Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Antibacterial Polyketides from the Plant Endophytic Fungus Fusarium sp.

Author(s): Ru Wang, Ying Shi, Qianqian Liu, Liyan Sun* and Ling Liu*

Volume 14, Issue 8, 2024

Published on: 16 January, 2024

Article ID: e160124225719 Pages: 6

DOI: 10.2174/0122103155287212240101091448

Price: $65

Abstract

Background: Endophytic fungi have been recognized as new sources of natural products with a variety of biological activities, providing lead compounds for drug discovery and development.

Objective: The objective of this study is to isolate and identify the secondary metabolites from the plant endophytic fungus Fusarium sp. HJY2 and evaluate their antibacterial activities.

Methods: The compounds were isolated and purified by the methods of silica gel column chromatography, Sephadex LH-20 gel chromatography, and semi-preparative high performance liquid chromatography (HPLC). The structures of the isolated compounds were elucidated by comparing the NMR and MS spectroscopic data with those of literature. The antibacterial activities were evaluated by the broth microdilution method.

Results: Seven polyketides were isolated from the fermented extracts of the fungus Fusarium sp. HJY2 and identified as sydowinol (1), dihydrolateropyrone (2), 13-oxo-9Z,11E-octadecadienoic acid (3), (E)-ferulic acid (4), 4-hydroxyphenylacetic acid (5), methyl 2-(2-hydroxyphenyl)acetate (6) and 4-hydroxy-3-methoxyacetophenone (7). Compound 3 exhibited moderate antibacterial activities against Bacillus subtilis, Mycobacterium smegmatis, Ralstonia solanacearum, and Xanthomonas campestris pv. campestris with MIC values of 40, 40, 80 and 40 μg/mL, respectively.

Conclusion: Seven compounds were isolated from the plant endophytic fungus Fusarium sp. HJY2. Compound 1 was isolated from the Fusarium genus for the first time. Compound 3 showed moderate antibacterial activities.

Graphical Abstract

[1]
Molinar, E.; Rios, N.; Spadafora, C.; Elizabeth Arnold, A.; Coley, P.D.; Kursar, T.A.; Gerwick, W.H.; Cubilla-Rios, L. Coibanoles, a new class of meroterpenoids produced by Pycnoporus sanguineus. Tetrahedron Lett., 2012, 53(8), 919-922.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.021] [PMID: 25177062]
[2]
Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. J. Fungi, 2022, 8(2), 205.
[http://dx.doi.org/10.3390/jof8020205] [PMID: 35205959]
[3]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[4]
Ye, K.; Ai, H.L.; Liu, J.K. Identification and bioactivities of secondary metabolites derived from endophytic fungi isolated from ethnomedicinal plants of Tujia in hubei province: A review. Nat. Prod. Bioprospect., 2021, 11(2), 185-205.
[http://dx.doi.org/10.1007/s13659-020-00295-5] [PMID: 33471319]
[5]
Chen, Z.M.; Dong, W.B.; Li, Z.H.; Feng, T.; Liu, J.K. New chlamydosporol derivatives from the endophytic fungus Fusarium sp. #001. J. Asian Nat. Prod. Res., 2014, 16(5), 465-470.
[http://dx.doi.org/10.1080/10286020.2014.904853] [PMID: 24717139]
[6]
Xu, M.; Huang, Z.; Zhu, W.; Liu, Y.; Bai, X.; Zhang, H. Fusarium-derived secondary metabolites with antimicrobial effects. Molecules, 2023, 28(8), 3424.
[http://dx.doi.org/10.3390/molecules28083424] [PMID: 37110658]
[7]
Zhang, P.; Yuan, X.L.; Du, Y.M.; Zhang, H.B.; Shen, G.M.; Zhang, Z.F.; Liang, Y.J.; Zhao, D.L.; Xu, K. Angularly prenylated indole alkaloids with antimicrobial and insecticidal activities from an endophytic fungus Fusarium sambucinum TE-6L. J. Agric. Food Chem., 2019, 67(43), 11994-12001.
[http://dx.doi.org/10.1021/acs.jafc.9b05827] [PMID: 31618578]
[8]
Caicedo, N.H.; Davalos, A.F.; Puente, P.A.; Rodríguez, A.Y.; Caicedo, P.A. Antioxidant activity of exo-metabolites produced by Fusarium oxysporum: An endophytic fungus isolated from leaves of Otoba gracilipes. MicrobiologyOpen, 2019, 8(10), e903.
[http://dx.doi.org/10.1002/mbo3.903] [PMID: 31297981]
[9]
Zhang, B.W.; Jiang, L.; Li, Z.; Gao, X.H.; Cao, F.; Lu, X.; Shen, W.B.; Zhang, X.X.; Kong, F.D.; Luo, D.Q. Carotane sesquiterpenoids A–G from the desert endophytic fungus Fusarium sp. HM 166. RSC Advances, 2022, 12(38), 24590-24595.
[http://dx.doi.org/10.1039/D2RA02762C] [PMID: 36128376]
[10]
Khan, N.; Afroz, F.; Begum, M.N.; Roy Rony, S.; Sharmin, S.; Moni, F.; Mahmood Hasan, C.; Shaha, K.; Sohrab, M.H. Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivatives. Toxicol. Rep., 2018, 5, 970-976.
[http://dx.doi.org/10.1016/j.toxrep.2018.08.016] [PMID: 30294556]
[11]
Chen, Y.; Wang, G.; Yuan, Y.; Zou, G.; Yang, W.; Tan, Q.; Kang, W.; She, Z. Metabolites with cytotoxic activities from the mangrove endophytic fungus Fusarium sp. 2ST2. Front Chem., 2022, 10, 842405.
[http://dx.doi.org/10.3389/fchem.2022.842405] [PMID: 35242743]
[12]
Ibrahim, S.R.M.; Abdallah, H.M.; Mohamed, G.A.; Ross, S.A. Integracides H-J: New tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Fitoterapia, 2016, 112, 161-167.
[http://dx.doi.org/10.1016/j.fitote.2016.06.002] [PMID: 27282207]
[13]
Liu, L.; Han, Y.; Xiao, J.; Li, L.; Guo, L.; Jiang, X.; Kong, L.; Che, Y. Chlorotheolides A and B, spiroketals generated via diels-alder reactions in the endophytic fungus pestalotiopsis theae. J. Nat. Prod., 2016, 79(10), 2616-2623.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00550] [PMID: 27731995]
[14]
Guo, L.F.; Liu, G.R.; Liu, L. Caryophyllene-type sesquiterpenoids and α-furanones from the plant endophytic fungus Pestalotiopsis theae. Chin. J. Nat. Med., 2020, 18(4), 261-267.
[http://dx.doi.org/10.1016/S1875-5364(20)30032-7] [PMID: 32402402]
[15]
Liu, G.; Huo, R.; Zhai, Y.; Liu, L. New bioactive sesquiterpeniods from the plant endophytic fungus Pestalotiopsis theae. Front. Microbiol., 2021, 12, 641504.
[http://dx.doi.org/10.3389/fmicb.2021.641504] [PMID: 33868199]
[16]
Goddard, M.L.; Mottier, N.; Jeanneret-Gris, J.; Christen, D.; Tabacchi, R.; Abou-Mansour, E. Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. J. Agric. Food Chem., 2014, 62(34), 8602-8607.
[http://dx.doi.org/10.1021/jf501141g] [PMID: 25070068]
[17]
Moussa, M.; Ebrahim, W.; Bonus, M.; Gohlke, H.; Mándi, A.; Kurtán, T.; Hartmann, R.; Kalscheuer, R.; Lin, W.; Liu, Z.; Proksch, P. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Advances, 2019, 9(3), 1491-1500.
[http://dx.doi.org/10.1039/C8RA09067J] [PMID: 35518011]
[18]
Dong, M.; Oda, Y.; Hirota, M. (10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester as an anti-inflammatory compound from Ehretia dicksonii. Biosci. Biotechnol. Biochem., 2000, 64(4), 882-886.
[http://dx.doi.org/10.1271/bbb.64.882] [PMID: 10830513]
[19]
Xiao, H.; Parkin, K. Isolation and identification of phase II enzyme-inducing agents from nonpolar extracts of green onion (Allium spp.). J. Agric. Food Chem., 2006, 54(22), 8417-8424.
[http://dx.doi.org/10.1021/jf061582s] [PMID: 17061815]
[20]
Liu, J.M.; Liu, W.J.; Xing, S.; Zhou, M.Y.; Zhang, Y.C.; Xia, X.K.; Wu, H.K. Bioactive compounds from the antarctic bacterium Pseudomonas sp. A6-5. Chem. Nat. Compd., 2022, 58(2), 371-373.
[http://dx.doi.org/10.1007/s10600-022-03684-z]
[21]
Lv, P.C.; Wang, K.R.; Mao, W.J.; Fang, R.Q.; Chen, J.; Xiong, J.; Zhu, H.L. Synthesis and crystal structure of a depside derivative 2-(2-methoxy-2-oxoethyl)phenyl 2-(3,4-dimethoxyphenyl)acetate. J. Chem. Crystallogr., 2009, 39(12), 927-930.
[http://dx.doi.org/10.1007/s10870-009-9622-0]
[22]
Chen, J.J.; Yang, C.S.; Chen, Y.H.; Chao, C.Y.; Chen, Y.C.; Kuo, Y.H. New triterpenoids and anti-inflammatory constituents from glinus oppositifolius. Molecules, 2023, 28(7), 2903.
[http://dx.doi.org/10.3390/molecules28072903] [PMID: 37049664]
[23]
Cubero, O.F.; Crespo, A.; Fatehi, J.; Bridge, P.D. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol., 1999, 216(3-4), 243-249.
[http://dx.doi.org/10.1007/BF01084401]
[24]
Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Brominated diterpenes with antibacterial activity from the red alga Sphaerococcus coronopifolius. J. Nat. Prod., 2008, 71(8), 1386-1392.
[http://dx.doi.org/10.1021/np8001817] [PMID: 18597527]
[25]
Yang, X.; Yu, H.; Ren, J.; Cai, L.; Xu, L.; Liu, L. Sulfoxide-containing bisabolane sesquiterpenoids with antimicrobial and nematicidal activities from the marine-derived fungus Aspergillus sydowii LW09. J. Fungi, 2023, 9(3), 347.
[http://dx.doi.org/10.3390/jof9030347] [PMID: 36983515]
[26]
Boonmee, S.; Atanasova, V.; Chéreau, S.; Marchegay, G.; Hyde, K.D.; Richard-Forget, F. Efficiency of hydroxycinnamic phenolic acids to inhibit the production of ochratoxin A by Aspergillus westerdijkiae and Penicillium verrucosum. Int. J. Mol. Sci., 2020, 21(22), 8548.
[http://dx.doi.org/10.3390/ijms21228548] [PMID: 33202726]
[27]
Davis, R.A.; Hofmann, A.; Osman, A.; Hall, R.A.; Mühlschlegel, F.A.; Vullo, D.; Innocenti, A.; Supuran, C.T.; Poulsen, S.A. Natural product-based phenols as novel probes for mycobacterial and fungal carbonic anhydrases. J. Med. Chem., 2011, 54(6), 1682-1692.
[http://dx.doi.org/10.1021/jm1013242] [PMID: 21332115]
[28]
Newaz, A.W.; Yong, K.; Yi, W.; Wu, B.; Zhang, Z. Antimicrobial metabolites from the Indonesian mangrove sediment-derived fungus Penicillium chrysogenum sp. ZZ1151. Nat. Prod. Res., 2023, 37(10), 1702-1708.
[http://dx.doi.org/10.1080/14786419.2022.2103813] [PMID: 35879837]
[29]
Paracatu, L.C.; Zeraik, M.L.; Bertozo, L.C.; Bartolomeu, A.A.; Filho, L.C.D.S.; Fonseca, L.M.D.; Ximenes, V.F. Synthesis, antioxidant and anti-inflammatory properties of an apocynin-derived dihydrocoumarin. Med. Chem., 2016, 13(1), 93-100.
[http://dx.doi.org/10.2174/1573406412666160610093216] [PMID: 27292257]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy