Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Extraction, Phytochemistry & Pharmacological Potential of Camellia sinensis: A Comprehensive Review

Author(s): Prabhjot Kaur, Simran Gandhi, Rubal Sharma, Lovepreet Kaur, Mahak Pal, Geeta Deswal, Bhawna Chopra, Ajmer Singh Grewal and Ashwani K. Dhingra*

Volume 14, Issue 6, 2024

Published on: 16 January, 2024

Article ID: e160124225695 Pages: 21

DOI: 10.2174/0122103155278901231122130727

Price: $65

Abstract

Camellia sinensis (L.) is acknowledged globally as the second most consumed beverage after water. Researchers have dedicated substantial efforts to validate the claims surrounding this plant through rigorous pharmacological screening, aiming to substantiate its traditional applications in treating various ailments. This work extensively delves into aspects such as marketed formulations of green tea, extraction techniques, phytochemistry, pharmacology, interactions between drugs and green tea, and its distinctive characteristics. Key research unequivocally suggests that green tea holds substantial health benefits for individuals. Presently, a multitude of pharmacologically active constituents have been successfully isolated and identified from green tea, encompassing polyphenols, alkaloids, amino acids, polysaccharides, and volatile components. Recent investigations have illuminated the broad spectrum of pharmacological properties exhibited by green tea, encompassing antioxidant, anticancer, hypoglycemic, antibacterial, antiviral, and neuroprotective attributes. The review amalgamates current research findings to present a thorough understanding of the diverse bioactive compounds found in Camellia sinensis, such as polyphenols, catechins, and alkaloids, and their contributions to its health-promoting properties. The review further highlights the significance of extraction techniques in preserving and enhancing the bioactivity of these compounds. Overall, this comprehensive review serves as a valuable resource for researchers, practitioners, and enthusiasts, consolidating the current knowledge surrounding Camellia sinensis and its multifaceted role in promoting human health.

Graphical Abstract

[1]
Xu, Y.Q.; Zhang, Y.N.; Chen, J.X.; Wang, F.; Du, Q.Z.; Yin, J.F. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem., 2018, 258, 16-24.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.042] [PMID: 29655718]
[2]
Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules, 2022, 27(12), 3909.
[http://dx.doi.org/10.3390/molecules27123909] [PMID: 35745040]
[3]
Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U.E.; Borgwardt, S. Green tea effects on cognition, mood and human brain function: A systematic review. Phytomedicine, 2017, 34, 26-37.
[http://dx.doi.org/10.1016/j.phymed.2017.07.008] [PMID: 28899506]
[4]
Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Spencer, J.P.E.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G.C. Flavonoid intake in European adults (18 to 64 years). PLoS One, 2015, 10(5), e0128132.
[http://dx.doi.org/10.1371/journal.pone.0128132] [PMID: 26010916]
[5]
Farhan, M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int. J. Mol. Sci., 2022, 23(18), 10713.
[http://dx.doi.org/10.3390/ijms231810713] [PMID: 36142616]
[6]
Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med., 1992, 21(3), 334-350.
[http://dx.doi.org/10.1016/0091-7435(92)90041-F] [PMID: 1614995]
[7]
Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; Barros, F.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int., 2020, 128, 108782.
[http://dx.doi.org/10.1016/j.foodres.2019.108782] [PMID: 31955755]
[8]
Prasanth, M.; Sivamaruthi, B.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 2019, 11(2), 474.
[http://dx.doi.org/10.3390/nu11020474] [PMID: 30813433]
[9]
Rietveld, A.; Wiseman, S. Antioxidant effects of tea: Evidence from human clinical trials. J. Nutr., 2003, 133(10), 3285S-3292S.
[http://dx.doi.org/10.1093/jn/133.10.3285S] [PMID: 14519827]
[10]
Osada, K.; Takahashi, M.; Hoshina, S.; Nakamura, M.; Nakamura, S.; Sugano, M. Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2001, 128(2), 153-164.
[http://dx.doi.org/10.1016/S1532-0456(00)00192-7] [PMID: 11239828]
[11]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[12]
Friedman, K.E.; Reichmann, S.K.; Costanzo, P.R.; Zelli, A.; Ashmore, J.A.; Musante, G.J. Weight stigmatization and ideological beliefs: Relation to psychological functioning in obese adults. Obes. Res., 2005, 13(5), 907-916.
[http://dx.doi.org/10.1038/oby.2005.105] [PMID: 15919845]
[13]
Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health benefits and chemical composition of matcha green tea: A review. Molecules, 2020, 26(1), 85.
[http://dx.doi.org/10.3390/molecules26010085] [PMID: 33375458]
[14]
Peng, L.; Song, X.; Shi, X.; Li, J.; Ye, C. An improved HPLC method for simultaneous determination of phenolic compounds, purine alkaloids and theanine in Camellia species. J. Food Compos. Anal., 2008, 21(7), 559-563.
[http://dx.doi.org/10.1016/j.jfca.2008.05.002]
[15]
Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med., 2010, 5(1), 13.
[http://dx.doi.org/10.1186/1749-8546-5-13] [PMID: 20370896]
[16]
Lee, J.E.; Lee, B.J.; Chung, J.O.; Hwang, J.A.; Lee, S.J.; Lee, C.H.; Hong, Y.S. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: A (1)H NMR-based metabolomics study. J. Agric. Food Chem., 2010, 58(19), 10582-10589.
[http://dx.doi.org/10.1021/jf102415m] [PMID: 20828156]
[17]
Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults: Results of a systematic review. Regul. Toxicol. Pharmacol., 2018, 95, 412-433.
[http://dx.doi.org/10.1016/j.yrtph.2018.03.019] [PMID: 29580974]
[18]
Ferrara, L.; Montesano, D.; Senatore, A. The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Farmaco, 2001, 56(5-7), 397-401.
[http://dx.doi.org/10.1016/S0014-827X(01)01104-1] [PMID: 11482766]
[19]
Jun, X.; Shuo, Z.; Bingbing, L.; Rui, Z.; Ye, L.; Deji, S.; Guofeng, Z. Separation of major catechins from green tea by ultrahigh pressure extraction. Int. J. Pharm., 2010, 386(1-2), 229-231.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.035] [PMID: 19874878]
[20]
Tadano, N.; Du, C.K.; Yumoto, F.; Morimoto, S.; Ohta, M.; Xie, M.F.; Nagata, K.; Zhan, D.Y.; Lu, Q.W.; Miwa, Y.; Takahashi-Yanaga, F.; Tanokura, M.; Ohtsuki, I.; Sasaguri, T. Biological actions of green tea catechins on cardiac troponin C. Br. J. Pharmacol., 2010, 161(5), 1034-1043.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00942.x] [PMID: 20977454]
[21]
Ananingsih, V.K.; Sharma, A.; Zhou, W. Green tea catechins during food processing and storage: A review on stability and detection. Food Res. Int., 2013, 50(2), 469-479.
[http://dx.doi.org/10.1016/j.foodres.2011.03.004]
[22]
Liang, H.; Liang, Y.; Dong, J.; Lu, J. Tea extraction methods in relation to control of epimerization of tea catechins. J. Sci. Food Agric., 2007, 87(9), 1748-1752.
[http://dx.doi.org/10.1002/jsfa.2913]
[23]
Xu, R.; Ye, H.; Sun, Y.; Tu, Y.; Zeng, X. Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food Chem. Toxicol., 2012, 50(7), 2473-2480.
[http://dx.doi.org/10.1016/j.fct.2011.10.047] [PMID: 22033094]
[24]
Xia, T.; Shi, S.; Wan, X. Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. J. Food Eng., 2006, 74(4), 557-560.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.03.043]
[25]
Nkhili, E.; Tomao, V.; El Hajji, H.; El Boustani, E.S.; Chemat, F.; Dangles, O. Microwave-assisted water extraction of green tea polyphenols. Phytochem. Anal., 2009, 20(5), 408-415.
[http://dx.doi.org/10.1002/pca.1141] [PMID: 19609884]
[26]
Horie, H.; Kohata, K. Analysis of tea components by high-performance liquid chromatography and high-performance capillary electrophoresis. J. Chromatogr. A, 2000, 881(1-2), 425-438.
[http://dx.doi.org/10.1016/S0021-9673(99)01345-X] [PMID: 10905725]
[27]
Sharma, U.K.; Sharma, K.; Sharma, N.; Sharma, A.; Singh, H.P.; Sinha, A.K. Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). J. Agric. Food Chem., 2008, 56(2), 374-379.
[http://dx.doi.org/10.1021/jf072510j] [PMID: 18163559]
[28]
Xi, J.; Shen, D.; Zhao, S.; Lu, B.; Li, Y.; Zhang, R. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm., 2009, 382(1-2), 139-143.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.023] [PMID: 19715745]
[29]
Li, Z.; Huang, D.; Tang, Z.; Deng, C. Microwave-assisted extraction followed by CE for determination of catechin and epicatechin in green tea. J. Sep. Sci., 2010, 33(8), 1079-1084.
[http://dx.doi.org/10.1002/jssc.200900647] [PMID: 20175087]
[30]
Jun, X.; Deji, S.; Ye, L.; Rui, Z. Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control, 2011, 22(8), 1473-1476.
[http://dx.doi.org/10.1016/j.foodcont.2011.03.008]
[31]
Chang, C.J.; Chiu, K.L.; Chen, Y.L.; Chang, C.Y. Separation of catechins from green tea using carbon dioxide extraction. Food Chem., 2000, 68(1), 109-113.
[http://dx.doi.org/10.1016/S0308-8146(99)00176-4]
[32]
Park, H.; Lee, H.; Shin, M.; Lee, K.; Lee, H.; Kim, Y.; Kim, K.; Kim, K. Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chem., 2007, 105(3), 1011-1017.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.064]
[33]
İçen, H.; Gürü, M. Extraction of caffeine from tea stalk and fiber wastes using supercritical carbon dioxide. J. Supercrit. Fluids, 2009, 50(3), 225-228.
[http://dx.doi.org/10.1016/j.supflu.2009.06.014]
[34]
Herrero, M.; Cifuentes, A.; Ibañez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. A review. Food Chem., 2006, 98(1), 136-148.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.058]
[35]
Shalmashi, A.; Golmohammad, F.; Eikani, M.H. Subcritical water extraction from black tea leaf of Iran. J. Food Process Eng., 2008, 31(3), 330-338.
[http://dx.doi.org/10.1111/j.1745-4530.2007.00156.x]
[36]
Lou, Z.; Er, C.; Li, J.; Wang, H.; Zhu, S.; Sun, J. Removal of caffeine from green tea by microwave-enhanced vacuum ice water extraction. Anal. Chim. Acta, 2012, 716, 49-53.
[http://dx.doi.org/10.1016/j.aca.2011.07.038] [PMID: 22284877]
[37]
Han, Q.; Yu, Q.; Shi, J.; Xiong, C.; Ling, Z.; He, P. Molecular characterization and hypoglycemic activity of a novel water-soluble polysaccharide from tea (Camellia sinensis) flower. Carbohydr. Polym., 2011, 86(2), 797-805.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.039]
[38]
Yokozawa, T.; Dong, E. Influence of green tea and its three major components upon low-density lipoprotein oxidation. Exp. Toxicol. Pathol., 1997, 49(5), 329-335.
[http://dx.doi.org/10.1016/S0940-2993(97)80096-6] [PMID: 9455677]
[39]
Hegazy, S. The effect of green tea on sildenafil pharmacokinetics in Egyptian healthy volunteers. Br. J. Pharm. Res., 2014, 4(3), 289-300.
[http://dx.doi.org/10.9734/BJPR/2014/6905]
[40]
Fan, Z.Y.; Li, N. Analysis of various life elements in tea. J Jiangxi Univ Chin Med., 1996, 8, 27-28.
[41]
Hou, D.Y.; Hui, R.H.; Guan, C.X.; Liu, X.Y. Spectral analysis of tea polyphenols in green tea and its tea beverage. Shipin Kexue, 2002, 23, 109-111.
[42]
Das, S.; Tanwar, J.; Hameed, S.; Fatima, Z.; Manesar, G. Antimicrobial potential of epigallocatechin-3-gallate (EGCG): A green tea polyphenol. J. Biochem. Pharmacol. Res., 2014, 2(3), 167-174.
[43]
Lecumberri, E.; Dupertuis, Y.M.; Miralbell, R.; Pichard, C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr., 2013, 32(6), 894-903.
[http://dx.doi.org/10.1016/j.clnu.2013.03.008] [PMID: 23582951]
[44]
Trnková, L.; Ricci, D.; Grillo, C.; Colotti, G.; Altieri, F. Green tea catechins can bind and modify ERp57/PDIA3 activity. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(3), 2671-2682.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.011] [PMID: 23671928]
[45]
Balentine, D.A.; Wiseman, S.A.; Bouwens, L.C.M. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr., 1997, 37(8), 693-704.
[http://dx.doi.org/10.1080/10408399709527797] [PMID: 9447270]
[46]
Wang, H.; Provan, G.J.; Helliwell, K. Tea flavonoids: Their functions, utilisation and analysis. Trends Food Sci. Technol., 2000, 11(4-5), 152-160.
[http://dx.doi.org/10.1016/S0924-2244(00)00061-3]
[47]
Finger, A.; Engelhardt, U.H.; Wray, V. Flavonol glycosides in tea—kaempferol and quercetin rhamnodiglucosides. J. Sci. Food Agric., 1991, 55(2), 313-321.
[http://dx.doi.org/10.1002/jsfa.2740550216]
[48]
Yang, X. Chemical evaluation on tea quality during early-stage of breeding program ii. relationship between the biochemical component content in the shoots and the quality of green tea. Chaye Kexue, 1991, 11, 127-131.
[49]
Jiang, H.; Jiang, Y. Determination of 5 phenoic acids in tea by high perfor-mance liquid chromatography. Sci Technol Food Ind., 2004, 25, 122-124.
[50]
Brice, C.; Smith, A. The effects of caffeine on simulated driving, subjective alertness and sustained attention. Hum. Psychopharmacol., 2001, 16(7), 523-531.
[http://dx.doi.org/10.1002/hup.327] [PMID: 12404548]
[51]
Li, M. Study on the Chemical Composition of Tea; Shenyang Pharmaceutical University: Shenyang, China, 2008.
[52]
Deb, S.; Dutta, A.; Phukan, B.C.; Manivasagam, T.; Justin Thenmozhi, A.; Bhattacharya, P.; Paul, R.; Borah, A. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem. Int., 2019, 129, 104478.
[http://dx.doi.org/10.1016/j.neuint.2019.104478] [PMID: 31145971]
[53]
Abe, Y.; Umemura, S.; Sugimoto, K.; Hirawa, N.; Kato, Y.; Yokoyama, N.; Yokoyama, T.; Iwai, J.; Ishii, M. Effect of green tea rich in? -aminobutyric acid on blood pressure of Dahl salt-sensitive rats. Am. J. Hypertens., 1995, 8(1), 74-79.
[http://dx.doi.org/10.1016/0895-7061(94)00141-W] [PMID: 7734101]
[54]
Chen, R.; Meng, Q.J.; Liu, H.X.; Li, S.; Wang, C.L. Variance analysis of free amino acid composition in different kinds of tea. Food Sci Technol., 2017, 42, 258-263.
[55]
Tan, H.P.; Ye, S.R.; Chen, L.; Zou, Y. Determination Overview of organic acids in tea. China Meas Test Technol., 2008, 34, 77-80.
[56]
Liu, P.P.; Zhong, X.Y.; Xu, Y.Q.; Chen, G.S.; Yin, J.F.; Liu, P. Study on organic acids contents in tea leaves and its extracting characteristics. Chaye Kexue, 2013, 33, 405-410.
[57]
Wang, L.L.; Yang, J.G.; Lin, Q.X.; Xiang, L.H.; Song, Z.S.; Zhang, Y.G.; Chen, L. Determination of 10 organic acid contents in tea using high-performance liquid chromatography-diode array detector. J Zhejiang Univ., 2019, 45, 47-53.
[58]
Sun, T.; Ho, C.T. Antiradical efficiency of tea components. J. Food Lipids, 2001, 8(3), 231-238.
[http://dx.doi.org/10.1111/j.1745-4522.2001.tb00198.x]
[59]
Kang, K.W.; Oh, S.J.; Ryu, S.Y.; Song, G.Y.; Kim, B.H.; Kang, J.S.; Kim, S.K. Evaluation of the total oxy-radical scavenging capacity of catechins isolated from green tea. Food Chem., 2010, 121(4), 1089-1094.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.055]
[60]
Wang, Y.; Mao, F.; Wei, X. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohydr. Polym., 2012, 88(1), 146-153.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.083]
[61]
Hsu, Y.W.; Tsai, C.F.; Ting, H.C.; Chen, W.K.; Yen, C.C. Green tea supplementation in mice mitigates senescence-induced changes in brain antioxidant abilities. J. Funct. Foods, 2014, 7, 471-478.
[http://dx.doi.org/10.1016/j.jff.2014.01.009]
[62]
Yan, Y.; Ren, Y.; Li, X.; Zhang, X.; Guo, H.; Han, Y.; Hu, J. A polysaccharide from green tea (Camellia sinensis L.) protects human retinal endothelial cells against hydrogen peroxide-induced oxidative injury and apoptosis. Int. J. Biol. Macromol., 2018, 115, 600-607.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.011] [PMID: 29627466]
[63]
Shankar, S.; Marsh, L.; Srivastava, R.K. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol. Cell. Biochem., 2013, 372(1-2), 83-94.
[http://dx.doi.org/10.1007/s11010-012-1448-y] [PMID: 22971992]
[64]
Khan, N.; Mukhtar, H. Modulation of signaling pathways in prostate cancer by green tea polyphenols. Biochem. Pharmacol., 2013, 85(5), 667-672.
[http://dx.doi.org/10.1016/j.bcp.2012.09.027] [PMID: 23041649]
[65]
Sharma, C.; Nusri, Q.E.A.; Begum, S.; Javed, E.; Rizvi, T.A.; Hussain, A. (-)-Epigallocatechin-3-gallate induces apoptosis and inhibits invasion and migration of human cervical cancer cells. Asian Pac. J. Cancer Prev., 2012, 13(9), 4815-4822.
[http://dx.doi.org/10.7314/APJCP.2012.13.9.4815] [PMID: 23167425]
[66]
Luo, K.W.; Ko, C.H.; Yue, G.G.L.; Lee, J.K.M.; Li, K.K.; Lee, M.; Li, G.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice. J. Nutr. Biochem., 2014, 25(4), 395-403.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.013] [PMID: 24561153]
[67]
Cerezo-Guisado, M.I.; Zur, R.; Lorenzo, M.J.; Risco, A.; Martín-Serrano, M.A.; Alvarez-Barrientos, A.; Cuenda, A.; Centeno, F. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG. Food Chem. Toxicol., 2015, 84, 125-132.
[http://dx.doi.org/10.1016/j.fct.2015.08.017] [PMID: 26303273]
[68]
Roychoudhury, S.; Halenar, M.; Michalcova, K.; Nath, S.; Kacaniova, M.; Kolesarova, A. Green tea extract affects porcine ovarian cell apoptosis. Reprod. Biol., 2018, 18(1), 94-98.
[http://dx.doi.org/10.1016/j.repbio.2018.01.007] [PMID: 29396284]
[69]
Shirakami, Y. Shimizu, M.; Adachi, S.; Sakai, H.; Nakagawa, T.; Yasuda, Y.; Tsurumi, H.; Hara, Y.; Moriwaki, H. (–)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor–vascular endothelial growth factor receptor axis. Cancer Sci., 2009, 100(10), 1957-1962.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01241.x] [PMID: 19558547]
[70]
Gupta, S.; Ahmad, N.; Nieminen, A.L.; Mukhtar, H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol., 2000, 164(1), 82-90.
[http://dx.doi.org/10.1006/taap.1999.8885] [PMID: 10739747]
[71]
Ma, Y.; Shi, Y.; Li, W.; Sun, A.; Zang, P.; Zhang, P. Epigallocatechin-3-gallate regulates the expression of Kruppel-like factor 4 through myocyte enhancer factor 2A. Cell Stress Chaperones, 2014, 19(2), 217-226.
[http://dx.doi.org/10.1007/s12192-013-0447-6] [PMID: 23884787]
[72]
Sugimura, T. Multistep carcinogenesis: A 1992 perspective. Science, 1992, 258(5082), 603-607.
[http://dx.doi.org/10.1126/science.1411570] [PMID: 1411570]
[73]
Srinivasan, P.; Suchalatha, S.; Babu, P.V.A.; Devi, R.S.; Narayan, S.; Sabitha, K.E.; Shyamala Devi, C.S. Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-Nitroquinoline 1-oxide induced oral cancer. Chem. Biol. Interact., 2008, 172(3), 224-234.
[http://dx.doi.org/10.1016/j.cbi.2008.01.010] [PMID: 18336807]
[74]
Parente, L.; Solito, E. Annexin 1: More than an anti-phospholipase protein. Inflamm. Res., 2004, 53(4), 125-132.
[http://dx.doi.org/10.1007/s00011-003-1235-z] [PMID: 15060718]
[75]
Lu, Q.Y.; Jin, Y.; Mao, J.T.; Zhang, Z.F.; Heber, D.; Dubinett, S.M.; Rao, J. Green tea inhibits cycolooxygenase-2 in non-small cell lung cancer cells through the induction of Annexin-1. Biochem. Biophys. Res. Commun., 2012, 427(4), 725-730.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.125] [PMID: 23036202]
[76]
Chu, C.J.; Lee, S.D.; Hung, T.H.; Lin, H.C.; Hwang, S.J.; Lee, F.Y.; Lu, R.H.; Yu, M.I.; Chang, C.Y.; Yang, P.L.; Lee, C.Y.; Chang, F.Y. Insulin resistance is a major determinant of sustained virological response in genotype 1 chronic hepatitis C patients receiving peginterferon α-2b plus ribavirin. Aliment. Pharmacol. Ther., 2009, 29(1), 46-54.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03823.x] [PMID: 18680550]
[77]
Wu, L.Y.; Juan, C.C.; Ho, L.T.; Hsu, Y.P.; Hwang, L.S. Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J. Agric. Food Chem., 2004, 52(3), 643-648.
[http://dx.doi.org/10.1021/jf030365d] [PMID: 14759162]
[78]
Gould, G.W.; Holman, G.D. The glucose transporter family: structure, function and tissue-specific expression. Biochem. J., 1993, 295(2), 329-341.
[http://dx.doi.org/10.1042/bj2950329] [PMID: 8240230]
[79]
Serisier, S.; Leray, V.; Poudroux, W.; Magot, T.; Ouguerram, K.; Nguyen, P. Effects of green tea on insulin sensitivity, lipid profile and expression of PPARα and PPARγ and their target genes in obese dogs. Br. J. Nutr., 2008, 99(6), 1208-1216.
[http://dx.doi.org/10.1017/S0007114507862386] [PMID: 18053305]
[80]
Sundaram, R.; Naresh, R.; Shanthi, P.; Sachdanandam, P. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. Phytomedicine, 2013, 20(7), 577-584.
[http://dx.doi.org/10.1016/j.phymed.2013.01.006] [PMID: 23453307]
[81]
Wang, H.; Shi, S.; Bao, B.; Li, X.; Wang, S. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydr. Polym., 2015, 124, 98-108.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.070] [PMID: 25839799]
[82]
Cai, L.; Li, W.; Wang, G.; Guo, L.; Jiang, Y.; Kang, Y.J. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 2002, 51(6), 1938-1948.
[http://dx.doi.org/10.2337/diabetes.51.6.1938] [PMID: 12031984]
[83]
Price, J.; Verma, S.; Li, R.K. Diabetic heart dysfunction: Is cell transplantation a potential therapy? Heart Fail. Rev., 2003, 8(3), 213-219.
[http://dx.doi.org/10.1023/A:1024701113383] [PMID: 12878829]
[84]
McKay, D.L.; Blumberg, J.B. The role of tea in human health: An update. J. Am. Coll. Nutr., 2002, 21(1), 1-13.
[http://dx.doi.org/10.1080/07315724.2002.10719187] [PMID: 11838881]
[85]
Zhong, J.; Xu, C.; Reece, E.A.; Yang, P. The green tea polyphenol EGCG alleviates maternal diabetes–induced neural tube defects by inhibiting DNA hypermethylation. Am. J. Obstet. Gynecol., 2016, 215(3), 368.e1-368.e10.
[http://dx.doi.org/10.1016/j.ajog.2016.03.009] [PMID: 26979632]
[86]
Yee, Y.K.; Koo, M.W.L. Anti- Helicobacter pylori activity of Chinese tea: in vitro study. Aliment. Pharmacol. Ther., 2000, 14(5), 635-638.
[http://dx.doi.org/10.1046/j.1365-2036.2000.00747.x] [PMID: 10792128]
[87]
Anand, P.; Kaul, D.; Sharma, M. Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages. Int. J. Biochem. Cell Biol., 2006, 38(4), 600-609.
[http://dx.doi.org/10.1016/j.biocel.2005.10.021] [PMID: 16352457]
[88]
Hamilton-Miller, J.M. Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob. Agents Chemother., 1995, 39(11), 2375-2377.
[http://dx.doi.org/10.1128/AAC.39.11.2375] [PMID: 8585711]
[89]
Si, W.; Gong, J.; Tsao, R.; Kalab, M.; Yang, R.; Yin, Y. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. J. Chromatogr. A, 2006, 1125(2), 204-210.
[http://dx.doi.org/10.1016/j.chroma.2006.05.061] [PMID: 16797571]
[90]
Sharma, A.; Gupta, S.; Sarethy, I.P.; Dang, S.; Gabrani, R. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem., 2012, 135(2), 672-675.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.143] [PMID: 22868144]
[91]
Kushiyama, M.; Shimazaki, Y.; Murakami, M.; Yamashita, Y. Relationship between intake of green tea and periodontal disease. J. Periodontol., 2009, 80(3), 372-377.
[http://dx.doi.org/10.1902/jop.2009.080510] [PMID: 19254120]
[92]
Kudva, P.; Tabasum, S.; Shekhawat, N. Effect of green tea catechin, a local drug delivery system as an adjunct to scaling and root planing in chronic periodontitis patients: A clinicomicrobiological study. J. Indian Soc. Periodontol., 2011, 15(1), 39-45.
[http://dx.doi.org/10.4103/0972-124X.82269] [PMID: 21772720]
[93]
Fournier-Larente, J.; Morin, M.P.; Grenier, D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch. Oral Biol., 2016, 65, 35-43.
[http://dx.doi.org/10.1016/j.archoralbio.2016.01.014] [PMID: 26849416]
[94]
Ignasimuthu, K.; Prakash, R.; Murthy, P.S.; Subban, N. Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria. Lebensm. Wiss. Technol., 2019, 105, 103-109.
[http://dx.doi.org/10.1016/j.lwt.2019.01.064]
[95]
Yamaguchi, K.; Honda, M.; Ikigai, H.; Hara, Y.; Shimamura, T. Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res., 2002, 53(1), 19-34.
[http://dx.doi.org/10.1016/S0166-3542(01)00189-9] [PMID: 11684313]
[96]
Jiang, F.; Chen, W.; Yi, K.; Wu, Z.; Si, Y.; Han, W.; Zhao, Y. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol., 2010, 137(3), 347-356.
[http://dx.doi.org/10.1016/j.clim.2010.08.007] [PMID: 20832370]
[97]
Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res., 1993, 21(4), 289-299.
[http://dx.doi.org/10.1016/0166-3542(93)90008-7] [PMID: 8215301]
[98]
Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[99]
Xu, J.; Wang, J.; Deng, F.; Hu, Z.; Wang, H. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res., 2008, 78(3), 242-249.
[http://dx.doi.org/10.1016/j.antiviral.2007.11.011] [PMID: 18313149]
[100]
Randazzo, W.; Falcó, I.; Aznar, R.; Sánchez, G. Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food Microbiol., 2017, 66, 150-156.
[http://dx.doi.org/10.1016/j.fm.2017.04.018] [PMID: 28576363]
[101]
Wikan, N.; Smith, D.R. Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis., 2016, 16(7), e119-e126.
[http://dx.doi.org/10.1016/S1473-3099(16)30010-X] [PMID: 27282424]
[102]
Sharma, N.; Murali, A.; Singh, S.K.; Giri, R. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int. J. Biol. Macromol., 2017, 104(Pt A), 1046-1054.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.105] [PMID: 28666829]
[103]
Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2021, 85, 153286.
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[104]
Wang, Y.Q.; Li, Q.S.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules, 2021, 26(13), 3962.
[http://dx.doi.org/10.3390/molecules26133962] [PMID: 34209485]
[105]
Mandel, S.; Amit, T.; Reznichenko, L.; Weinreb, O.; Youdim, M.B.H. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res., 2006, 50(2), 229-234.
[http://dx.doi.org/10.1002/mnfr.200500156] [PMID: 16470637]
[106]
Haque, A.M.; Hashimoto, M.; Katakura, M.; Hara, Y.; Shido, O. Green tea catechins prevent cognitive deficits caused by Aβ1–40 in rats. J. Nutr. Biochem., 2008, 19(9), 619-626.
[http://dx.doi.org/10.1016/j.jnutbio.2007.08.008] [PMID: 18280729]
[107]
Zhu, G.; Yang, S.; Xie, Z.; Wan, X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology, 2018, 138, 331-340.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.030] [PMID: 29944861]
[108]
Schimidt, H.L.; Garcia, A.; Martins, A.; Mello-Carpes, P.B.; Carpes, F.P. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res. Int., 2017, 100(Pt 1), 442-448.
[http://dx.doi.org/10.1016/j.foodres.2017.07.026] [PMID: 28873707]
[109]
Mandel, S.; Maor, G.; Youdim, M.B.H. Iron and α-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J. Mol. Neurosci., 2004, 24(3), 401-416.
[http://dx.doi.org/10.1385/JMN:24:3:401] [PMID: 15655262]
[110]
Guo, S.; Yan, J.; Yang, T.; Yang, X.; Bezard, E.; Zhao, B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol. Psychiatry, 2007, 62(12), 1353-1362.
[http://dx.doi.org/10.1016/j.biopsych.2007.04.020] [PMID: 17624318]
[111]
Qi, G.; Mi, Y.; Fan, R.; Zhao, B.; Ren, B.; Liu, X. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1. Food Chem. Toxicol., 2017, 110, 189-199.
[http://dx.doi.org/10.1016/j.fct.2017.10.031] [PMID: 29061316]
[112]
Asahi, M.; Asahi, K.; Jung, J.C.; del Zoppo, G.J.; Fini, M.E.; Lo, E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab., 2000, 20(12), 1681-1689.
[http://dx.doi.org/10.1097/00004647-200012000-00007] [PMID: 11129784]
[113]
Park, J.W.; Hong, J.S.; Lee, K.S.; Kim, H.Y.; Lee, J.J.; Lee, S.R. Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J. Nutr. Biochem., 2010, 21(11), 1038-1044.
[http://dx.doi.org/10.1016/j.jnutbio.2009.08.009] [PMID: 19962294]
[114]
Yan , Xu Zhang, J.; Li Xiong; Lei Zhang; Dong Sun; Hui Liu, Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. J. Nutr. Biochem., 2010, 21(8), 741-748.
[http://dx.doi.org/10.1016/j.jnutbio.2009.05.002] [PMID: 19615878]
[115]
Sharma, E.; Joshi, R.; Gulati, A. l-Theanine: An astounding sui generis integrant in tea. Food Chem., 2018, 242, 601-610.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.046] [PMID: 29037735]
[116]
Zhao, J.; Zhao, X.; Tian, J.; Xue, R.; Luo, B.; Lv, J.; Gao, J.; Wang, M. Theanine attenuates hippocampus damage of rat cerebral ischemia-reperfusion injury by inhibiting HO-1 expression and activating ERK1/2 pathway. Life Sci., 2020, 241, 117160.
[http://dx.doi.org/10.1016/j.lfs.2019.117160] [PMID: 31837331]
[117]
Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci., 2000, 3(12), 1301-1306.
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[118]
Tai, K.K. Truong, D.D. (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells. Neurosci. Lett., 2010, 482(3), 183-187.
[http://dx.doi.org/10.1016/j.neulet.2010.06.018] [PMID: 20542083]
[119]
Soong, W.T.; Chao, K.Y.; Jang, C.S.; Wang, J.D. Long-term effect of increased lead absorption on intelligence of children. Arch. Environ. Health, 1999, 54(4), 297-301.
[http://dx.doi.org/10.1080/00039899909602489] [PMID: 10433190]
[120]
Duarte, J.A.; de Barros, A.L.B.; Leite, E.A. The potential use of simvastatin for cancer treatment: A review. Biomed. Pharmacother., 2021, 141, 111858.
[http://dx.doi.org/10.1016/j.biopha.2021.111858] [PMID: 34323700]
[121]
Cury Martins, J.; Martins, C.; Aoki, V.; Gois, A.F.; Ishii, H.A.; da Silva, E.M. Topical tacrolimus for atopic dermatitis. Cochrane Database Syst. Rev., 2015, 2015(7), CD009864.
[PMID: 26132597]
[122]
Ferrari, F.; Santander, I.R.M.F.; Stein, R. Digoxin in atrial fibrillation: An old topic revisited. Curr. Cardiol. Rev., 2020, 16(2), 141-146.
[http://dx.doi.org/10.2174/1573403X15666190618110941] [PMID: 31237216]
[123]
Al-Maskari, M.; Al-Shukaili, A.; Al-Mammari, A. Pro-inflammatory cytokines in Omani type 2 diabetic patients presenting anxiety and depression. Iran. J. Immunol., 2010, 7(2), 124-129.
[PMID: 20574126]
[124]
Werba, J.; Misaka, S.; Giroli, M.; Yamada, S.; Cavalca, V.; Kawabe, K.; Squellerio, I.; Laguzzi, F.; Onoue, S.; Veglia, F.; Myasoedova, V.; Takeuchi, K.; Adachi, E.; Inui, N.; Tremoli, E.; Watanabe, H. Overview of green tea interaction with cardiovascular drugs. Curr. Pharm. Des., 2015, 21(9), 1213-1219.
[http://dx.doi.org/10.2174/1381612820666141013135045] [PMID: 25312732]
[125]
Vischini, G.; Niscola, P.; Stefoni, A.; Farneti, F. Increased plasma levels of tacrolimus after ingestion of green tea. Am. J. Kidney Dis., 2011, 58(2), 329.
[http://dx.doi.org/10.1053/j.ajkd.2011.05.013] [PMID: 21787983]
[126]
Chilbert, M.R.; VanDuyn, D.; Salah, S.; Clark, C.M.; Ma, Q. Combination therapy of ezetimibe and rosuvastatin for dyslipidemia: Current insights. Drug Des. Devel. Ther., 2022, 16, 2177-2186.
[http://dx.doi.org/10.2147/DDDT.S332352] [PMID: 35832642]
[127]
Kelly, S.A.; Hartley, L.; Loveman, E.; Colquitt, J.L.; Jones, H.M.; Al-Khudairy, L.; Clar, C.; Germanò, R.; Lunn, H.R.; Frost, G.; Rees, K. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev., 2017, 8(8), CD005051.
[PMID: 28836672]
[128]
Silberstein, SD Preventive migraine treatment. Continuum, 2015, 21(4 Headache), 973-989.
[http://dx.doi.org/10.1212/CON.0000000000000199]
[129]
Kim, T.E.; Ha, N.; Kim, Y.; Kim, H.; Lee, J.W.; Jeon, J.Y.; Kim, M.G. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des. Devel. Ther., 2017, 11, 1409-1416.
[http://dx.doi.org/10.2147/DDDT.S130050] [PMID: 28533679]
[130]
Misaka, S.; Yatabe, J.; Müller, F.; Takano, K.; Kawabe, K.; Glaeser, H.; Yatabe, M.S.; Onoue, S.; Werba, J.P.; Watanabe, H.; Yamada, S.; Fromm, M.F.; Kimura, J. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin. Pharmacol. Ther., 2014, 95(4), 432-438.
[http://dx.doi.org/10.1038/clpt.2013.241] [PMID: 24419562]
[131]
Doig, L.E.; Liber, K. An assessment of Hyalella azteca burrowing activity under laboratory sediment toxicity testing conditions. Chemosphere, 2010, 81(2), 261-265.
[http://dx.doi.org/10.1016/j.chemosphere.2010.05.054] [PMID: 20591466]
[132]
LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev., 2021, 42(1), 77-96.
[http://dx.doi.org/10.1210/endrev/bnaa023] [PMID: 32897388]
[133]
Markowitz, J.; Zhu, H.J. Limitations of in vitro assessments of the drug interaction potential of botanical supplements. Planta Med., 2012, 78(13), 1421-1427.
[http://dx.doi.org/10.1055/s-0032-1315025] [PMID: 22814819]
[134]
Di Stasi, L.C. Coumarin derivatives in inflammatory bowel disease. Molecules, 2021, 26(2), 422.
[http://dx.doi.org/10.3390/molecules26020422] [PMID: 33467396]
[135]
Altman, R.; Bosch, B.; Brune, K.; Patrignani, P.; Young, C. Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology. Drugs, 2015, 75(8), 859-877.
[http://dx.doi.org/10.1007/s40265-015-0392-z] [PMID: 25963327]
[136]
Nagapandiselvi, P.; Muralidharan, S.; Srinivasan, T.; Goplalakrishnan, R.; Velmurugan, D. 4-Nitrophenol–piperazine (2/1). Acta Crystallogr. Sect. E Struct. Rep. Online, 2013, 69(7), o1044.
[http://dx.doi.org/10.1107/S1600536813015328] [PMID: 24046620]
[137]
Sivaramakrishnan, G.; Sridharan, K. Nitrous oxide and midazolam sedation: A systematic review and meta-analysis. Anesth. Prog., 2017, 64(2), 59-65.
[http://dx.doi.org/10.2344/anpr-63-03-06] [PMID: 28604098]
[138]
Brown, F.R., Jr; Friskey, R.W.; Grindle, L.; Kinsell, L.W.; Splitter, S. Treatment of diabetic patients; observations on the use of carbutamide and tolbutamide. Calif. Med., 1956, 85(5), 285-288.
[PMID: 13364673]
[139]
Pringle, T.H.; Francis, R.J.; East, P.B.; Shanks, R.G. Pharmacodynamic and pharmacokinetic studies on bufuralol in man. Br. J. Clin. Pharmacol., 1986, 22(5), 527-534.
[http://dx.doi.org/10.1111/j.1365-2125.1986.tb02931.x] [PMID: 2878678]
[140]
Barbonetti, A.; D’Andrea, S.; Francavilla, S. Testosterone replacement therapy. Andrology, 2020, 8(6), 1551-1566.
[http://dx.doi.org/10.1111/andr.12774] [PMID: 32068334]
[141]
Chan, X.H.S.; Haeusler, I.L.; Win, Y.N.; Pike, J.; Hanboonkunupakarn, B.; Hanafiah, M.; Lee, S.J.; Djimdé, A.; Fanello, C.I.; Kiechel, J.R.; Lacerda, M.V.G.; Ogutu, B.; Onyamboko, M.A.; Siqueira, A.M.; Ashley, E.A.; Taylor, W.R.J.; White, N.J. The cardiovascular effects of amodiaquine and structurally related antimalarials: An individual patient data meta-analysis. PLoS Med., 2021, 18(9), e1003766.
[http://dx.doi.org/10.1371/journal.pmed.1003766] [PMID: 34492005]
[142]
Wilson, T.K.; Tripp, J. Buspirone. 2023 Jan 17.StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[143]
Basci, N.E. Brosen, K.; Bozkurt, A.; Isimer, A.; Sayal, A.; Kayaalp, S.O. S-mephenytoin, sparteine and debrisoquine oxidation: genetic polymorphisms in a Turkish population. Br. J. Clin. Pharmacol., 1994, 38(5), 463-465.
[http://dx.doi.org/10.1111/j.1365-2125.1994.tb04383.x] [PMID: 7893589]
[144]
Tawfik, MS; El Desouky, MI; Medhat, MM Hassan, MA Preoperative Oral Dextromethorphan versus ketamine or midazolam for attenuating sevoflurane emergence agitation in preschool children undergoing adenotonsillectomy. 2023.
[145]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[146]
Knop, J.; Misaka, S.; Singer, K.; Hoier, E.; Müller, F.; Glaeser, H.; König, J.; Fromm, M.F. Inhibitory effects of green tea and (–)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One, 2015, 10(10), e0139370.
[http://dx.doi.org/10.1371/journal.pone.0139370] [PMID: 26426900]
[147]
Ye, Y.C.; Zhao, X.L.; Zhang, S.Y. Use of atorvastatin in lipid disorders and cardiovascular disease in Chinese patients. Chin. Med. J., 2015, 128(2), 259-266.
[http://dx.doi.org/10.4103/0366-6999.149226] [PMID: 25591572]
[148]
Itoh, T. Pharmacokinetic study of cancer chemotherapy. Yakugaku Zasshi, 2006, 126(9), 723-735.
[http://dx.doi.org/10.1248/yakushi.126.723] [PMID: 16946586]
[149]
Muto, S.; Fujita, K.; Yamazaki, Y.; Kamataki, T. Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat. Res., 2001, 479(1-2), 197-206.
[http://dx.doi.org/10.1016/S0027-5107(01)00204-4] [PMID: 11470492]
[150]
Taniguti, E.H.; Ferreira, Y.S.; Stupp, I.J.V.; Fraga-Junior, E.B.; Doneda, D.L.; Lopes, L.; Rios-Santos, F.; Lima, E.; Buss, Z.S.; Viola, G.G.; Vandresen-Filho, S. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res. Bull., 2019, 146, 279-286.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.018] [PMID: 30690060]
[151]
Podhorecka, M.; Ibanez, B. Dmoszyńska, A. Metformin : Its potential anti-cancer and anti-aging effects. Postepy Hig. Med. Dosw., 2017, 71(1), 0.
[http://dx.doi.org/10.5604/01.3001.0010.3801 ] [PMID: 28258677]
[152]
Liao, Y.C.; Hsu, L.F.; Hsieh, L.Y.; Luo, Y.Y. Effectiveness of green tea mouthwash for improving oral health status in oral cancer patients: A single-blind randomized controlled trial. Int. J. Nurs. Stud., 2021, 121, 103985.
[http://dx.doi.org/10.1016/j.ijnurstu.2021.103985] [PMID: 34186380]
[153]
Sheng, Y.Y.; Xiang, J.; Lu, J.L.; Ye, J.H.; Chen, Z.J.; Zhao, J.W.; Liang, Y.R.; Zheng, X.Q. Protective effects of gallocatechin gallate against ultraviolet B induced skin damages in hairless mice. Sci. Rep., 2022, 12(1), 1310.
[http://dx.doi.org/10.1038/s41598-022-05305-9] [PMID: 35079059]
[154]
Lin, X.; Chen, Z.; Zhang, Y.; Luo, W.; Tang, H.; Deng, B.; Deng, J.; Li, B. Comparative characterisation of green tea and black tea cream: Physicochemical and phytochemical nature. Food Chem., 2015, 173, 432-440.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.048] [PMID: 25466042]
[155]
Akhlaghi, N.; Ahmadi, M.H.; Sarrami, L.; Yegdaneh, A.; Homayoni, A.; Bakhtiyari, Z.; Danaeifar, N. Comparative evaluation of efficacy of green tea mouth rinse and green tea gel on the salivary streptococcus mutans and Lactobacillus colony count in 12–18-year-old teenagers: A randomized clinical trial. Contemp. Clin. Dent., 2019, 10(1), 81-85.
[http://dx.doi.org/10.4103/ccd.ccd_368_18] [PMID: 32015647]
[156]
Behfarnia, P.; Aslani, A.; Jamshidian, F.; Noohi, S. The efficacy of green tea chewing gum on gingival inflammation. J. Dent., 2016, 17(2), 149-154.
[PMID: 27284561]
[157]
Aslani, A.; Ghannadi, A.; Khalafi, Z. Design, formulation and evaluation of green tea chewing gum. Adv. Biomed. Res., 2014, 3(1), 141.
[http://dx.doi.org/10.4103/2277-9175.135159] [PMID: 25161989]
[158]
Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients, 2018, 11(1), 39.
[http://dx.doi.org/10.3390/nu11010039] [PMID: 30585192]
[159]
Nội, Hà.; Xuân, Thủy.; Cầu, Giấy.; Nam, V.; Hoàng Quốc, Việt. Preparation of green tea effervescent tablets. VNU J. Sci. Med. Pharmac. Sci., 2020, 36(3)
[160]
Thomas, A.A.; Varghese, R.M.; Rajeshkumar, S. Antimicrobial effects of copper nanoparticles with green tea and neem formulation. Bioinformation, 2022, 18(3), 284-288.
[http://dx.doi.org/10.6026/97320630018284] [PMID: 36518121]
[161]
Gadapa, S.; Battula, S.N.; Mor, S.; Pushpadass, H.A.; Naik, L.N.; Emerald, M.E. Green tea catechin loaded niosomes: Formulation and their characterization for food fortification. J. Food Sci. Technol., 2022, 59(9), 3669-3682.
[http://dx.doi.org/10.1007/s13197-022-05384-6] [PMID: 35875240]
[162]
Mazyed, E.A.; Helal, D.A.; Elkhoudary, M.M.; Abd Elhameed, A.G.; Yasser, M. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals, 2021, 14(1), 68.
[http://dx.doi.org/10.3390/ph14010068] [PMID: 33467631]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy