.; Lee, S.H.; Leeuwenburgh, C.; Legembre, P.; Legouis, R.; Lehmann, M.; Lei, H.Y.; Lei, Q.Y.; Leib, D.A.; Leiro, J.; Lemasters, J.J.; Lemoine, A.; Lesniak, M.S.; Lev, D.; Levenson, V.V.; Levine, B.; Levy, E.; Li, F.; Li, J.L.; Li, L.; Li, S.; Li, W.; Li, X.J.; Li, Y.B.; Li, Y.P.; Liang, C.; Liang, Q.; Liao, Y.F.; Liberski, P.P.; Lieberman, A.; Lim, H.J.; Lim, K.L.; Lim, K.; Lin, C.F.; Lin, F.C.; Lin, J.; Lin, J.D.; Lin, K.; Lin, W.W.; Lin, W.C.; Lin, Y.L.; Linden, R.; Lingor, P.; Lippincott-Schwartz, J.; Lisanti, M.P.; Liton, P.B.; Liu, B.; Liu, C.F.; Liu, K.; Liu, L.; Liu, Q.A.; Liu, W.; Liu, Y.C.; Liu, Y.; Lockshin, R.A.; Lok, C.N.; Lonial, S.; Loos, B.; Lopez-Berestein, G.; López-Otín, C.; Lossi, L.; Lotze, M.T.; Lőw, P.; Lu, B.; Lu, B.; Lu, B.; Lu, Z.; Luciano, F.; Lukacs, N.W.; Lund, A.H.; Lynch-Day, M.A.; Ma, Y.; Macian, F.; MacKeigan, J.P.; Macleod, K.F.; Madeo, F.; Maiuri, L.; Maiuri, M.C.; Malagoli, D.; Malicdan, M.C.V.; Malorni, W.; Man, N.; Mandelkow, E.M.; Manon, S.; Manov, I.; Mao, K.; Mao, X.; Mao, Z.; Marambaud, P.; Marazziti, D.; Marcel, Y.L.; Marchbank, K.; Marchetti, P.; Marciniak, S.J.; Marcondes, M.; Mardi, M.; Marfe, G.; Mariño, G.; Markaki, M.; Marten, M.R.; Martin, S.J.; Martinand-Mari, C.; Martinet, W.; Martinez-Vicente, M.; Masini, M.; Matarrese, P.; Matsuo, S.; Matteoni, R.; Mayer, A.; Mazure, N.M.; McConkey, D.J.; McConnell, M.J.; McDermott, C.; McDonald, C.; McInerney, G.M.; McKenna, S.L.; McLaughlin, B.; McLean, P.J.; McMaster, C.R.; McQuibban, G.A.; Meijer, A.J.; Meisler, M.H.; Meléndez, A.; Melia, T.J.; Melino, G.; Mena, M.A.; Menendez, J.A.; Menna-Barreto, R.F.S.; Menon, M.B.; Menzies, F.M.; Mercer, C.A.; Merighi, A.; Merry, D.E.; Meschini, S.; Meyer, C.G.; Meyer, T.F.; Miao, C.Y.; Miao, J.Y.; Michels, P.A.M.; Michiels, C.; Mijaljica, D.; Milojkovic, A.; Minucci, S.; Miracco, C.; Miranti, C.K.; Mitroulis, I.; Miyazawa, K.; Mizushima, N.; Mograbi, B.; Mohseni, S.; Molero, X.; Mollereau, B.; Mollinedo, F.; Momoi, T.; Monastyrska, I.; Monick, M.M.; Monteiro, M.J.; Moore, M.N.; Mora, R.; Moreau, K.; Moreira, P.I.; Moriyasu, Y.; Moscat, J.; Mostowy, S.; Mottram, J.C.; Motyl, T.; Moussa, C.E.H.; Müller, S.; Muller, S.; Münger, K.; Münz, C.; Murphy, L.O.; Murphy, M.E.; Musarò, A.; Mysorekar, I.; Nagata, E.; Nagata, K.; Nahimana, A.; Nair, U.; Nakagawa, T.; Nakahira, K.; Nakano, H.; Nakatogawa, H.; Nanjundan, M.; Naqvi, N.I.; Narendra, D.P.; Narita, M.; Navarro, M.; Nawrocki, S.T.; Nazarko, T.Y.; Nemchenko, A.; Netea, M.G.; Neufeld, T.P.; Ney, P.A.; Nezis, I.P.; Nguyen, H.P.; Nie, D.; Nishino, I.; Nislow, C.; Nixon, R.A.; Noda, T.; Noegel, A.A.; Nogalska, A.; Noguchi, S.; Notterpek, L.; Novak, I.; Nozaki, T.; Nukina, N.; Nürnberger, T.; Nyfeler, B.; Obara, K.; Oberley, T.D.; Oddo, S.; Ogawa, M.; Ohashi, T.; Okamoto, K.; Oleinick, N.L.; Oliver, F.J.; Olsen, L.J.; Olsson, S.; Opota, O.; Osborne, T.F.; Ostrander, G.K.; Otsu, K.; Ou, J.J.; Ouimet, M.; Overholtzer, M.; Ozpolat, B.; Paganetti, P.; Pagnini, U.; Pallet, N.; Palmer, G.E.; Palumbo, C.; Pan, T.; Panaretakis, T.; Pandey, U.B.; Papackova, Z.; Papassideri, I.; Paris, I.; Park, J.; Park, O.K.; Parys, J.B.; Parzych, K.R.; Patschan, S.; Patterson, C.; Pattingre, S.; Pawelek, J.M.; Peng, J.; Perlmutter, D.H.; Perrotta, I.; Perry, G.; Pervaiz, S.; Peter, M.; Peters, G.J.; Petersen, M.; Petrovski, G.; Phang, J.M.; Piacentini, M.; Pierre, P.; Pierrefite-Carle, V.; Pierron, G.; Pinkas-Kramarski, R.; Piras, A.; Piri, N.; Platanias, L.C.; Pöggeler, S.; Poirot, M.; Poletti, A.; Poüs, C.; Pozuelo-Rubio, M.; Prætorius-Ibba, M.; Prasad, A.; Prescott, M.; Priault, M.; Produit-Zengaffinen, N.; Progulske-Fox, A.; Proikas-Cezanne, T.; Przedborski, S.; Przyklenk, K.; Puertollano, R.; Puyal, J.; Qian, S.B.; Qin, L.; Qin, Z.H.; Quaggin, S.E.; Raben, N.; Rabinowich, H.; Rabkin, S.W.; Rahman, I.; Rami, A.; Ramm, G.; Randall, G.; Randow, F.; Rao, V.A.; Rathmell, J.C.; Ravikumar, B.; Ray, S.K.; Reed, B.H.; Reed, J.C.; Reggiori, F.; Régnier-Vigouroux, A.; Reichert, A.S.; Reiners, J.J., Jr; Reiter, R.J.; Ren, J.; Revuelta, J.L.; Rhodes, C.J.; Ritis, K.; Rizzo, E.; Robbins, J.; Roberge, M.; Roca, H.; Roccheri, M.C.; Rocchi, S.; Rodemann, H.P.; Rodríguez de Córdoba, S.; Rohrer, B.; Roninson, I.B.; Rosen, K.; Rost-Roszkowska, M.M.; Rouis, M.; Rouschop, K.M.A.; Rovetta, F.; Rubin, B.P.; Rubinsztein, D.C.; Ruckdeschel, K.; Rucker, E.B., III; Rudich, A.; Rudolf, E.; Ruiz-Opazo, N.; Russo, R.; Rusten, T.E.; Ryan, K.M.; Ryter, S.W.; Sabatini, D.M.; Sadoshima, J.; Saha, T.; Saitoh, T.; Sakagami, H.; Sakai, Y.; Salekdeh, G.H.; Salomoni, P.; Salvaterra, P.M.; Salvesen, G.; Salvioli, R.; Sanchez, A.M.J.; Sánchez-Alcázar, J.A.; Sánchez-Prieto, R.; Sandri, M.; Sankar, U.; Sansanwal, P.; Santambrogio, L.; Saran, S.; Sarkar, S.; Sarwal, M.; Sasakawa, C.; Sasnauskiene, A.; Sass, M.; Sato, K.; Sato, M.; Schapira, A.H.V.; Scharl, M.; Schätzl, H.M.; Scheper, W.; Schiaffino, S.; Schneider, C.; Schneider, M.E.; Schneider-Stock, R.; Schoenlein, P.V.; Schorderet, D.F.; Schüller, C.; Schwartz, G.K.; Scorrano, L.; Sealy, L.; Seglen, P.O.; Segura-Aguilar, J.; Seiliez, I.; Seleverstov, O.; Sell, C.; Seo, J.B.; Separovic, D.; Setaluri, V.; Setoguchi, T.; Settembre, C.; Shacka, J.J.; Shanmugam, M.; Shapiro, I.M.; Shaulian, E.; Shaw, R.J.; Shelhamer, J.H.; Shen, H.M.; Shen, W.C.; Sheng, Z.H.; Shi, Y.; Shibuya, K.; Shidoji, Y.; Shieh, J.J.; Shih, C.M.; Shimada, Y.; Shimizu, S.; Shintani, T.; Shirihai, O.S.; Shore, G.C.; Sibirny, A.A.; Sidhu, S.B.; Sikorska, B.; Silva-Zacarin, E.C.M.; Simmons, A.; Simon, A.K.; Simon, H.U.; Simone, C.; Simonsen, A.; Sinclair, D.A.; Singh, R.; Sinha, D.; Sinicrope, F.A.; Sirko, A.; Siu, P.M.; Sivridis, E.; Skop, V.; Skulachev, V.P.; Slack, R.S.; Smaili, S.S.; Smith, D.R.; Soengas, M.S.; Soldati, T.; Song, X.; Sood, A.K.; Soong, T.W.; Sotgia, F.; Spector, S.A.; Spies, C.D.; Springer, W.; Srinivasula, S.M.; Stefanis, L.; Steffan, J.S.; Stendel, R.; Stenmark, H.; Stephanou, A.; Stern, S.T.; Sternberg, C.; Stork, B.; Strålfors, P.; Subauste, C.S.; Sui, X.; Sulzer, D.; Sun, J.; Sun, S.Y.; Sun, Z.J.; Sung, J.J.Y.; Suzuki, K.; Suzuki, T.; Swanson, M.S.; Swanton, C.; Sweeney, S.T.; Sy, L.K.; Szabadkai, G.; Tabas, I.; Taegtmeyer, H.; Tafani, M.; Takács-Vellai, K.; Takano, Y.; Takegawa, K.; Takemura, G.; Takeshita, F.; Talbot, N.J.; Tan, K.S.W.; Tanaka, K.; Tanaka, K.; Tang, D.; Tang, D.; Tanida, I.; Tannous, B.A.; Tavernarakis, N.; Taylor, G.S.; Taylor, G.A.; Taylor, J.P.; Terada, L.S.; Terman, A.; Tettamanti, G.; Thevissen, K.; Thompson, C.B.; Thorburn, A.; Thumm, M.; Tian, F.; Tian, Y.; Tocchini-Valentini, G.; Tolkovsky, A.M.; Tomino, Y.; Tönges, L.; Tooze, S.A.; Tournier, C.; Tower, J.; Towns, R.; Trajkovic, V.; Travassos, L.H.; Tsai, T.F.; Tschan, M.P.; Tsubata, T.; Tsung, A.; Turk, B.; Turner, L.S.; Tyagi, S.C.; Uchiyama, Y.; Ueno, T.; Umekawa, M.; Umemiya-Shirafuji, R.; Unni, V.K.; Vaccaro, M.I.; Valente, E.M.; Van den Berghe, G.; van der Klei, I.J.; van Doorn, W.G.; van Dyk, L.F.; van Egmond, M.; van Grunsven, L.A.; Vandenabeele, P.; Vandenberghe, W.P.; Vanhorebeek, I.; Vaquero, E.C.; Velasco, G.; Vellai, T.; Vicencio, J.M.; Vierstra, R.D.; Vila, M.; Vindis, C.; Viola, G.; Viscomi, M.T.; Voitsekhovskaja, O.V.; von Haefen, C.; Votruba, M.; Wada, K.; Wade-Martins, R.; Walker, C.L.; Walsh, C.M.; Walter, J.; Wan, X.B.; Wang, A.; Wang, C.; Wang, D.; Wang, F.; Wang, F.; Wang, G.; Wang, H.; Wang, H.G.; Wang, H.D.; Wang, J.; Wang, K.; Wang, M.; Wang, R.C.; Wang, X.; Wang, X.J.; Wang, Y.J.; Wang, Y.; Wang, Z.B.; Wang, Z.C.; Wang, Z.; Wansink, D.G.; Ward, D.M.; Watada, H.; Waters, S.L.; Webster, P.; Wei, L.; Weihl, C.C.; Weiss, W.A.; Welford, S.M.; Wen, L.P.; Whitehouse, C.A.; Whitton, J.L.; Whitworth, A.J.; Wileman, T.; Wiley, J.W.; Wilkinson, S.; Willbold, D.; Williams, R.L.; Williamson, P.R.; Wouters, B.G.; Wu, C.; Wu, D.C.; Wu, W.K.K.; Wyttenbach, A.; Xavier, R.J.; Xi, Z.; Xia, P.; Xiao, G.; Xie, Z.; Xie, Z.; Xu, D.; Xu, J.; Xu, L.; Xu, X.; Yamamoto, A.; Yamamoto, A.; Yamashina, S.; Yamashita, M.; Yan, X.; Yanagida, M.; Yang, D.S.; Yang, E.; Yang, J.M.; Yang, S.Y.; Yang, W.; Yang, W.Y.; Yang, Z.; Yao, M.C.; Yao, T.P.; Yeganeh, B.; Yen, W.L.; Yin, J.J.; Yin, X.M.; Yoo, O.J.; Yoon, G.; Yoon, S.Y.; Yorimitsu, T.; Yoshikawa, Y.; Yoshimori, T.; Yoshimoto, K.; You, H.J.; Youle, R.J.; Younes, A.; Yu, L.; Yu, L.; Yu, S.W.; Yu, W.H.; Yuan, Z.M.; Yue, Z.; Yun, C.H.; Yuzaki, M.; Zabirnyk, O.; Silva-Zacarin, E.; Zacks, D.; Zacksenhaus, E.; Zaffaroni, N.; Zakeri, Z.; Zeh, H.J., III; Zeitlin, S.O.; Zhang, H.; Zhang, H.L.; Zhang, J.; Zhang, J.P.; Zhang, L.; Zhang, L.; Zhang, M.Y.; Zhang, X.D.; Zhao, M.; Zhao, Y.F.; Zhao, Y.; Zhao, Z.J.; Zheng, X.; Zhivotovsky, B.; Zhong, Q.; Zhou, C.Z.; Zhu, C.; Zhu, W.G.; Zhu, X.F.; Zhu, X.; Zhu, Y.; Zoladek, T.; Zong, W.X.; Zorzano, A.; Zschocke, J.; Zuckerbraun, B. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8(4), 445-544.
[http://dx.doi.org/10.4161/auto.19496] [PMID: 22966490]
[31]
Yang, A.; Pantoom, S.; Wu, Y.W. Distinct mechanisms for processing autophagy protein LC3‐PE by RavZ and ATG4B. ChemBioChem, 2020, 21(23), 3377-3382.
[http://dx.doi.org/10.1002/cbic.202000359] [PMID: 32686895]
[32]
Zhang, Z.; Singh, R.; Aschner, M. Methods for the detection of autophagy in mammalian cells. Curr. Protoc. Toxicol., 2016.
[http://dx.doi.org/10.1002/cptx.11]
[33]
Shang, L.; Chen, S.; Du, F.; Li, S.; Zhao, L.; Wang, X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 4788-4793.
[http://dx.doi.org/10.1073/pnas.1100844108] [PMID: 21383122]
[34]
De, S.; Das, S.; Sengupta, S. Involvement of HuR in the serum starvation induced autophagy through regulation of Beclin1 in breast cancer cell-line, MCF-7. Cell. Signal., 2019, 61, 78-85.
[http://dx.doi.org/10.1016/j.cellsig.2019.05.008] [PMID: 31102648]
[35]
Ahmadiankia, N. In vitro and in vivo studies of cancer cell behavior under nutrient deprivation. Cell Biol. Int., 2020, 44(8), 1588-1597.
[http://dx.doi.org/10.1002/cbin.11368] [PMID: 32339363]
[36]
Pang, M.; Yang, Z.; Zhang, X.; Liu, Z.; Fan, J.; Zhang, H. Physcion, a naturally occurring anthraquinone derivative, induces apoptosis and autophagy in human nasopharyngeal carcinoma. Acta Pharmacol. Sin., 2016, 37(12), 1623-1640.
[http://dx.doi.org/10.1038/aps.2016.98] [PMID: 27694907]
[37]
Bai, D.P.; Zhang, X.F.; Zhang, G.L.; Huang, Y.F.; Gurunathan, S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomedicine, 2017, 12, 6521-6535.
[http://dx.doi.org/10.2147/IJN.S140071] [PMID: 28919752]
[38]
Gilardini Montani, M.S.; Granato, M.; Santoni, C.; Del Porto, P.; Merendino, N.; D’Orazi, G.; Faggioni, A.; Cirone, M. Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell. Oncol., 2017, 40(2), 167-180.
[http://dx.doi.org/10.1007/s13402-017-0314-z] [PMID: 28160167]
[39]
Zhang, H.W.; Hu, J.J.; Fu, R.Q.; Liu, X.; Zhang, Y.H.; Li, J.; Liu, L.; Li, Y.N.; Deng, Q.; Luo, Q.S.; Ouyang, Q.; Gao, N. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci. Rep., 2018, 8(1), 11255.
[http://dx.doi.org/10.1038/s41598-018-29308-7] [PMID: 30050147]
[40]
Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrm3735] [PMID: 24401948]
[41]
Xi, H.; Wang, S.; Wang, B.; Hong, X.; Liu, X.; Li, M.; Shen, R.; Dong, Q. The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol. Rep., 2022, 48(6), 208.
[http://dx.doi.org/10.3892/or.2022.8423] [PMID: 36222296]
[42]
Kessel, D.H.; Price, M.; Reiners, J.J., Jr ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy, 2012, 8(9), 1333-1341.
[http://dx.doi.org/10.4161/auto.20792] [PMID: 22889762]
[43]
Gump, J.M.; Staskiewicz, L.; Morgan, M.J.; Bamberg, A.; Riches, D.W.H.; Thorburn, A. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol., 2014, 16(1), 47-54.
[http://dx.doi.org/10.1038/ncb2886] [PMID: 24316673]
[44]
Lee, H.Y.; Oh, S.H. Autophagy-mediated cytoplasmic accumulation of p53 leads to apoptosis through DRAM-BAX in cadmium-exposed human proximal tubular cells. Biochem. Biophys. Res. Commun., 2021, 534, 128-133.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.019] [PMID: 33321290]
[45]
Sriratanasak, N.; Wattanathana, W.; Chanvorachote, P. 6,6′-((Methylazanedyl)bis(methylene))bis(2,4-dimethylphenol) induces autophagic associated cell death through mTOR-mediated autophagy in lung cancer. Molecules, 2022, 27(19), 6230.
[http://dx.doi.org/10.3390/molecules27196230] [PMID: 36234769]
[46]
Dang, S.; Yu, Z.; Zhang, C.; Zheng, J.; Li, K.; Wu, Y.; Qian, L.; Yang, Z.; Li, X.; Zhang, Y.; Wang, R. Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Res. Ther., 2015, 6(1), 247.
[http://dx.doi.org/10.1186/s13287-015-0245-4] [PMID: 26670667]
[47]
Zhang, M.; Su, L.; Xiao, Z.; Liu, X.; Liu, X. Methyl jasmonate induces apoptosis and pro-apoptotic autophagy via the ROS pathway in human non-small cell lung cancer. Am. J. Cancer Res., 2016, 6(2), 187-199.
[PMID: 27186395]
[48]
Xu, J.; Wang, S.J.; Bu, S.S.; Guo, X.Q.; Ge, H. Theaflavin promoted apoptosis in nasopharyngeal carcinoma unexpectedly via inducing autophagy in vitro. Iran. J. Basic Med. Sci., 2022, 25(1), 68-74.
[PMID: 35656444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy